CW1: An Unknown Signal

Michael Wray & Davide Moltisanti
February, 2020

1 Introduction

The year is 1983, the strategy of Détente (de-escalation via verbal agreement)
has failed. Both the United States of America and the Soviet Union have
been stockpiling nuclear weapons and recent political events have brought
the world on the cusp of total annihilation. As an operator for a nuclear
early warning device you receive an unknown signal...

2 Task

In this coursework you will be given example points which follow an unknown
signal. You will be required to reconstruct the signal (i.e. estimate a model
given the data) and give the resulting error. Your solutions will be auto-
marked with a variety of different inputs in order to test both the correctness
and robustness of your system. You also need to write a report presenting
and discussing your results.

3 Implementation

Your final solution will use the linear least squares regression code that you
have created in the worksheets which will need to be extended in order to
cope with non-linear regression. Your solution should:

e Read in a file containing a number of different line segments (each made
up of 20 points)



e Determine the function type of line segment, e.g. linear/polynomial /unknown
function (there is one unknown function), using least squares regression

e Produce the total reconstruction error/residual

e Produce a figure showing the reconstructed line from the points if an
optional argument is given.

Note: All Code written for the least squares regression sections must be
written by yourself. Any calls to Scipy’s regression solver or any other similar
library are forbidden and will be treated as not implemented.

4 Marks

Each solution will go through 50 tests in order to test its correctness and
robustness. These test files will be similar in nature to the train files that
you have been provided. Each test will be worth 2 points broken down as
the following:

e 0: Solution gave incorrect output format and/or didn’t finish execution.
e 1: Solution gave correct output format but a large error difference.

e 2: Solution gave correct output format and a small error difference.

Note: The ‘error difference’ will be the difference in error between your
solution and a model solution we have coded. This will be different for every
test and more information will be provided when the marks are released.

In addition, you are asked to write a short report discussing and showing
your results/solution (more details below).

4.1 Solution [0 — 60%]

Your mark will depend on the quality of your solution according to (of in-
creasing difficulty):

1. Solutions which have implemented the linear least squares regression.



2. Solutions with an extended least squares regression to handle polyno-
mial inputs with few errors.

3. Solutions with an extended least squares regression fine-tuned to the
output signal, but that fail on edge cases.

4. A very good solution that reconstructs every signal with minimum
error.

4.2 Report [0 — 40%]

The aim of this report is to demonstrate your understanding of methods you
used and the results that you have obtained.

The report should be no more than 3 pages long, using no less than
11 point font. Submission: On Blackboard (under Assessment, ...) with a
pdf file (as cwl_userid.pdf) for the report together with your code
(as cwl_userid.py) [note: your code input/output needs to follow the right
format for auto-marking!].

To gain high marks your report will need to demonstrate clearly a thor-
ough understanding of the tasks and the methods used, backed up by a clear
explanation (including figures) of your results and analysis. The structure of
the report and what is included in it is your decision and you should aim to
write it in a professional and objective manner so that it addresses the issues
mentioned above, but it should generally focus on the following elements:

1. An explanation of the least squares regression that you used (with
equations)

2. Figures/plots demonstrating your results for the training data provided

3. Discuss your results (e.g. generalization to new data, overfitting) and
possible extensions

The deadline for submitting your work is 27 March 2020 at noon.
Note: Both code and report need to be your own pieces of work.

“You should have submit on Blackboard a python script to be tested by our automark-
ing. This does not count towards your grade, its just to make sure you have the right
input/output in your script.



5 Train/Test Files

The input files are Comma Separated Value (CSVs) which consists of two
columns for the x and y dimensions respectively. Each input file will be split
into different line segments each made up of 20 different points, so the first
20 points correspond to the first line segment, 21-40 the second line segment
etc. Two consecutive line segments may/may not follow the same trend. A
line segment will follow a linear, polynomial or another unknown function.
An example train file is given below (basic_2.csv):

-2.9251047704944395,4.8735802196928955
-0.8554275589011144,8.298220787115126
.19855925795710938,10.042225113162727
.43421216060191,10.432153786922873
624770694735732,10.747465992520771
3614382007711343,11.96641038237006
5943359027154818,12.351780097835984
194060135884697,16.653475561819924
6779257660237565,17.45411532191076
023596843152395,18.026088181779052
288865840413205,21.774369344024162
485381750603618,22.099539063443302
932320124145074,22.839076261125182
697898711534522,25.760532815546593
.79296969415338,25.91784427553536
.338531977763036,26.820571869016863
.47247053028027,27.042196476913674
.373020960538451,28.532313640689885
.448760928878032,30.31231233562508
.518847008701732,30.428281932638267
.653923639452994,30.27170891389091
.717363846157376,30.149430959474596
.922893495415568,29.753282422312626
.82087982807715,28.02245685354787
.940698414027672,22.009156225167718
.888369346145012,20.182565974932835
.383541905873596,17.300692607859034
.669839705150725,16.748867336976346
.098166635136398,15.923287731535833
.564236539021604,15.024960354898298
.621376796845194,14.914825249663732
.505205350325678,13.211288120947877
.70770290983017,1.2562716850382856
.51062072023851,-0.2913138686887322
.664485990065593,-0.5878817934724623
.937739282405232,-3.042016420848668
.093442528905104,-3.3421269574788823
.886445731764947,-4.870602580881737
.512235111191547,-6.076781582919168
31.755689686592167,-6.546028595495876

©NNNG B S R H 00O

WWWRNRNNNNDNDNDN B B 2 s e s e ©
FOO VRO IROOOVONOWNNNNNROO

This corresponds to 40 points of x and y co-ordinates which make up the two
different line segments of the file. Test files could consist of any number of line
segments (i.e. longer than adv_3.csv) as well as have large amounts of noise.

6 Input/Output

The auto-marker will expect a program called Isr.py (not a jupyter notebook)
which will be run as follows:



$ python 1lsr.py test_2.csv

After execution your program should print out the total reconstruction er-
ror, created by summing the error for every line segment, followed by a newline
character:

$ python 1lsr.py basic_2.csv
6.467081701001855e-27

$

Additionally, to further understand and validate your solution we wish for your
program to be able to visualise the result given an optional parameter, --plot.
This is only to visually check that your solution is working and will not be part of
the automarker (styling of the plot itself doesn’t matter). For example, running;:

$ python 1lsr.py basic_2.csv --plot
6.467081701001855e-27

Will also show the following visualisation:

Figure 1 S (=] tJ

A € > Q=¥

30 1

254

201

15 4

10

Note the presence of both the original points (blue dots) and fitted line seg-
ments (red lines).



7 Hints/Notes

e We have provided you a utilities file which contains two functions: load_points_from_file
and view_data_points. The first will load the data points from a file and re-
turn them as two numpy arrays. The second will visualise the data points
with a different colour per segment.

e The error you need to calculate is the sum squared error.

e Regardless of the number of segments your program needs to only output
the total reconstruction error.

e The test files will include points approximating line segments generated from
the three functions mentioned above, i.e. linear, polynomial or the unknown
function.

e The order of the polynomial function will not change between the train
files and the test files.

e Having a very low error might not be the correct answer to a noisy solution,
refer to overfitting in the lecture slides.



