Pokémon: Gotta Find Them All!

Assignment 1
CSSE1001/7030
Semester 1, 2020

10 marks

Due Date: 3" April, 17:00

1 Introduction

The goal of this assignment is to produce a text-based game with Python.

2 Getting Started

To start, download al.zip from Blackboard and extract the contents. The al.zip folder contains all the
necessary files to start this assignment. Some support code has been provided to assist with implementing
the tasks. You will be required to implement your assignment in al.py.

The other provided file is al_support.py, which contains some code to help you implement your assign-
ment. You are not compelled to use this file to implement your assignment but it is strongly recommended.
Do not make changes to the al_support.py file. The only file that you are required to submit is al.py. It
could cause unexpected errors if you made changes to the al_support.py file as well.

3 Concepts

Pokémon: Gotta Find Them All! is a single-player puzzle game where the objective is for the player to find
all the Pokemon without scaring them away by stepping on them. When the game starts the player should
first be prompted for the game “size” (i.e. the grid size), before being prompted for the number of Pokemon
used in the game. The game should then be displayed with all tiles unexposed (see Fig. 1 for a sample game
of grid size, 7).

At each turn the player should be prompted for an action. Table 1 shows a list of valid actions:

Input Action Example
'~Upper Case Character--number-’ Select a cell ‘A1’
‘f -Upper Case Character--number-’ Place/remove a flag ‘f AT
‘h’ Help text (see examples at end) ‘h’
‘q’ Quit ‘q’
)’ Restart ‘)’

Table 1: List of valid actions.

The list of characters used in the game is shown in Table 2.

Character Description

T WALL_VERTICAL
= WALL_HORIZONTAL

'©’ POKEMON

R4 FLAG

Lt UNEXPOSED cell

0’ EXPOSED cell (this could also be any number from 0-8)

Table 2: List of characters used in the game.

If, say, ‘C4’ is entered, then the cell at position, C4, should be uncovered to reveal a number that indicates
how many Pokemon are hidden in the neighbouring cells. If no Pokemon are present in any neighbouring
cells then the number 0 should be displayed. For cells which have a zero value (i.e. no neighbouring poke-
mons) all the cell’s neighbours are uncovered (i.e. they are made to display the number of pokemons in
neighbouring cells). If one of those neighbouring cells is also zero then all of that cell’s neighbours are also
uncovered. This process repeats until there are no more 0’s uncovered. This forms a section. (See Fig. 2
for an illustration of this). (The big fun search function in the support code will search through the game
to determine which cells needs to be uncovered)

If, say, ‘f B1’ is entered, then a flag will be placed on the cell at position, B1, provided there is no flag
currently on that cell. Alternatively, if there is a flag on that cell, the flag will be removed.

If ‘h’ is entered, then advice about how to play the game is provided. See the Section, “Examples of how
the game should run”, to see what this text should be. If ‘q’ is entered, then the game provides a prompt to
make sure the player wants the game to end. If they do, then the game ends. (See the section, “Examples
of how the game should run” to see the required text). If ‘)’ is entered then the game is reset (i.e. restarted).

The game ends when either:

e The player loses the game by selecting a cell that contains a Pokemon, thus scaring away all the
Pokemon (see Fig. 3).

e The player wins the game by correctly flagging all cells with hidden Pokemon AND exposing all cells
that do not contain Pokemon.

Please input the size of the grid: 7
Please input the number of pokemons: 5
|1 12|34]|5]6] 7|

ool (R et B NS L D

Figure 1: Example of the start of the game.

Please input action: C&
112314161617]|

Al~T~T~I~11]86]¢e]

Bl ~I~l1]2]1]e]e|

Please input action: [

Figure 2: Example of selecting a cell with 0 surrounding Pokemons. (Neighbouring cells have to be repeatedly
uncovered until there are no more neighbouring cells with 0 Pokemons. Effectively, a border of non-zero
values forms around the original cell. This forms a section.

Please input action: f Bl

11 2]3]4]5]6]7]|
Al~]1]le]e|1]~]~]
Blvl|1]@|e]1]1]~]|

Figure 3: Example of flagging the cell B1.

Please input action: Aé

You have scared away all the pokemons.

Figure 4: Selecting cell A6 which has a hidden Pokemon.

3.1 SOME PROGRAM ENTITIES:

game: This is a string which represents the cells in the game. This should initially be a string entirely
made of UNEXPOSED characters (i.e. entirely of ~’s). The game variable should remain be a string which
represents the cells in the game for the entirety of the assignment.

game when printed

|11 2]3]

"/\JNNNNNNNN n

"000110~10" |

index: This is an integer which indicates the position in a string (usually the game string).

grid_size: This is an integer which represents the size of the grid. i.e. a grid_size of 7 corresponds
to a game that has 7 rows x 7 columns.

position: Tuple representing a row, column position of a cell.

pokemon_locations: This is a tuple containing all the Pokemon locations (i.e. indexes within the game
string). The number of elements within this tuple should be specified at the start of the game by prompting
the player to enter how many Pokemon they wish to have in the game. The support code contains a function
which generates the Pokemon locations.

Directions: Directions to neighbouring cells are: ”up”, “down”, “left”, “right”, “up-left”, “up-right”,
“down-left”, “down-right”. See DIRECTIONS in the support code.

4 Implementation

The following functions must be written when implementing the game. (Additional functions are allowed if
necessary)

display_game (game, grid_size)
This function prints out a grid-shaped representation of the game, given the game string and the grid size
as arguments.

parse_position(action, grid_size) -> tuple<int, int>

This function checks if the input action is in a valid format. i.e it checks if the entered action fits the criteria
in Table 1. If a non-valid action is entered, None should be returned. If the action is “Select a cell” or
“Flag/remove a cell”, the position of the cell should be returned as a tuple. E.g. Al should return the tuple,

2
A 1(0,0) | (0,1) | (0,2)
B | (1,0 ,

C | (2,0 | (2,1) | (2,2)

Table 3: Positions in grid and corresponding tuples.

Example:

>>> parse_position(”C1”,3)
(2,0)

>>> parse_position(” A2”,3)
(0.1)

>>> parseyosition(” A4”, 3)
>>>

position_to_index(position, grid_size) -> int
This function should convert the row, column coordinate in the grid to the game strings index. The function
returns an integer representing the index of the cell in the game string.

replace_character_at_index(game, index, character) -> str
This function returns an updated game string with the specified character placed at the specified index.

flag cell(game, index) -> str
This function returns an updated game string after “toggling” the flag at the specified index in the game
string.

index_in direction(index, grid size, direction) -> int
This function takes in the index to a cell in the game string and returns a new index corresponding to an

adjacent cell in the specified direction. Return None for invalid directions.

For example:

11213
Al~| ~
Bl~|~|~
Cl~| 9|~

index | 0 1

[\
w
W~
ot
(@]
\]
oo

Char ~ ~ © ~ ~ ~ ~ ' ~

If the input index is 5, and the direction specified is ”up” then the updated index is 2.

neighbour_directions(index, grid_size) -> list<int, ...>
This function returns a list of indexes that have a neighbouring cell. (Note that the cells at the edges of the
grid do not have all possible directions).

number_at_cell(game, pokemon locations, grid_size, index) -> int
This function returns the number of Pokemon in neighbouring cells.

check_win(game, pokemon locations) -> bool
This function returns True if the player has won the game, and returns False otherwise.

main()
This function handles player interaction. At the start of the game the player should be prompted with the
following:

“

1. “Please input the size of the grid: “ where the player has to enter a single integer (26 being the
maximum) representing the size. Followed by

2. “Please input the number of pokemons: “ where the player has to enter a single integer representing
how many pokemons they would like to be in the game.

The game should generate the correct number of pokemon (hint: generate_pokemons) then loop continuously
until either the game finishes or the player quits.

The game should also be displayed after each input (valid or invalid).

Note: The big_fun_search function is required to uncover a section of cells.

5 Examples of the game running

5.1 Example 1

Please input the size of the grid: b5
Please input the number of pokemons: b5
l1]2]3[4]5]

Alslsl~l~l~]

Blmlmlm|~|~|
Clm mlm ™|~
Dlmlmlm|~|~]|
Elnlm i~~~

Please input action: Al
l1]2]3[4]5]

AL~~~]~

Blmlmlm|m|~]|
Clmmlml~]~
Dlmlm e~ ~]|
Elmlm i~~~

Please input action: Eb
l1]2]3]4afs]

AR

Blalnlnlnl~|
Clmmm |~ |~
Dlmlm i~~~
Elmlmlml~l2]

Please input action: h
h - Help.

<Uppercase Letter><number> - Selecting a cell (e.g.

’Al’)

f <Uppercase Letter><number> - Placing flag at cell (e.g.

:) - Restart game.
q - Quit.

’f A17)

l1]2]3]4]5]

A1 ~]~]~]~]
B~~~ ~]~]
Clof v~~~
D~ |~[~]~]~]
Ef~]~l~[~]2]
Please input action: :)

It’s rewind time.
1]2]3[4]5]

A~~~ v~

Blalnlnlnl~|
Clmlmlnl o~
Dlmlm i~~~
Elalnlnlnl~l

Please input action: Al
l1]2]3]4a]5]

Please input action: A4
l1]2]3[4]5]

Please input action: C5
l1]2]3]4af5]

Please input action: A5
l1]2]3[4]5]

You have scared away all the pokemons.

>>>

5.2 Example 2

Please input the size of the grid:

Please input the number of pokemons:

l1]2]3]4af[5]6]7]8]

10

Please input action: Al
[1]2]3[4f[5][6]|7]8]09]10]

Please input action: £ E1
l1]2]3]4af[5]|6][7][8]9]10

Please input action: q

11

You sure about that buddy? (y/n): n
Let’s keep going.
|1]2|3|]4|5|6|7]8]9]10

Please input action: £ A4
l1]2[3]af[s]|6][7][8]9]10

Please input action: £ A10
|1]2]3|4|5|6|7]|8]|9] 10

12

Blofoft1[t[1]ofofo]|1]1]

Please input action: f E4
l1]2[3]4af[s]|6][7][8]9]10

Please input action: £ I2
[1]2]3[4f[s][6]|7]8]09]10]

13

Efofof1|¥[1]ofofofo]oO]

ju o)
-
-
-
°
°
°
°
°
°
°

Please input action: I1
l1]2]3]4af[s]|6][7][8]9]10

Please input action: J2
[1]12]3[4f[s5][6]|7]|8]09]10]

14

Hitf[1]1]ofofofofo]O]oO]

Please input action: J1
l1]2]3]4af[5]|6][7][8]9]10

(]
°
°
-
-
-
°
°
°
°
°

Please input action: £ J7
[1]12]3[4f[5][6]|7]8]09]10]

15

You win.
>>>

Note that:
If the player decides to quit the game (q command followed by y command) the following should be displayed:
Catch you on the flip side.

If the player wishes to restart the game (:) command) the following should be displayed:
It’s rewind time.

16

Marking

6 Functionality Assessment

The functionality will be marked out of 7. Your assignment will be put through a series of tests and your
functionality mark will be proportional to the number of tests you pass. If, say, there are 25 functionality
tests and you pass 20 of them, then your functionality mark will be 20/25 x 7.

You will be given the functionality tests before the due date for the assignment so that you can gain a
good idea of the correctness of your assignment yourself before submitting. You should, however, make sure
that your program meets all the specifications given in the assignment. That will ensure that your code
passes all the tests.

Note: Functionality tests are automated, therefore, string outputs need to exactly match what is expected.

7 Code Style

The style of your assignment will be assessed by one of the tutors, and you will be marked according to the
style rubric provided with the assignment. The style mark will be out of 3.

8 Feedback Session

In the week following the assignment, students will be able to go to a prac session and request feedback
on their assignment from a tutor. They will not be able to get assignment marks, simply feedback. These
feedback sessions are not compulsory.

You should go to the prac session that you are enrolled in to get your feedback. If the prac sessions
are not too busy then you can request that a tutor give you feedback even if you are not enrolled in that
session.

9 Assignment Submission

Your assignment must be submitted via the Assignment 1 submission link on Blackboard. You must submit
a Python file containing your implementation of the assignment. Late submission of the assignment will not
be accepted. Do not wait until the last minute to submit your assignment, as the time to upload it may make
it late. Multiple submissions are allowed, so ensure that you have submitted an almost complete version of
the assignment well before the submission deadline. Your latest on-time, submission will be marked. Ensure
that you submit the correct version of your assignment. In the event of exceptional circumstances, you may
submit a request for an extension. See the course profile for details of how to apply for an extension. Requests
for extensions must be made no later than 48 hours prior to the submission deadline. The expectation is
that with less than 48 hours before an assignment is due it should be substantially completed and al.py
submittable. Applications for extension, and any supporting documentation (e.g. medical certificate), must
be submitted via my.UQ. You must retain the original documentation for a minimum period of six months
to provide as verification should you be requested to do so.

10 Assignment 1 updates

1. neighbour directions(index, grid_size) -> list<int, ...>
2. Table 3 position updated to (row, column) format.

3. Example of the game running section.

17

4. index_in_direction() should return None for invalid direction.

18

