
Tutorial 8 Solutions
Multifactor (3-way) ANOVA and Simple Linear Regression
STAT 292: Applied Statistics 2A

R  Functions Used in This Tutorial
In this tutorial we use the aov  function to fit a three-way ANOVA and visualise the effects of two of the factors in an interaction graph,
produced using the interaction.plot  function. We also use the lm  function to fit a simple linear regression.

R  functions that will be emphasised during this tutorial are:

Function Description Package

aov Fit an analysis of variance model stats

interaction.plot Plot the mean (or other summary) of the response for two-way combinations of factors stats

lm Fit linear models stats

The actions of the functions in this tutorial are best illustrated by looking at the resulting output given below (and in the solutions), along with
other examples given in Chapters 3 and 4 of the Part 2 Lecture Notes. Also refer back to the earlier tutorials.

Recall that the help file for any function can be produced by typing ?<FUNCTION_NAME>  or help(FUNCTION_NAME)  (where FUNCTION_NAME  is
the name of the function) at the command line in the R  console (e.g., ?interaction.plot , ?lm ).

Questions and Solutions
1. Suppose a new strain of influenza occurs, and a medical centre records the time to recovery for each of 59 patients. Also

information is gathered on the age of the patient (in three age groups), the severity of the symptoms at first diagnosis (Low or
High), and whether or not the patient self-medicated with a certain over-the-counter drug (Med Y or Med N). The data follow.

Low S, Med Y Low S, Med N High S, Med Y High S, Med N

20-29 6, 3 7, 4, 5, 4 7, 7, 8 5, 6, 7, 4, 6, 8

30-59 8, 5, 6, 9, 5, 6, 6 7, 2, 4, 6, 7, 3 9, 5, 8, 12, 3, 6, 8, 7, 5, 6, 6 6, 8, 9, 6

60+ 7, 9, 9, 11, 6 7, 8, 6 10, 11, 12, 6, 13, 7, 9, 8

a. Name the three factors and their levels.

There are three factors: Age with levels 20-29 (coded “Y” in the code below), 30-59 (coded “M”) and 60+, ‘older’ (coded “O”),
Severity with Low and High levels (coded “L”, “H”) and SelfMed with Yes and No levels for self-medication (coded “Y”, “N”).

b. State the model equation, and give null and alternative hypotheses for the test of interaction between age group and
severity of symptoms.

The model equation, allowing for main effects and two-way interactions (but not three-way interactions), is

where  and  are the levels of factors  (Age),  (Severity) and  (self-medication) respectively.  is the -th observation
having  at level ,  at level  and  at level . Sum-to-zero constraints are needed, as usual. The error term, , is assumed to
be a random variable from a  distribution, with errors being independent.

The test of interaction between the first two factors has hypotheses:

 : There is no interaction—all , versus

 : There is interaction—at least one .

c. Some R  commands to enter the data and do some analysis are given below along with their output. Discuss the commands
and results. This type of data would often be entered from a csv file or a spreadsheet, but data entry into such files also
needs care.

FYI, these data (and the corresponding Patient number: ) are available with the tutorial questions, in the csv file
“recovery.csv”. If desired, they can be read into a data frame from that file.

This is a  factorial design. There are 59 observations. Age is at three levels, Y, M and O (younger, middle-aged and older for
20-29, 30-59 and 60+). Severity is at two levels, H (High) and L (Low). SelfMed is at two levels, Y (yes) and N (no). The factors have
been entered into the ANOVA model in that order, followed by all two-way interactions.
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The diagnostic graphs confirm constant variance (a level band across the Residuasl versus Predicted Values graph) and normality of
residuals (a straight line on the Q-Q residual plot).

We use the usual (Type I SS) ANOVA, which is a sequential ANOVA table—each term allows for the preceding terms. Start with the
interaction tests—none of the three two-way interactions is significant at the 5% level (all -values are a long way above 0.05).

Now consider main effects. This is allowed, as no factor is involved in a significant interaction. There is a significant main effect of
Age , well below  and . After allowing for Age, there is a significant main effect of Severity .
However, after allowing for Age and Severity, there is no significant main effect of SelfMed .

Note: We had a choice of which terms were entered in the model first. Here, Age and Severity were the first and second choice, as
they were considered to be important, based on previous experience with other strains of influenza. The ANOVA has verified that
those factors are important, and that after allowing for them there is no discernible effect from SelfMed, either main effect or
interaction.

## Days to recovery from flu 
 
# Store the flu recovery data in separate variables for 
# days to recovery (response), age group (coded "Y","M","O"), 
# severity of symptoms ("L","H") and self medicated indicator ("Y","N"). 
 
Recovery <- c(6, 3, 7, 4, 5, 4, 7, 7, 8, 5, 6, 7, 4, 6, 8, 
8, 5, 6, 9, 5, 6, 6, 7, 2, 4, 6, 7, 3, 9, 5, 8, 12, 3, 6, 8, 7, 5, 6, 6, 6, 8, 9, 6, 
7, 9, 9, 11, 6, 7, 8, 6, 10, 11, 12, 6, 13, 7, 9, 8) 
Age <- factor(rep(c("Y","M","O"), c(15,28,16)), levels = c("Y","M","O")) 
Severity <- factor(c(rep(c("L","H"),c(6,9)),rep(c("L","H"),c(13,15)),rep(c("L","H"),c(8,8))), 
levels = c("L","H")) 
SelfMed <- 
factor(c(rep(c("Y","N"),c(2,4)),rep(c("Y","N"),c(3,6)),rep(c("Y","N"),c(7,6)),rep(c("Y","N"),c(11,4)),rep(c(
"Y","N"),c(5,3)),rep(c("Y","N"),c(6,2))), 
levels = c("Y","N")) 
head(cbind(Age, Severity, SelfMed))

     Age Severity SelfMed 
[1,]   1        1       1 
[2,]   1        1       1 
[3,]   1        1       2 
[4,]   1        1       2 
[5,]   1        1       2 
[6,]   1        1       2

# Fit a three-way ANOVA to the flu recovery data, 
# including all main effects and two-way interactions. 
recover.ANOVA <- aov(Recovery ~ Age * Severity + Age * SelfMed + Severity * SelfMed) 
summary(recover.ANOVA)

                 Df Sum Sq Mean Sq F value   Pr(>F)     
Age               2  77.36   38.68  10.150 0.000205 *** 
Severity          1  30.11   30.11   7.903 0.007078 **  
SelfMed           1   8.25    8.25   2.164 0.147693     
Age:Severity      2   0.86    0.43   0.112 0.893859     
Age:SelfMed       2   1.40    0.70   0.184 0.832266     
Severity:SelfMed  1   0.92    0.92   0.241 0.625898     
Residuals        49 186.73    3.81                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Scatterplot of residuals vs. fitted values for flu recovery data. 
plot(x = recover.ANOVA$fitted.values, y = recover.ANOVA$residuals,  
     main = "Residuals vs. fitted values\n ANOVA for flu recovery data", 
     xlab = "Predicted values", ylab = "Residuals") 
abline(h = 0, lty = 2)

p

(p = 0.0002 0.05 0.01) (p = 0.0071)

(p = 0.1477 > 0.05)



# Normal Q-Q plot of residuals for flu recovery data. 
qqnorm(recover.ANOVA$residuals,  
       main = "Normal Q-Q plot of residuals\n ANOVA for flu recovery data") 
qqline(recover.ANOVA$residuals)

d. The R  commands given below produce multiple comparisons of the age groups. May we use these? If so, summarise and
interpret the results. If not, why not?

Yes, we may use the multiple comparisons for the three levels of Age, since this factor was not involved in any significant
interactions. We may look at the main effects, and do all pairwise comparisons of the three levels. The output shows the 60+ age
group is significantly different from each of the other two. So the 60+ age group differs from 30-59  and from 20-29 

. However, the 30-59 and 20-29 age groups do not differ significantly in their effect on days to recovery .

# Fit a one-way ANOVA to the flu recovery data, 
# including only the Age factor. 
recover2.ANOVA <- aov(Recovery ~ Age) 
summary(recover2.ANOVA)

(p = 0.0015)

(p = 0.0006) (p = 0.6660)



            Df Sum Sq Mean Sq F value   Pr(>F)     
Age          2  77.36   38.68   9.489 0.000282 *** 
Residuals   56 228.27    4.08                      
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

TukeyHSD(recover2.ANOVA)

  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = Recovery ~ Age) 
 
$Age 
         diff        lwr      upr     p adj 
M-Y 0.5571429 -0.9981564 2.112442 0.6659994 
O-Y 2.8875000  1.1405535 4.634447 0.0005806 
O-M 2.3303571  0.8070351 3.853679 0.0014890

e. The R  commands below fit a model with only one factor, SelfMed. Why does it give a result for the SelfMed factor which is
different from the one given in the part (c) output?

The one-way ANOVA below ignores Age and Severity and only tests SelfMed. This is not a sensible model, since those factors are
non-ignorable. SelfMed now appears to be significant, as it is the only factor being given an opportunity to explain the variability in
the data. The earlier model, with the age and severity factors included, gave a better explanation of the variability in time to recovery.
Note too the higher MSE with the overly simple model. MSE is our estimate of unexplained variability. The one-way ANOVA has
increased the unexplained variance by excluding two useful predictors, Age and Severity, from the model.

All ANOVAs are a certain type of regression model, where the explanatory variables are factors having discrete levels. In regression
models we can quantify the explained variation in the response variable by the value of . To get the  values for our ANOVA
models, we need to refit them using the lm  function, then look at the Multiple R-squared  value in the penultimate line of the
output from the summary  function. The R  code below does that for both models. We see that  for the model with three
factors, but  is much lower, only , for the one-way ANOVA. With the simplified model we have switched from explaining
38.9% of the variance down to 8.4%.

In summary, with the over-simplified analysis, there is an apparent effect of SelfMed , but when we did the full analysis
and controlled for Age and Severity, we saw SelfMed was not significant, given that Age and Severity were already in the model.

Note: This kind of confusion can’t happen with a balanced design, but here we had observational data together with an imbalance
(unequal numbers of observations in the 12 cells). With unbalanced data, the order of entry of terms to the model matters—the
effects can change, depending on what has already been allowed for. The researcher must judge the best order of entry of terms to
the model. In this example, the older people were more likely to self-medicate, which means that if we put age group first into the
model, self-medication becomes less important because some of its explanatory power has already been provided by age group. We
really can’t tell whether the slower recovery is “caused” by age group or self-medication or a combination of the two, or by some
other factor which we didn’t measure. In doing the analysis, we decided to allow for age group first, but this was a judgment call. We
can say that age group and severity are risk factors, with some power to predict the outcome. We can also say that after controlling
for age group and severity, self medication had no significant effect in improving the model.

# Fit a one-way ANOVA to the flu recovery data, 
# including only the SelfMed factor. 
recover3.ANOVA <- aov(Recovery ~ SelfMed) 
summary(recover3.ANOVA)

            Df Sum Sq Mean Sq F value Pr(>F)   
SelfMed      1  25.55  25.552     5.2 0.0263 * 
Residuals   57 280.08   4.914                  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Fit the full ANOVA using the lm function,  
# to see R-squared in the penultimate line of the summary. 
recover.lm <- lm(Recovery ~ Age * Severity + Age * SelfMed + Severity * SelfMed) 
summary(recover.lm)

R2 R2

= 0.389R2

R2 0.084

(p = 0.0263)



 
Call: 
lm(formula = Recovery ~ Age * Severity + Age * SelfMed + Severity *  
    SelfMed) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-4.0263 -1.0639 -0.0263  1.1815  4.9737  
 
Coefficients: 
                   Estimate Std. Error t value Pr(>|t|)     
(Intercept)         5.44847    1.15565   4.715 2.04e-05 *** 
AgeM                0.65302    1.26773   0.515   0.6088     
AgeO                3.03006    1.35786   2.231   0.0303 *   
SeverityH           1.25255    1.26202   0.992   0.3258     
SelfMedN           -0.92270    1.25534  -0.735   0.4658     
AgeM:SeverityH     -0.32772    1.32010  -0.248   0.8050     
AgeO:SeverityH      0.03681    1.47837   0.025   0.9802     
AgeM:SelfMedN       0.03614    1.33415   0.027   0.9785     
AgeO:SelfMedN      -0.68671    1.51704  -0.453   0.6528     
SeverityH:SelfMedN  0.53784    1.09628   0.491   0.6259     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 1.952 on 49 degrees of freedom 
Multiple R-squared:  0.389, Adjusted R-squared:  0.2768  
F-statistic: 3.467 on 9 and 49 DF,  p-value: 0.00223

# Also re-fit the one-way ANOVA with lm, to see R-squared. 
recover3.lm <- lm(Recovery ~ SelfMed) 
summary(recover3.lm)

 
Call: 
lm(formula = Recovery ~ SelfMed) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-4.412 -1.412 -0.080  1.588  5.588  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   7.4118     0.3802   19.50   <2e-16 *** 
SelfMedN     -1.3318     0.5840   -2.28   0.0263 *   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 2.217 on 57 degrees of freedom 
Multiple R-squared:  0.0836,    Adjusted R-squared:  0.06753  
F-statistic:   5.2 on 1 and 57 DF,  p-value: 0.02634

f. The R  commands given below produce an interaction graph for Age by Severity. Note that Age was coded “Y” for ages 20-
29, “M” for ages 30-59 and “O” for ‘older’ ages, 60+, when the data was entered above. Why is it valid to produce this
interaction graph? What is the plot illustrating?

This interaction graph is valid, as the third factor, SelfMed, had no significant interactions or main effects, so it is fine to average over
its levels of Yes/No and only consider the other two factors. Age has been entered as the factor on the  axis, since it has ordered
levels.

Interpreting the interaction plot, the non-significant interaction between Age and Severity appears as (almost) parallel traces. The
main effect of Age is shown by at least some lines being non-horizontal, with essentially horizontal lines between Y and M (similar
recovery times for Young and Middle-aged), but an upward slope between M and O (older people taking longer to recover), as seen
in the Tukey multiple comparisons in part (d). The significant main effect of Severity is seen in the vertical separation of the lines, with
greater severity associated with longer recovery times, which is certainly expected.

# Interaction graph for flu recovery data. 
interaction.plot(x.factor = Age, 
                 trace.factor = Severity, 
                 response = Recovery, 
                 fun = mean, 
                 ylab = "Mean recovery (days)", 
                 main = "Interaction graph for flu recovery", 
                 legend = TRUE, xpd=TRUE)

x



2. This dataset gives characteristics of water samples taken at  Florida lakes (Lange, Royals and Connor, 2004, “Mercury
accumulation in largemouth bass (Micropterus salmoides) in a Florida Lake”, Archives of Environmental Contamination and
Toxicology, 27(4): 466-471). Two of the variables are Mercury = average mercury levels in the fish, and water pH (acidity level, 

 for acid,  for neutral,  for alkaline). This type of data would often be entered from a csv file or a
spreadsheet.

FYI, these data (including the Lake number: ) are available with the tutorial questions, in the csv file “floridaBass.csv”. If
desired, they can be read into a data frame from that file.

Lake Mercury pH Lake Mercury pH Lake Mercury pH

1 1.23 6.1 19 1.08 5.8 37 0.19 6.8

2 1.33 5.1 20 0.98 6.7 38 0.04 8.4

3 0.04 9.1 21 0.63 4.4 39 0.49 7.0

4 0.44 6.9 22 0.56 6.7 40 1.10 7.5

5 1.20 4.6 23 0.41 6.1 41 0.16 7.0

6 0.27 7.3 24 0.73 6.9 42 0.10 6.8

7 0.48 5.4 25 0.34 5.5 43 0.48 5.9

8 0.19 8.1 26 0.59 6.9 44 0.21 8.3

9 0.83 5.8 27 0.34 7.3 45 0.86 6.7

10 0.81 6.4 28 0.84 4.5 46 0.52 6.2

11 0.71 5.4 29 0.50 4.8 47 0.65 6.2

12 0.50 7.2 30 0.34 5.8 48 0.27 8.9

13 0.49 7.2 31 0.28 7.8 49 0.94 4.3

14 1.16 5.8 32 0.34 7.4 50 0.40 7.0

15 0.05 7.6 33 0.87 3.6 51 0.43 6.9

16 0.15 8.2 34 0.56 4.4 52 0.25 5.2

17 0.19 8.7 35 0.17 7.9 53 0.27 7.9

18 0.77 7.8 36 0.18 7.1

Some R  output from a simple linear regression with  = pH and  = average mercury level follow.

n = 53

pH < 7 pH = 7 pH > 7

1, 2, … , 53

x Y



## Mercury accumulation data 
 
# Store the largemouth bass data in separate variables for 
# mercury accumulation and pH level. 
# Could be read in from, e.g., a csv file instead. 
 
mercury <- c(1.23, 1.33, 0.04, 0.44, 1.2, 0.27, 0.48, 0.19, 0.83,  
         0.81, 0.71, 0.5, 0.49, 1.16, 0.05, 0.15, 0.19, 0.77,  
         1.08, 0.98, 0.63, 0.56, 0.41, 0.73, 0.34, 0.59, 0.34,  
         0.84, 0.5, 0.34, 0.28, 0.34, 0.87, 0.56, 0.17, 0.18,  
         0.19, 0.04, 0.49, 1.1, 0.16, 0.1, 0.48, 0.21, 0.86,  
         0.52, 0.65, 0.27, 0.94, 0.4, 0.43, 0.25, 0.27) 
pH <- c(6.1, 5.1, 9.1, 6.9, 4.6, 7.3, 5.4, 8.1, 5.8,  
    6.4, 5.4, 7.2, 7.2, 5.8, 7.6, 8.2, 8.7, 7.8,  
    5.8, 6.7, 4.4, 6.7, 6.1, 6.9, 5.5, 6.9, 7.3,  
    4.5, 4.8, 5.8, 7.8, 7.4, 3.6, 4.4, 7.9, 7.1,  
    6.8, 8.4, 7, 7.5, 7, 6.8, 5.9, 8.3, 6.7,  
    6.2, 6.2, 8.9, 4.3, 7, 6.9, 5.2, 7.9) 
head(cbind(mercury,pH))

     mercury  pH 
[1,]    1.23 6.1 
[2,]    1.33 5.1 
[3,]    0.04 9.1 
[4,]    0.44 6.9 
[5,]    1.20 4.6 
[6,]    0.27 7.3

# Fit a linear regression of mercury level on lake pH 
# for the Florida lakes largemouth bass data. 
bass.lm <- lm(mercury ~ pH) 
# ANOVA table output for the linear regression. 
anova(bass.lm)

Analysis of Variance Table 
 
Response: mercury 
          Df Sum Sq Mean Sq F value    Pr(>F)     
pH         1 2.0024 2.00236  25.243 6.573e-06 *** 
Residuals 51 4.0455 0.07932                       
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Summary output for the linear regression. 
summary(bass.lm)

 
Call: 
lm(formula = mercury ~ pH) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.48895 -0.19188 -0.05774  0.09456  0.71134  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.53092    0.20349   7.523 8.14e-10 *** 
pH          -0.15230    0.03031  -5.024 6.57e-06 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.2816 on 51 degrees of freedom 
Multiple R-squared:  0.3311,    Adjusted R-squared:  0.318  
F-statistic: 25.24 on 1 and 51 DF,  p-value: 6.573e-06



# Produce a scatterplot of mercury level vs. water pH 
# for the largemouth bass data. 
plot(x = pH, y = mercury, 
main = "Scatterplot of mercury in largemouth bass vs. water pH\n with fitted regression line", 
xlab = "Water pH", ylab = "Average mercury") 
# Overlay the line of best fit from the linear regression. 
abline(bass.lm) 
 
# Produce a scatterplot of studentized residuals versus fitted values 
# for the largemouth bass data. 
plot(x = bass.lm$fitted.values, y = rstudent(bass.lm), 
main = "Studentized residuals vs. fitted values\n regression for largemouth bass data", 
xlab = "Predicted value", ylab = "Studentized residual") 
abline(h = 0) 
abline(h = c(-2, 2), lty = 2) 
 
# Produce a normal Q-Q plot of residuals 
# for the largemouth bass data - doesn't look great. 
qqnorm(bass.lm$residuals, 
main = "Normal Q-Q plot of residuals\n regression for largemouth bass data") 
qqline(bass.lm$residuals) 
 
# Try the normal Q-Q plot again, for a model fitted to 
# logged mercury levels regressed on lake pH - looks better 
bass2.lm <- lm(log(mercury) ~ pH) 
# Summary output for the linear regression using logged response. 
summary(bass2.lm) 
 
qqnorm(bass2.lm$residuals, main = "Normal Q-Q plot of residuals\n regression using logged 
response") 
qqline(bass2.lm$residuals) 
 
# For completeness, here's a scatterplot of logged mercury level vs. water pH 
# for the largemouth bass data. 
plot(x = pH, y = log(mercury), 
main = "Scatterplot of logged mercury in largemouth bass vs. water pH\n with fitted regression 
line", 
xlab = "Water pH", ylab = "Average logged mercury") 
# Overlay the line of best fit from the linear regression. 
abline(bass2.lm) 
 
# Produce a scatterplot of studentized residuals versus fitted values 
# for the logged response. 
plot(x = bass2.lm$fitted.values, y = rstudent(bass2.lm), 
main = "Studentized residuals vs. fitted values\n regression for logged response", 
xlab = "Predicted value", ylab = "Studentized residual") 
abline(h = 0) 
abline(h = c(-2, 2), lty = 2) 
 
# Load the "olsrr" add-on package. 
library(olsrr) 
# Plot Cook's distances for the largemouth bass data. 
ols_plot_cooksd_chart(bass.lm) 
# And now plot Cook's distances for the logged response model. 
ols_plot_cooksd_chart(bass2.lm)





 
Call: 
lm(formula = log(mercury) ~ pH) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.67936 -0.43150  0.09943  0.44216  1.37147  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.73999    0.48187   3.611 0.000696 *** 
pH          -0.40215    0.07178  -5.602 8.54e-07 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.6669 on 51 degrees of freedom 
Multiple R-squared:  0.381, Adjusted R-squared:  0.3688  
F-statistic: 31.39 on 1 and 51 DF,  p-value: 8.544e-07





a. Check that you understand how all the output was obtained.

Look through the code and the corresponding output. Code can be copied and pasted into R  to reproduce the output.

b. What is the theoretical model equation? What is the fitted model equation? Use the model fitted to the original data, rather
than the logged data— but discuss both models briefly in part (c).

The theoretical model is

where  = Mercury and  = pH.

The fitted model is the line

using the estimates from the R  output.

c. What are the assumptions? Are they satisfied?

The assumptions are that the errors come independently from a  distribution, and that the errors are also independent of .

Y = + x + Eβ0 β1

Y x

= + x  orYˆ β0
ˆ β1

ˆ

= 1.53092 − 0.15230xYˆ

N(0, )σ2 x



The constant variance assumption looks valid, as there is a level band in the plot of Studentized residuals versus Predicted Values.
Note, however, that the data is clearly not symmetrically distributed around the fitted line—you can see that in the scatterplot, as well
as in the residual plot: there are some quite big positive residuals and more, smaller, negative ones. That suggests we might take
logs of the response variable, as does the shape of residual Q-Q plot, which is not a very straight line—so there is doubt about the
normality assumption. That log transformation has been done as part of the given R  code and output.

All the Cook’s distances are well below 1 with the untransformed data, so no outliers or points of high leverage have been detected.

Taking logs fixes the normality ‘problem’—but it makes things somewhat worse in other ways. With the logged response variable
there are more studentized residuals outside the  ‘guidelines’, and the biggest Cook’s distances are larger—although still none are
close to unity. Also the Studentized residuals versus Predicted Values plot now shows some inverse funnelling—there is greater
variation in the studentized residuals at low pH values. Since the underlying theory in regression and ANOVA is identical, we
generally prefer data with residuals that show a more-constant variance, over residuals that are better approximated by a normal
distribution. (Ideally we want both, so that all our model assumptions hold, but a compromise is often necessary!) So we continue to
use the regression model fitted to the untransformed mercury accumulation data.

d. Find a point prediction for the mercury level of a largemouth bass fish in neutral water . (Again use the model fitted
to the original data here.)

For neutral water, the predicted average mercury level is .

e. State the null and alternative hypotheses for the test of whether pH is a useful predictor.

f. What is the test statistic? Give the statistical conclusion and your interpretation (using the model fitted to the original data).

There is a choice of test.

The  statistic is  on  df, while the  statistic is  on  df. The df for  are determined by the estimate of , from
the MSE in the ANOVA Table, which has  df. The  statistic is equal to the  statistic squared, since there is only one numerator df;
any minor difference is due to rounding. The -values are the same from either statistic, , so we reject  at any
reasonable significance level. Water pH is a useful predictor for the average mercury level in the fish.

g. Interpret the 95% confidence interval for the slope that is given below.

The 95% confidence interval for the slope is . The negative sign shows decreased mercury with increased alkalinity.
The 95% confidence interval does not include zero, showing the slope is non-zero at the 5% significance level.

# Obtain 95% confidence intervals for beta_0 and beta_1. 
confint.default(bass.lm)

                 2.5 %      97.5 % 
(Intercept)  1.1320800  1.92975741 
pH          -0.2117138 -0.09288796

±2

(pH = 7)

= 1.53092 − 0.15230 × 7 = 0.465Yˆ

: = 00 β1

: ≠ 0.1 β1

F 25.24 (1, 51) t −5.02 51 t σ2

51 F t

p p = 6.57 × 10−6
0

(−0.21, −0.09)


