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Quest 13: Pokémon Go 

Summary: 

 In this work, we will simulate a bunch of people playing Pokémon Go inside a city park. Along 

the way, we’re going to learn about Brownian motion, which is a natural phenomenon with an 

incredible number of applications: the diffusion of atoms or molecules in a fluid; the dispersion of pollen 

through the air; the motion of people, birds, fish, and other animals in a swarm; the movement of dust 

and water droplets in a cloud; the thermal noise in an resistor; the behavior of stock markets and other 

economic systems with many buyers and sellers; and many, many others in all fields of science and 

engineering. Maybe you’ve heard of using “white noise” to help you sleep or drown out the sound of 

your surroundings. Brownian motion is closely related to so-called “brown noise,” which has a more 

natural sound(1). In our simulation, we have a number of players wandering aimlessly around in search of 

Pokémon to capture. Let’s model the motions of these random walkers so that we can estimate, among 

other things, how long it will take them to capture a Pokémon. 

Skills to be Obtained: 

- Simulate multiple independent particles acting over time 

- Collect and analyze basic statistics from a large number of trial runs 

Details: 

 For our simulation, we model the motion of one individual Pokémon Go player, then we model a 

second player, then a third and so on. Each player will move in a somewhat random way, but each 

player has a goal—you know what it is: they’ve Gotta Catch ‘Em All(2). After modeling all of the individual 

players, we will determine statistics about their collective behavior. This form of simulation, where 

randomness helps determine the outcome of each individual but a net system behavior emerges, is 

known as a Monte Carlo method, named after the famous casino(3). We will make the assumption that 

the statistics we get from looking at one player playing over-and-over again is the same as the statistics 

we would determine from lots of players all playing at the same time(4). 

The behavior of an individual player over time will be determined as follows. Each player starts 

at the origin. At any point in time, the player is, of course, at one specific location. For simplicity, let’s 

first imagine a player playing in a one-dimensional space. They start at position 0 on an x-axis that 

proceeds off to infinity both to the West (negative numbers) and East (positive numbers). Once every 

second, the player will randomly decide to walk either 1 foot to the West or 1 foot to the East. Each 

possibility occurs 50% of the time, and is chosen completely at random. If the walk is taken to the West, 

then the new position is equal to the old position minus 1. If the walk is taken to the East, then the new 

position is equal to the old position plus 1. After a long time, we might expect that the player has not 

moved far from position 0, but it also seems likely that they are not exactly back where they started. 

If we want to expand the analysis to a two-dimensional space, then there are not just two 

possible motions that the player can take every second, but four: a 1 ft. walk to the East, West, North, or 

South. The x- and y-positions must both be updated accordingly after each step. We might store the x- 

and y-positions of the player as a function of time in two arrays. After the player is done playing, we 

could then plot the path of the player with either an animated view using comet() or a static view using 

plot()). If we re-run this simulation many times, then we could start determining statistics about the 

average player of this game, or perhaps the best or worst players. If we’re the designers of this game,  
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we’d definitely want to model the time it takes for players to capture the Pokémon, so that we can 

know if we need to make it easier or harder. 

As described above, the players will be moving somewhat randomly. Every second, a player will 

move exactly 1 foot, always directly North, South, East, or West, with the direction decided by a random 

number generator. If you were to add the directions Up and Down so that the players were moving in 

three dimensions, then you’d be modeling full 3-D Brownian motion. Molecules move randomly, so you 

could use your program to calculate how fast a drop of milk diffuses into your coffee and lots of other 

interesting things(5). Your model could get extremely close to what you’d actually measure. 

The players are in a park, which is not infinite in size. Players do not leave the park, since they 

know the Pokémon they are trying to catch is there. Before each player starts playing, a Pokémon is 

placed at a random (x, y) location in the park. The Pokémon stays at that location until it is captured, but 

it is then in a new location for the next player. Each player plays until they get close enough to capture 

the Pokémon and “win.” To make this interesting, some details of your model will depend on your NUID 

number and your first name. 

The last digit of your NUID number determines the boundaries of the park in which the players 

are playing the game. Each time after a player makes a move, they should check to see if they have 

stepped outside the boundary of the park. If so, they instantly run back to the origin to reset their 

position. If your NUID ends with a (all ranges include the endpoints): 

 1 or 2, then the park is a 24x24 square (i.e., both x and y span from -12 to +12) 

 3 or 4, then the park is a 36x36 rectangle (i.e., both x and y span from -18 to +18) 

 5 or 6, then the park is a 36x24 rectangle (i.e., x spans -18 to +18; y spans -12 to +12) 

 7 or 8, then the park is a 30x14 rectangle (i.e., x spans -15 to +15; y spans -7 to +7) 

 9 or 0, then the park is a 40x20 rectangle (i.e., x spans -20 to +20; y spans -10 to +10) 

The first letter of your first name determines how close the player must be to the Pokémon in order to 

catch it. If your first name starts with (all ranges include the endpoints): 

 A through G, then a player has to be 1 foot or less from the Pokémon (i.e., 1 spot directly to 

the East, West, North, or South). 

 H through N, then a player has to be less than 2 feet from the Pokémon (i.e., any of the 

neighboring spots including the diagonals). 

 O through Z, then a player has to be 2 feet or less from the Pokémon (i.e., any neighboring 

spot including the diagonals, or 2 feet directly to the East, West, North, or South). 

Your MATLAB script(s) should create: a graphical depiction of the path that a few players took 

while playing, and statistics on the time it takes players to capture the Pokémon. First, create a MATLAB 

program that has 1 player play Pokémon Go as described above, saving in arrays the x- vs.  y-positions at 

every second of time that they played. Ultimately, the code should output a plot of the x- vs.  y-

positions. This graph will be an overhead depiction of their path, starting at the origin and then moving 

randomly until they finally win. Sometimes, players will have a shorter path, while others will have a 

rough game wandering around for a while first. Each player should have a different path, because the 

model should have the Pokémon location be at a different random position inside the park each time, 

and each player chooses their path of movement randomly while playing. 
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Next, create a second MATLAB script (or second part of the same script), which will likely reuse a 

lot of the same code as the first part. The difference is that we now want to get a feel for how long it will 

take players to catch the Pokémon. Modify the code from part 1 so that it runs a game until the player 

wins and saves only the number of “seconds” it took for the player to win. Remember, in our model it 

takes the player 1 “second” each time they move. We don’t need to save the player’s path, just their 

final time to win. Let’s get a good, large dataset of at least a few thousand players. The result of this part 

of the code should be an array of the number of “seconds” it took for each of the players to win. 

The output from your analysis should represent the physical world we are modeling, so all 

numbers should be described using the relevant physical units (including in plot axes). Your MATLAB 

script(s) should collect and present statistics including, at least: 

- for three players from part 1, a graphical “overhead” plot of the path that the player took while 

playing, showing the boundary of the park as red dashed lines, the location of the Pokémon as a 

star or diamond, and the player’s meandering path with black line segments (3 graphs total, 1 

for each player); 

- for the thousands of players from part 2, the calculated minimum, maximum, median, and 

average times taken to complete the game; and 

- a histogram plot (using the hist() function) of the time to game completion for the players 

from part 2. If you’re not sure what a histogram plot is or what it means, you could doc hist 

or you can read an explanation at [ https://goo.gl/bJimHq ]. 

Milestones Towards Completion: 

Like any project that has some complexity, don’t try to sit down and solve this all at once. Solve 

a small problem, then make it grow by increasing the complexity one piece at a time. 

You might first start by writing a model of 1 player travelling in 1-D for a fixed length of time—

maybe 50 seconds—creating a single, 50-element array that stores the player’s position on the x-axis at 

each second. Display the array on screen after it has been fully calculated to verify that the x-position at 

time t+1 is always the position at time t plus a random jump of +1 or -1. Once you’re convinced that this 

code is working, expand to movement in 2-D, where each time either the x- or y-position is adjusted by 

±1 (while the other remains the same value as before). Make sure the x- and y-position arrays are both 

of size 50 after the model runs. When you have confidence that this code is successfully implementing 

the random walk and saving the player’s path, add in the boundary condition so that the player never 

steps outside the park. Next, instead of always playing for exactly 50 seconds, determine a random 

location for the Pokémon at the start of the game, and have the simulation stop as soon as the player is 

close enough to catch the Pokémon. This should complete the first phase. The last thing to do is to 

implement all of this in a loop so that the code plays a few thousand times, and change the output so 

that the total play time for each player is saved instead of the x- and y-positions. 

Submission Requirements: 

 Please submit your findings on Blackboard. You will submit a memo and all raw code files to the 

regular Blackboard location. The memo must be a pdf document with the usual format and content that 

describes your work, includes all requested numbers and graphs, and has all of your MATLAB code(s) 

transcribed as text at the end. Please also submit the MATLAB code(s) as raw .m files. 
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Notes and Further Reading: 

 

1. Brown noise is named after its discoverer, Robert Brown. White noise is named by analogy 

to white light, because both contain a wide spectrum of frequencies. The fact that both 

brown noise and white noise, which are the two most common types of noise in nature, 

have “colorful” names has led to other types of noise to also be named by color. The 

difference between the colors comes from their frequency spectra, meaning roughly how 

much bass vs. mid-frequencies vs. high frequencies are present. Some people claim that 

pink noise creates the most soothing sound. Its name comes from it being halfway between 

white noise and brown noise, and it splits the difference between the tinny, high-pitched 

white noise and the more bass-heavy brown noise. 

 

2. https://bit.ly/2y4f8ap 

 

3. Monte Carlo methods were initially developed to model radioactive decay during the 

Manhattan Project. Naming this style of simulation after a casino is appropriate, since the 

outcome of each individual game is fairly random, but a net result emerges by the end of 

each day: the house wins! 

 

4. So, we’re assuming the players don’t interact with each other. In theory, we could even 

average the behavior of just one single player playing just one time, but for a very, very long 

time. When the average-over-a-long-time of one thing is the same as the average-over-

many-things at one point in time, the system is termed “ergodic.” 

 

5. The path created by a particle moving with repeated, randomly chosen directions is called a 

random walk or, more evocatively, a drunkard’s walk. Albert Einstein showed in 1905 that a 

random walk is very closely related to Brownian motion, providing strong evidence that 

atoms and molecules were real, particle-like things. 

For more: Wikipedia has decent articles on both random walks and Brownian motion; the 

most interesting part of the random walks article is perhaps the “Applications” section, 

which shows the many places where random walk processes show up. 

[en.wikipedia.org/wiki/Random_walk   &   en.wikipedia.org/wiki/Brownian_motion ] 


