
Table 1: Estimated Coe�cients from Logit Regression of Water Well Switching.
Model 1 Model 2

(Intercept) 0.85 (0.53) 1.40 (0.92)
arsenic ≠1.22 (0.51)ú ≠1.77 (0.91)
dist100 ≠0.46 (0.10)úúú ≠0.97 (0.71)
arsenic:dist100 0.51 (0.70)
Deviance 1167.76 1167.23
Num. obs. 1000 1000
úúúp < 0.001; úúp < 0.01; úp < 0.05

Question 1
Many of the wells used for drinking water in Bangladesh and other South Asian countries are
contaminated with natural arsenic, a�ecting an estimated 100 million people. Arsenic is a
cumulative poison, and exposure increases the risk of cancer and other diseases, with risks
estimated to be proportional to exposure.
A research team measured all the wells and labeled them with their arsenic level as well
as a characterization as “safe” (below 0.5 in units of hundreds of micrograms per liter, the
Bangladesh standard for arsenic in drinking water) or “unsafe” (above 0.5). People with
unsafe wells were encouraged to switch to nearby private or community wells or to new wells
of their own construction. A few years later, the researchers returned to find out who had
switched wells.
We performed a logistic regression analysis with the data to understand the factors that
predict well switching among the users of unsafe wells. Your outcome variable switch is 1 if
household i switched to a new well, and 0 if household i continued using its own well.
We estimated models with the following inputs:

• The distance (in meters/100) to the closest known safe well
• The arsenic level of respondent’s well

(a) So, we successfully estimated an additive model with arsenic and distance to the nearest
safe well as the two predictors of whether a household switched to a new well. The
estimated coe�cients are found below in Table 1. Interpret the estimated coe�cients
for the intercept and each predictor.

(b) Should we estimate a di�erent e�ect for the distance to the closest known safe well on
switching wells when there is arsenic in one’s own well? If so, change your interpretation
of the estimated coe�cients in part (a) to conform with the interactive model in Table
1. Provide the appropriate test to determine whether we should model the relationship
between distance, arsenic, and switching wells using an additive or interactive model.

(c) Compute the average di�erence in the probability of switching wells between two
households that have arsenic = 0.75, but one is closer (dist100 = 0.37) than the other
(dist100 = 2.07).
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Question 3
Radon is a naturally occuring carcinogen, and the distribution of radon levels in U.S. homes
varies greatly, with some houses that have dangerously high concentrations. For the purpose of
this analysis, the data were structured hierarchically: houses within counties. The radon data
in Figure 1 shows the logarithm of the home radon measurement versus floor of measurement
for houses sampled from eight of the 85 counties in Minnesota. In each graph of Figure 1, the
dashed line shows the linear regression of log radon, given the floor of measurement, using a
model that pools all counties together (so the same line appears in all eight plots), and the
solid line shows the no-pooling regressions, obtained by including county indicators in the
regression.
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Figure 1: Radon levels in eight Minnesota counties.

a) Now, let’s say we fit a partially pooled model in which we allow for varying intercepts.
Interpret the R output below to determine whether we should estimate the across county
variation in intercepts, whether it’s su�cient to model the within county variation in
intercepts, or whether we do not need to model within or across county variation.
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QUICKLY FITTING MULTILEVEL MODELS IN R 259

see no reason (except for convenience) to accept estimates that arbitrarily set this
parameter to one of these two extreme values.

12.4 Quickly fitting multilevel models in R

We fit most of the multilevel models in this part of the book using the lmer()
function, which fits linear and generalized linear models with varying coe�cients.4

Part 2B of the book considers computation in more detail, including a discussion
of why it can be helpful to make the extra e�ort and program models using Bugs
(typically using a simpler lmer() fit as a starting point). The lmer() function
is currently part of the R package Matrix; see Appendix C for details. Here we
introduce lmer() in the context of simple varying-intercept models.

The lmer function

Varying-intercept model with no predictors. The varying intercept model with no
predictors (discussed in Section 12.2) can be fit and displayed using lmer() as
follows:

R codeM0 <- lmer (y ~ 1 + (1 | county))
display (M0)

This model simply includes a constant term (the predictor “1”) and allows it to
vary by county. We next move to a more interesting model including the floor of
measurement as an individual-level predictor.

Varying-intercept model with an individual-level predictor. We shall introduce mul-
tilevel fitting with model (12.2)–(12.3), the varying-intercept regression with a single
predictor. We start with the call to lmer():

R codeM1 <- lmer (y ~ x + (1 | county))

This expression starts with the no-pooling model, “y ~ x,” and then adds “(1 |
county),” which allows the intercept (the coe�cient of the predictor “1,” which is
the column of ones—the constant term in the regression) to vary by county.

We can then display a quick summary of the fit:

R codedisplay (M1)

which yields

R outputlmer(formula = y ~ x + (1 | county))
coef.est coef.se

(Intercept) 1.46 0.05
x -0.69 0.07
Error terms:
Groups Name Std.Dev.
county (Intercept) 0.33
Residual 0.76
# of obs: 919, groups: county, 85
deviance = 2163.7

4 The name lmer stands for “linear mixed e�ects in R,” but the function actually works for
generalized linear models as well. The term “mixed e�ects” refers to random e�ects (coe�cients
that vary by group) and fixed e�ects (coe�cients that do not vary). We avoid the terms “fixed”
and “random” (see page 245) and instead refer to coe�cients as “modeled” (that is, grouped)
or “unmodeled.”

b) Describe how the fitted regression lines for the partial pooling model would be di�erent
in comparison to the completely pooled or un-pooled models.
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