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SUMMARY

Ship steering control system design presents challenges because the dynamic properties of the vessel itself
vary signi"cantly. The use of an arti"cial neural network as a controller which incorporates the properties of
a series of conventional controllers designed for di!erent operating conditions could provide an alternative
to adaptive control or gain scheduling in this application. Local model network methods could also provide
a basis for e$cient modelling of the vessel over a range of operating conditions. The paper describes an
investigation of radial basis function networks for ship steering control and of local model networks for
representation of ship dynamics. Performance is demonstrated by a series of simulation studies. Copyright
( 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Automatic steering of ships has its origin near the beginning of this century, following the
invention of the gyrocompass. Minorsky's1 work on automatic ship steering was one of the
principal contributions to the early literature in the general "eld of automatic control. In the same
year, Sperry2 introduced the "rst automatic steering control system for ships. These early
autopilots were purely mechanical in construction and they provided a very simple steering
action, the rudder demand being proportional to the heading error. To prevent oscillatory
behaviour, a low gain was selected which rendered the device useful only in the course-keeping
mode, where there was no signi"cant desire for a high degree of accuracy in the response. When
proportional-integral-derivative (PID) controllers became commercially available, they greatly
improved the performance and until the 1980s almost all makes of autopilots were based on these
controllers. A disadvantage of a PID controller is that it can provide optimal performance only at
the operating point it is designed for. The ship parameters vary signi"cantly with operating
conditions such as with the forward speed of the vessel. Under these varying operating conditions,
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it is tedious and di$cult to determine properly the "xed parameters of the controller that result in
good performance. Furthermore, the PID autopilots can cause di$culties when the ship makes
large manoeuvres involving non-linear dynamic behaviour.

To avoid these problems of "xed structure PID autopilots, adaptive autopilots were introduc-
ed in the 1970s and have remained a major area of research.3}13 It is because of their signi"cant
bene"ts such as improved fuel economy, increased speed of the vessel, and reduced manual
settings to compensate for changes in operating and environmental conditions that they are
attractive for such applications. Despite these potential bene"ts, adaptive control systems have
some disadvantages. These include the following:

1. The design and analysis of non-linear adaptive systems is di$cult and in comparison with
neural networks leading to relatively expensive solutions in computational terms.14

2. Some forms of adaptive control systems do not have long-term memory and therefore do
not retain the optimal controller parameters corresponding to di!erent con"gurations of the
plant.15

3. They need a signi"cant amount of a priori information for successful application.16
4. There is some concern about potential instabilities associated with adaptive system behav-

iour.17

These and other disadvantages of adaptive control systems provide motivation for the use of
arti"cial neural networks (ANNs). Arti"cial neural networks have the ability to handle variations
of plant dynamics without the element of unpredictability that may cause concern when adaptive
control is considered for safety critical applications. Witt et al.18 report that a neuro controller
can improve the pro"t margin of the vessel and contribute to the safety of the vessel by: (i)
reducing manning levels required on the bridge (ii) achieving a fuel saving by allowing the vessel
to stay on course with little deviation and (iii) providing accurate steering in an environment of
increased tra$c density and close proximity of obstacles.

The investigation of neural networks for ship steering control is in an early stage and only a few
papers have appeared so far.19}23 Almost all of these papers have made use of a multilayer
perceptron (MLP) architecture and have trained neural networks by using the supervised
learning of ANNs. This paper is based on a similar approach but it is di!erent in two important
respects: (a) we investigate the applicability of radial basis function (RBF) networks for develop-
ing ANN controllers at di!erent speeds and (b) we also investigate the potential of local model
networks (LMNs) for modelling the ship dynamics. Local model networks, or operating regime-
based models, have an architecture which relates closely to ANNs. Such networks have already
proved of value in other applications involving the modelling of systems in which the dynamic
characteristics can vary signi"cantly with the system operating conditions.24,25

The paper is organized as follows. Section 2 gives a general overview of ship steering control
systems. Section 3 describes radial basis function networks and local model networks are
introduced in Section 4. Simulation studies are presented in Section 5 in terms of two speci"c
examples. Section 6 presents further discussion and conclusions.

2. SHIP STEERING CONTROL

Generally speaking, a ship steering control system is a single input}single output (SISO) control
system, as shown in Figure 1, where (3 is the reference heading, ($ is the desired heading, ( is the
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Figure 1. Ship steering control system

actual heading, d
#
is the commanded rudder angle and d is the actual rudder angle (all in degrees).

The four blocks of the "gure are described in the sub-sections below. Additional background
information about ship control systems may be found in appropriate texts, such as that by
Fossen.26

2.1. Reference model

The dynamics of the reference model should be matched to the dynamics of the ship regardless
of the magnitude of the demanded change of reference heading angle. A reference model which is
too sluggish cannot produce an optimal performance since the ship cannot reach the required
heading in the minimum time. On the other hand, we should not use a reference model which is
too fast compared with the ship response characteristics because this may cause rudder actuator
saturation and performance degradation. A reference model may be regarded as a pre"lter which
ensures that di$culties associated with large step changes of reference are avoided.26

Generally, a second-order reference model is used. Such a model can be described mathemat-
ically as follows:27
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are the design parameters that describe the closed-loop behaviour of the
system.

A second-order model may not be su$cient to generate smooth accelerations. In such
situations, a third-order model of the following form can be used:
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and c

.
are constants. The method of computing these parameters can be found

elsewhere.17

2.2. Steering machine

The function of a steering machine is to move the rudder angle to a desired heading when
demanded by the control system or by the helmsmen. A simpli"ed model of the steering machine
is shown in Figure 2. This model of the steering machine was proposed by Van Amerongen.27

Generally, the rudder limiter and rudder rate limiters in Figure 2 are typically in the ranges:
d
.!9

"$353, and d0
.!9

"$2 to $73 s.
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Figure 2. Simpli"ed diagram of steering machine

2.3. Ship autopilot

An autopilot is a ship's steering controller, which acts within the overall control system to
manipulate the rudder to decrease the error between the reference heading angle and the actual
heading angle. Ship autopilots can be designed to perform two entirely di!erent functions: course
changing and course keeping. In course changing, the autopilot should provide good manoeuvr-
ability, whereas in course keeping the ship should stay on a set course. Particular consideration
has been given to the course changing problem in this paper.

2.4. Ship models

The equations describing the horizontal motion of a ship are well established. These equations
can be derived by using Newton's laws expressing conservation of linear and angular momentum,
and are given by26,28,29

m(uR !vr!x
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r2)"X

m(vR#ur#x
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(3)

where m is the mass of the ship, I
;
is the moment of inertia about the z-axis, x

G
is the x co-ordinate

of the centre of gravity, and u, v, and r denote surge, sway and yaw velocity, respectively. X and
> are the components of the hydrodynamic forces on the x and y-axis and N is the z-component
of the hydrodynamic moments. The main di$culty in modelling ship dynamics is to "nd suitable
expressions for X, > and N. These are complicated functions of the ship motion. Various
functional forms of these have been suggested in the literature. For example, Abkowitz29
suggested the following functional form for X, > and N:

X"X(u, v, r, d, uR , vR , rR )
>">(u, v, r, d, uR , vR , rR )
N"N(u, v, r, d, uR , vR , r5 )

(4)

and approximated the functions with Taylor series expansions about the steady-state conditions
u"u

0
, v"r"d"uR "vR"rR"0. The derivatives of X, > and N are called hydrodynamic

derivatives.
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Linearizing the equations of motion (3) about v"r"0, u"u
0
, and normalizing gives
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where ¸ is the length of the ship, and ; is its forward speed. In the above equations
>@

v
"L>/Lv, N@

v
"LN/Lv and so on for the other coe$cients. The above equations have been

normalized by using the Prime system of SNAME.30 In this system, the length unit is taken as the
length of the ship, the unit of time is ¸/;, and the mass unit is 1/2mo3 where o is the mass density
of water.

From the above equations, we can easily obtain the well-known Nomoto's second-order
model31 that gives a relationship between r and d as
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A "rst-order approximation of (6) (known as Nomoto "rst-order model) can be obtained by
letting the e!ective time constant be ¹"¹
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Nomoto's "rst-order and second-order models have been used extensively by control engineers
for analysis and design of ship autopilots.7,8,10,11,31}34

Despite their popularity, the Nomoto models are only valid for small rudder angles and low
frequencies of rudder action. Norrbin35 suggests that if we need a steering equation also valid for
large rudder angles, we have to substitute a non-linear characteristic, H

N
, for r in equation (7):
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where a
i

(i"0, 1, 2, 3) are called Norrbin's coe$cients. For ships with a symmetrical hull,
a
2
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0
+0, and thus
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substituting H
N

for r in (7), the corresponding Norrbin model can be obtained as
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3. RADIAL BASIS FUNCTION NETWORKS

The RBF network is a powerful feedforward neural network architecture. This type of network
was originally introduced by Hardy36 and the corresponding theory was developed by Powell.37
These networks were originally applied to the real multivariable interpolation problem and were
"rst formulated as neural networks by Broomhead and Lowe.38 In earlier schemes of RBF
networks, the number of basis/radial basis functions was necessarily equal to the number of data
points. This was a serious limitation because, in many applications, the number of data points is
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very large. Later, this limitation was overcome, and now the number of radial basis functions is
generally much smaller than the number of data points. During the past seven years, these
networks have proved to be an attractive area of research within the neural network community
and thus have found many applications in areas such as image processing, speech recognition,
adaptive equalization, and signal processing. They are also gaining popularity in the "eld of
systems and control. In this paper, we use these networks for a ship steering control system. The
reasons of using RBF networks for the application are many and include the following:

(1) To the best of our knowledge, these networks have not been investigated for a ship steering
control system by any author in the past. In view of their successful applications in other
"elds, it is appropriate to explore the use of these networks for this application.

(2) As mentioned earlier, only MLP networks have been investigated previously for this
application. There is no straightforward rule for choice of the number of hidden layers and
the number of hidden layer neurons in an MLP network for a particular application. There
is no such problem in RBF networks.

(3) In theory, both MLP as well as RBF networks are capable of approximating any continu-
ous non-linear mapping. However, Poggio and Girossi39 emphasize that the property of
approximating functions arbitrarily well is not su$cient for characterizing good approxi-
mation schemes, as many schemes have this property. Those authors proposed that the key
property is not that of arbitrary approximation, but the property of best approximation. An
approximation scheme is said to have this property if in the set of approximating functions
there is one which has the minimum distance from the given function. The "rst main result
of their paper is that MLP networks do not have the best approximation property.
Secondly, they prove that RBF networks do have the best approximation property. This
result is very signi"cant and provides theoretical support for favouring RBF networks.

(4) RBF networks are generally faster than MLP networks for a given application.

An RBF network consists of three entirely di!erent layers. The "rst layer, or the input layer,
consists of a number of units clamped to the input vector. The hidden layer is composed of units,
each having an overall response function, usually a Gaussian as de"ned below

g
i
(x)"expA!

Ex!c
i
E2

p2
i

B (11)

where x is the input vector, c
i
is the centre of the kth RBF and p2

i
is its variance. The centres can be

either "xed before the training phase or learned through the training of the network. The third
layer computes the output function for each class as follows:

f (x)"
M
+
i/1

=
i
) g

i
(x) (12)

where M is the number of RBFs and=
i
is the weight of each RBF. Several approaches to training

RBF networks are available in the literature. Most of these can be divided into two stages. The
"rst stage involves the determination of an appropriate set of RBF centres and widths and the
second stage deals with the determination of the connection weights from the hidden layer to
the output layer. Indeed, the selection of the RBF centres is the most crucial problem in designing
the RBF network. These should be located according to the demands of the system to be modelled.
Several di!erent algorithms are available in the literature for the selection of appropriate RBF

208 M. A. UNAR AND D. J. MURRAY-SMITH

Int. J. Adapt. Control Signal Process. 13, 203}218 (1999)Copyright ( 1999 John Wiley & Sons, Ltd.



centres. In this paper, we use the orthogonal least-squares (OLS) method developed by Chen
et al.40 A brief description of the method is given below:

Let us view the RBF network (12) as a special case of the linear regression model:

d(t)"
M
+
i/1

p
i
(t)q

i
#e(t) (13)

where d (t) is the desired output, the q
i
are the model parameters, the p

i
(t) are the regressors and

e(t) is the error signal. In matrix notation, the above equation can be written as
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The regressor vectors p
i
form a set of basis vectors, and the least-squares solution of equation (14)

satis"es the condition that the matrix product PQ should be the projection of D onto the space
spanned by these vectors. The OLS method involves the transformation of the regressor vectors
into a corresponding set of orthogonal basis vectors denoted by w

i
, i"1, 2,2 , M. For example,

the standard Gram}Schmidt orthogonalization procedure may be used to perform this trans-
formation, as shown by
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where 1)j(k and k"2,2 ,M.
In the context of a neural network, the OLS learning procedure chooses the RBF centres

c
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as a subset of the training data vectors p

1
, p

2
,2 , p

N
, where M(N. The centres are

determined one by one in a well-de"ned manner, until a network having adequate performance is
constructed. At each step of the procedure, the increment of the explained variance of the desired
response is maximized. In this way, the OLS learning procedure generally produces an RBF
network having a hidden layer which is smaller than that of an RBF network with randomly
selected centres.

4. LOCAL MODEL NETWORKS

Local model networks (LMNs) were developed by Johansen and Foss41,42 and also by Murray-
Smith43}45 and may be regarded as a special form of RBF network. An LMN is a set of models
weighted by some activation function (see Figure 3). The same input signal is fed to each model
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Figure 3. General architecture of LMN

and outputs are weighted according to some variable or variables, /, to give the model network
output as

y(t)"
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y
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(t)o

i
(/) (16)

where o
i
(/) is the validity function (basis function) of the ith model, n is the number of models,

and y
i
(t) is the output of the ith local model f

i
(/). The weighting or activation of each local model

is calculated using an activation function which is a function of the scheduling variable. The
scheduling variable could be a system state variable, an input variable or some other system
parameter. It is also feasible to schedule on more than one variable and to establish a multi-
dimensional local model network.45 Although any function with a locally limited activation
might be applied as an activation function, Gaussian functions are applied most widely. Other
popular validity functions include B-splines46,47 and Kernal functions.48 In this paper we restrict
ourselves to the Gaussian function. For modelling tasks the validity functions should form
a partition of unity for the input space, i.e. at any point in the input space, the sum of all basis
function activations should be unity. This is a necessary requirement for the network to globally
approximate systems as complex as the basis function's local models. Werntges49 discusses the
advantages of normalization in RBF networks, promoting the advantages of a partition of unity
produced by normalization. The basis functions can be normalized as follows:

o
i
(/)"
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i
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+n
j/1

o
j
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The individual component (local) models f
i
of an LMN can be of any form; they can be non-linear

or linear, have a state}space or input}output description, or be discrete or continuous time. They
can be of di!erent character, using physical models of the system for operating conditions where
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they are available, and parametric models for conditions when there is no physical description
available. They can also be ANN models such as MLP or RBF networks. The individual local
models are smoothly interpolated by the validity functions o

i
to produce the overall model.

The learning process in local model networks can be divided into two parts:

1. Find the optimal number, position and shape of the validity functions, i.e. de"ne the
structure of the network.

2. Find the optimal set of parameters for the local models, i.e. de"ne the parameters of the
network. These parameters could be the complete set of coe$cients for a linear model,
numerical parameters of a non-linear model, or even switches which alter the local model
structure. The parameters are usually optimized using a least-squares output error criterion.
The details of the criterion can be found in.45,50,51

The potential advantages of LMNs are summarized below:

1. An LMN has a transparent structure which allows a direct analysis of local model
properties

2. An LMN architecture is less sensitive to the curse of the dimensionality than other local
representations, such as RBF networks.

3. Non-linear models based on LMNs are able to capture the non-linear e!ects and provide
accuracy over a wide operational range.

4. The LMN framework allows the integration of a priori knowledge to de"ne the model
structure for a particular problem. This leads to more interpretable models which can be
more reliably identi"ed from a limited amount of observed data.

4.1. LMNs for ship dynamics modelling

As mentioned earlier, ship dynamics change with the forward speed of the vessel. If we derive
various linear (e.g. Nomoto models of equation (7)) or non-linear models (e.g. Norbbin Model of
equation (10)) at di!erent forward speeds of the ship, then an LMN network can easily be
developed that could represent the ship model. The derivation of linear or non-linear models at
a particular forward speed is well established and such models are already available in the
literature for most commercial ships. Moreover, it is relatively easy to develop ship models at
a particular operating condition from real data collected from a scale model of a ship or from ship
sea trials data. These individual models, developed at di!erent operating conditions, can be
interpolated smoothly to form an LMN that could represent the ship in question for a wide range
of operating conditions.

The training of LMNs for modelling ship dynamics is not di$cult. In this paper, we use
physically oriented models which are already available in the literature, as the local models. This
means that the problem of parameter estimation and optimization is automatically solved.

In general, there is no straightforward rule for choice of the optimal number of local models for
a particular application. This number is usually decided on the basis of the range of scheduling
variable /. For example, if we desire to develop a ship model for a range of forward speeds from
5 to 10 m s~1, then we can choose several local models derived separately at these speeds, and
possibly at some other speed(s) within this range. However, our experience shows that only two
local models will be su$cient for the above range of forward speeds. This will be illustrated with
the help of simulation studies presented in the next section.
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The selection of centres is a crucial problem in RBF networks when a Gaussian function is used
as a validity function. This is not a problem in LMNs. These can be selected at the operating point
about which the local model is developed. For example, if a local model network consists of two
local models derived at 5 and 10 m s~1, respectively, then Gaussian functions centred at these
speeds can be used as validity functions o

i
. The width of the Gaussian function can be found in

a number of ways, for example, by using the following formula:52

p
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+
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where c
i

is the current centre and c
i,j

is the jth nearest neighbour to c
i
. The scaling factor

kp de"nes the degree of overlap between the validity functions.

5. SIMULATION STUDIES

In this section, two examples are presented which demonstrate the potential of RBF networks as
well as LMNs for the application.

The approach which has been adopted for the training of RBF networks, involves the training
of a single arti"cial neural network to represent a series of conventional controllers for di!erent
operating conditions. The resulting network thus captures, in a non-linear fashion, the essential
characteristics of all of the conventional controllers. The reason for using a series of conventional
controllers is obvious. A conventional controller can yield optimal performance only at a given
operating condition. Its performance cannot be optimal at other operating conditions. If we use
several conventional controllers designed at di!erent operating conditions as supervisors during
the training phase, the resulting neural network will be able to perform well for the range of
operating conditions over which it is trained, and probably slightly outside that range due to the
generalization property.

Example 5.1

This example involves simulation results carried out from a model of ROV Zeefakkel. This is
a small ship of length 45 m. The motion of the ship can be described by the Norrbin model of
equation (10) with the following set of parameters27 at a forward speed of 5 ms~1: ¹"31 s,
K"0)5 s~1, a

1
"1 and a

3
"0)4 s2. The RBF controller for this ship was developed as follows:

To generate data for training, two PID controllers were designed at 5 and 10 m s~1 by using
the feedback linearization laws of Fossen and Paulsen.12 According to these laws, if we represent
a ship by equation (10), then the rudder angle can be computed as

d"ma(#
a
1

K
(0 #

a
3

K
(0 3 (19)

where m"¹/K and the commanded acceleration a( is given by

a("(G
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!3j((0 !(0

$
)!3j2((!(

$
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(((q)!(
$
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where j'0 is a constant. An RBF network was then trained using these controllers as
supervisors. The inputs to the network were the following: (i) (G

$
; (ii) ((Q !(Q

$
); (iii) ((!(

$
);
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Figure 4. Matching of data with the trained network

(iv) : ((!(
$
); and (v) the speed vector;. It was assumed that the rudder angle should not exceed

$350 and the maximum rudder rate should not be more than $73 s~1. The matching of data is
shown in Figure 4 which shows that the RBF controller mimics the dynamics of the feedback
linearization controllers very e$ciently.

To develop the LMN, we used the structure of Figure 3 with two local models. These models
were the two Norrbin models derived at 5 and 10 ms~1. The normalized Gaussian functions with
centres at the above speeds were chosen as the activation functions. Extensive simulation results
revealed that the LMN could provide the same behaviour as is achieved by the conventional
non-linear ship model. Some results are illustrated in Figure 5, where the conventional model is
the Norrbin model of equation (10).

Figure 6(a) shows responses for the system with the RBF controller based on data sets obtained
at 5 and 10 m s~1 and operating now at a forward speed of 5 m s~1. It also shows the
corresponding responses for a PID controller optimized for a forward speed of 7 m/s~1 but
operating now in simulated conditions corresponding to 5 ms~1. There is a signi"cant di!erence
between these responses. The responses of the system with the same PID controller operating
at a ship speed of 7 m s~1 coincide with the responses for the case with the RBF controller
(Figure 6(b)).

It should be noted that for the purpose of this comparison, dimensionalized parameters have
been used in the ship model.

Example 5.2

In this example we consider a 210 000 dwt tanker of length 310 m. The main parameters of the
tanker are:53 K"!0)0105 1 s~1, ¹

1
"1058 s, ¹

2
"37)8 s and ¹

3
"84)68 s,;"4)1 ms~1. An

RBF controller was developed by generating the training data from two PID controllers that
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Figure 5. (a) Heading response at 10 m s~1 (b) the corresponding rudder response (c) Heading response at 7 m s~1

(d) the corresponding rudder response

were separately designed for speeds of 4)1 and 8)2 m s~1. An LMN was also developed to
represent the ship dynamics. In this case, two Nomoto "rst-order models (equation (7)) were
considered as local models f

1
and f

2
(see Figure 3) at 4)1 and 8)2 ms~1. Some results are presented

in Figures 7 and 8. In these "gures, the conventional model is the Nomoto model of equation (7).
The success of the RBF controller as well as the LMN is quite obvious from these "gures.

6. DISCUSSION AND CONCLUSIONS

Ship steering control systems and associated autopilots provide a number of design challenges.
Most systems currently in use involve PID-based controllers which have well-known limitations
because of the wide range of dynamical behaviour which can be exhibited by the vessel. Other
approaches based on adaptive control techniques can give important bene"ts in terms of
performance, but can also su!er from disadvantages such as potential instabilities.

This paper presents preliminary results concerning the use of arti"cial neural networks to
obtain a controller which incorporates the properties of a series of conventional controllers. The
form of network used is the radial basis function network which has been used successfully in
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Figure 6. (a) Comparison of RBF and PID controller at a speed of 5 m s~1 (b) Performance of RBF and PID controller
at a speed of 7 m s~1

other control system applications and has favourable characteristics in terms of the best approxi-
mation property.

The paper also describes an investigation of local model networks for characterization of the
dynamical properties of a ship for a range of forward speeds. Local model networks trained from
simulation data have been used successfully to represent ship dynamics for a range of operating
conditions and these representations have been incorporated into computer simulation models
used for optimization of the radial basis function controllers.
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Figure 7. (a) Heading response at 5 m s~1 (b) the corresponding rudder response (c) Heading response at 10 m s~1

(d) the corresponding rudder response

Figure 8. (a) Heading response at 7 m s~1 (b) the corresponding rudder response (c) Heading response at 9 m s~1

(d) the corresponding rudder response
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In an implementation on a real ship the local model network could be trained using experi-
mental data from ship trials with a conventional ship steering controller. The radial basis function
controller intended to cover the complete operating envelope of the ship could also be trained
from input}output data from a series of trials for di!erent operating conditions, using conven-
tional controllers optimally tuned for each case. The resulting arti"cial neural network controller
should then incorporate the properties of all the conventional controllers from which it has been
derived. Simulation studies have shown that the approach can provide performance improve-
ments compared with a single conventional controller operating over a range of conditions.

Further research is currently underway to investigate the use of this approach for variation of
ship dynamics with depth of water as well as forward speed and to compare the performance of
controllers based on neural networks with gain scheduled systems.
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