
Chapter 8: Queueing Theory

1 Queueing Models and Characteristics

A queueing system consists of arrival streams of customers and a series of servers. When there are more

customers than available servers, the remaining customers are said to wait in queue. Customers leave the

system eventually, being turned away, balking or reneging, or finishing service. Queueing theory is the

theory of waiting lines. Draw the queueing model.

Queueing systems are often described by the notation A/B/s/K (originally due to Kendall), where A

stands for the arrival distribution and B stands for the service distribution (D=deterministic, M=exponential

(memoryless), and G=general). The interarrival times and service times are assumed to form i.i.d. se-

quences that are independent of each other. The number of servers in parallel is s and K is the number

of customers the system can hold. If K is not given then it is assumed to be infinite. Unless other-

wise stated, service order is assumed to be First-In-First-Out (FIFO), otherwise known as First-Come-

First-Serve (FCFS). Other common service disciplines are Last-Come-First-Serve (LCFS) and Shortest

Expected Processing Time (SEPT).

Examples: Since server queues (M/M/1, M/M/1/K), multiple server queues (M/M/s), and call centers

M/M/s/K).

Questions:

(i.) Average number of customers in the system L (= λ
λ+μ ) and in the queue LQ (= ρ2

1−ρ ), in service Ls

(= ρ). L = LQ + Ls.

(ii.) Average amount of time a customer spends in the system W (= 1
μ−λ ) and in the queue WQ (= ρ

1−ρ ).

W = WQ + 1
μ .

(iii.) Probability W > t (= e−(μ−λ)t) or WQ > t (= ρe−(μ−λ)t).

(iv.) Probability a customer does not need to wait P0.

(v.) Probability a customer finds at least 3 customers ahead of him upon arrival 1 − P0 − P1 − P2.
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2 The M/M/1 Queues

We know that Pn = ρn(1 − ρ) where ρ = λ
μ is the utilization of the server, or the traffic intensity. The

condition ρ < 1 is called the stability condition for the M/M/1 queue. Thus,

L =
∞∑

n=0

nPn = (1 − ρ)
∞∑

n=0

nρn.

Let
∞∑

n=0
nρn = Z. Then,

ρ + 2ρ2 + 3ρ3 + ∙ ∙ ∙ = Z,

ρ2 + 2ρ3 + ∙ ∙ ∙ = ρZ,

−−−−−−−−− −−−−

ρ + ρ2 + ρ3 + ∙ ∙ ∙ = (1 − ρ)Z.

Hence, Z = ρ
(1−ρ)2 and L = ρ

1−ρ = λ
μ−λ . As ρ → 1, L → ∞. To see the magnitude,

ρ 0.8 0.85 0.9 0.95 0.98

L = ρ
1−ρ

0.8
0.2 = 4 0.85

0.15 = 5.7 0.9
0.1 = 9 0.95

0.05 = 19 0.98
0.02 = 49

The fraction of time the server is idle is P0 = 1 − ρ and ρ is the fraction of time the server is busy.

W =
∑

n→∞

E(time in system|you observe n in the system upon arrival)Pn

=
∞∑

n=0

n + 1
μ

ρn(1 − ρ) =
1 − ρ

μ

∞∑

n=0

(n + 1)ρn =
1 − ρ

μ

(
∞∑

n=0

nρn +
∞∑

n=0

ρn

)

=
1 − ρ

μ

[
ρ

(1 − ρ)2
+

1
1 − ρ

]

=
1

μ(1 − ρ)
=

1
μ − λ

.

Note that, L = λW which is the well known Little’s Law and apply to any system.

With Little’s Law, we can calculate the following using L = ρ
1−ρ and W = 1

μ−λ :

Ls = λ ×
1
μ

= ρ, exactly the percentage of time the server is busy,

LQ = L − Ls =
ρ2

1 − ρ
,

WQ =
LQ

λ
=

ρ

μ − λ
,

WQ +
1
μ

=
1

μ − λ
= W.

Example: Which cashier to hire? Cashier A is faster with mean service time of 1 min and a salary of

$10, while cashier B is slower with mean service time of 2 min and a salary of $5. Customers arrive at a

rate of λ = 25 per hr. Assume it costs $0.02 (including time being served) for each minute ($1.2/hr) a

customer is in the system.
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If B is hired, μ = 30 per hr and ρ = 5
6 . W = 1

μ−λ = 1
30−25 = 0.2hrs = 12min, L = λW = 25 × 0.2 = 5,

WQ = ρ
μ−λ = 1

6 = 10min, LQ = ρ2

1−ρ = 25
6 = 4.17. The cost is $5 + $1.2 × 0.2hr × 25/hr = $11/hr.

If A is hired, μ = 60 per hr and ρ = 5
12 (half the utilization). W = 1

μ−λ = 1
60−25 = 1

35hrs = 1.7min,

L = λW = 25 × 1
35 = 5

7 = 0.7, WQ = ρ
μ−λ = 1

84hrs = 0.7min, LQ = λWQ = 25
84 = 0.3. The cost is

$10 + $1.2 × 1
35hr × 25/hr = $10.86/hr.

Conditioning on the number of customers the customer sees in the system upon his arrival, N , we have

P (time in system > t) =
∞∑

n=0

P (time in system > t|N = n)P (N = n)

=
∞∑

n=0

PnP (time in system > t|N = n)

=
∞∑

n=0

(1 − ρ)ρn
n∑

k=0

e−μt (μt)k

k!
, Gamma(n + 1, μ)

= (1 − ρ)e−μt
∞∑

k=0

(μt)k

k!

∞∑

n=k

ρn

= e−μx
∞∑

k=0

(μt)k

k!
ρk

= e−(μ−λ)t.

That is, in steady state, the time a customer spends an exponential amount of time with μ − λ in the

system. So the probability a customer spends more than t amount of time in the system is e−(μ−λ)t. It

can be shown that P (wQ > t) = ρe−(μ−λ)t.

Example: Lead time quotation.

• Quote a fixed lead time t to all customers to achieve a service level SL. Note that F̄ (t) is the

probability that a customer stays more than t amount of time in the system. Then one should

quote the shortest lead time such that F̄ (t) = e−(μ−λ)t ≤ 1 − SL or t = − 1
μ−λ ln(1 − SL).

• Quote lead times based on the work load. Let tn be the lead time quoted to a customer when there

are n customers in the system upon his arrival, n ≥ 0. Since the amount of time the customer

will spend in the system is gamma(n + 1, μ), one should quote the shortest lead time such that

F̄ (tn) = e−μtn

n∑

k=0

(μtn)k

k! = 1 − SL. In this case, the lead time increases as the congestion level

increases.
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3 M/M/1/K Queues

Let X(t) be the number of customers in the system at time t. Then, {X(t), t ≥ 0} is a birth and death

process on state space {0, 1, . . . ,K} with

λn =






λ, for 0 ≤ n < K,

0, for n ≥ K,

μn = μ (n ≥ 1), μ0 = 0.

Now λ
μ (it is no longer the actual utilization) and can be anything. Solving the balance equations in

terms of P0 yields

State Balance equation

0 λP0 = μP1 ⇒ P1 = λ
μP0

1 (λ + μ)P1 = λP0 + μP2 ⇒ P2 = λ
μP1 =

(
λ
μ

)2

P0

...

K − 2 (λ + μ)PK−2 = λPK−3 + μPK−1 ⇒ PK−1 = λ
μPK−2 =

(
λ
μ

)K−1

P0

K λPK−1 = μPK ⇒ PK = λ
μPK−1 =

(
λ
μ

)K

P0

So, P0 =

[
K∑

i=0

(
λ
μ

)i
]−1

and Pn =
(λ

μ )n

K∑

i=0

(λ
μ )i

. One can calculate L =
K∑

n=0
nPn.

In steady state, the arrival customer will join the queue with probability 1 − PK . So the actual arrival

rate is λ′ = λ(1 − PK). The actual utilization is λ
μ (1 − PK) = λ

μ

K−1∑

n=0
Pn =

K∑

n=1
Pn = 1 − P0 < 1. The

average number blocked per unit time is λPK . By Little’s Law, for those who enter, W = L
λ′ = L

λ(1−PK) .

Example A gas station with a single pump and maximum 3 cars allowed. λ = 60/hr and average

service time 2 min or μ = 30/hr. So λ
μ = 2, P0 = 1

1+2+22+23 = 1
15 , P1 = 2

15 , P2 = 4
15 and P3 = 8

15 .

L = 2
15 + 2 × 4

15 + 3 × 8
15 = 34

15 and W = L
λ(1−P3)

= 34/15
60(1−8/15) = 17

210hrs = 34
7 min.

4 M/M/c Queues

Let X(t) be the number of customers in the system at time t. Then {X(t), t ≥ 0} is a birth and death

process with

λn = λ, n ≥ 0,

μn =






nμ, for 0 ≤ n ≤ c,

cμ, for n > c.
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Let ρ = λ
cμ or λ

μ = cρ. Thus, the stability condition of the queue is ρ < 1 or c > λ
μ . Solving the balance

equations in terms of P0 yields,

State Balance equation

0 λP0 = μP1 ⇒ P1 = λ
μP0 = cρP0

1 (λ + μ)P1 = λP0 + 2μP2 ⇒ P2 = λ
2μP1 = 1

2

(
λ
μ

)2

P0 = 1
2 (cρ)2P0

2 (λ + 2μ)P2 = λP1 + 3μP3 ⇒ P3 = λ
3μP2 = 1

3 ∙ 1
2

(
λ
μ

)3

P0 = 1
3! (cρ)3P0

...

c − 1 (λ + cμ)Pc−1 = λPc−2 + cμPc ⇒ Pc = λ
cμPc−1 = 1

c!

(
λ
μ

)c

P0 = 1
c! (cρ)cP0

c (λ + cμ)Pc = λPc−1 + cμPc+1 ⇒ Pc+1 = λ
cμPc = 1

cc!

(
λ
μ

)c+1

P0 = cc

c! ρ
c+1P0

c + 1 Pc+2 = λ
cμPc = 1

c2c!

(
λ
μ

)c+2

P0 = cc

c! ρ
c+2P0

...

n − 1 (λ + cμ)Pn−1 = λPn−2 + cμPn ⇒ Pn = Pc+(n−c) = 1
cn−cc!

(
λ
μ

)n

P0 = cc

c! ρ
nP0

Pn =






(cρ)n

n! P0, for 0 ≤ n ≤ c − 1,
ccρn

c! P0, for n ≥ c,

and

P0 =

[
c−1∑

n=0

(cρ)n

n!
+

cc

c!

∞∑

n=c

ρn

]−1

=

[
c−1∑

n=0

(cρ)n

n!
+

(cρ)c

c!(1 − ρ)

]−1

.

We first calculate

LQ =
∞∑

n=c+1

(n − c)Pn =
∞∑

n=c+1

(n − c)
ccρn

c!
P0 =

(cρ)c

c!
P0

∞∑

n=c+1

(n − c)ρn−c

=
(cρ)cP0

c!

∞∑

n=1

nρn =
(cρ)cP0

c!
ρ

(1 − ρ)2
.

By Little’s Law, L = LQ + Ls = LQ + λ
μ = LQ + cρ and

W =
L

λ
=

1
μ

+
1

cμ − λ
×

(cρ)c

c!(1 − ρ)
P0 = WQ +

1
μ

as Ws = 1
μ . The probability an arrival does not need to wait is

c−1∑

n=0
Pn. The probability that an arrival

has to wait for t or longer is

(

1 −
c−1∑

n=0
Pn

)

e−(cμ−λ)t = e−(cμ−λ)t (cρ)c

c!(1−ρ)P0.

Examples

Resource pooling at a call center λ = 10.8/hr and μ = 6/hr.

Pooled with one number (two extensions): When c = 2,

P0 =

(

1 + 2ρ +
2ρ2

1 − ρ

)−1

=
1 − ρ

1 + ρ
,

LQ =
(2ρ)2P0

2
ρ

(1 − ρ)2
=

2ρ3

1 − ρ2
.
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ρ = λ
cμ = 0.9, LQ = 7.7 calls, and WQ = LQ

λ = 7.7
10.8hrs = 43min. Examples: bank, airport, call

centers.

Two numbers each with a single server queue and λ = 5.4/hr: ρ = λ
μ = 0.9, LQ = ρ2

1−ρ = 8.1 calls,

and WQ = 8.1
5.4hrs = 90min. Examples: grocery stores, McDonald’s, toll booths.

One faster server vs. two slower servers

Faster server with μ slower servers with μ
2

ρ λ
μ = λ

2μ/2 = λ
μ

LQ
ρ2

1−ρ > 2ρ3

1−ρ2

WQ
ρ2

λ(1−ρ) > 2ρ3

λ(1−ρ2)

W ρ2

λ(1−ρ) + 1
μ < 2ρ3

λ(1−ρ2) + 2
μ

Which is better? Depends on price and what better means. If you don’t mind being served longer,

two slow ones may be better. If total time in the system matters, one may be better. It leads to

the discussion of the psychological side of waiting.

However, a good approximation (exact when c = 1) is

LQ =
ρ
√

2(1+c)

1 − ρ

and WQ = LQ/λ.

The psychology of queueing

• A customer’s tolerance for waiting in a queue is proportional to the complexity or quantity of service

anticipated by that customer.

Customers at a bank prefers FCFS that assures social justice, but generally does not mind if those

with “12 items or less” join a special express service line in a supermarket. They expect to wait

longer. In an airport, a customer tolerates a multi-hour delay in making a connection to an overseas

flight while even a fraction of that wait for a New York to Washington Shuttle would not be tolerated.

Banks have been neglecting this mixing of high service time and low service time customers. So

far many customers opted to go to an ATM, but maybe banks should set up preferred customers

accounts (common in Latin America) like first class passengers and everyone understands it. This

is not so apparent in a teller line (why should someone came 20 minutes later get served before me).

Research should be done before customers started to move away. Besides, a preferred customer

may start life as a non-preferred customer.

• It is not the duration of the delay that matters; it is what you experience while you are waiting

that matters.
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How a customer feels in a queue is dependent on the duration of the wait and the total environment

around her. Adding servers will lower the duration, but cost will go up. Disney surrounds its

queue lines with entertainment and other diversions. The line-skipping system called FastPass

allows guests to book a time for an attraction, leave to do other things, and return at an allotted

time. One major initiative of NextGen focuses on what is being called an xPASS, which would

allow guests to book rides weeks or months in advance. Visitors planning their trip would go on the

xPASS website and use the free service which allows you to reserve experiences, including ride times,

exclusive meet-and-greets with Disney characters, even viewing spots for the nightly fireworks. The

xPASS system would also help to avoid lines at restaurants by ordering food in advance.

A couple of things about this strike me as interesting. First, arranging meet and greets as well as

saving spots for fireworks seems pretty easy to do but rides are something else. They are prone

to breakdowns so actually getting everyone with a 2:00 reservation on Pirates of the Caribbean

might be tough. There is also a question of how much capacity one makes available for advance

reservations. The article says that a concern is that people who book late may be unable to get

on popular rides. That obviously is a problem, particularly if a park (like Disneyland in Southern

California) gets a fair amount of local visitors. Even for those who plan early, it is hard to know

what rides are most desirable. How do you tell a five-year old that they can’t go on a ride they

loved a second time because dad only booked one reservation for it? Disney has to limit the number

of reservations: both to buffer for downtime and to accommodate spontaneity.

A second part of NextGen is the use of a wrist band embedded with RFID, that reads your identity

and acts as your ticket. Disney is already experimenting with RFID technology, for example, at

Epcot. But the NextGen wrist band concept is expected to go further. Its believed that guests

would provide information such as their names, credit card information and favorite attractions

ahead of their arrival. After they enter at the park, the RFID would interact with sensors deployed

throughout Disneys resorts and trigger interactive features. So for example, an attraction may greet

you and your family and call you by name.

In effect, a Disney park would become a little more like a website, recording where youve been and

choice youve made. Note that this could make running a reservation system a little easier. When

the Jones party of four has not shown up for their 2:00 reservation by 2:05, it may be possible to

see that they were on the other side of the park 2 minutes ago and dont have any chance of getting

to the ride soon. Their space could then be given over to stand by customers.

This also a big data boon. Knowing ages of the family and whether this is their first trip to a

park could allow Disney to suggest itineraries of age-appropriate rides the next time a family with

a similar profile books.
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The pivotal research finding in this area dates to the mid-50s in NYC. Complaints started to sore

at that time as more and more people found themselves in high-rise buildings, waiting for elevators.

It has to be the design of the buildings, so either dynamite the building and put in more elevators

or tell people they have to wait. A consultant pointed the problem not to be the duration, but

the complaints about the delay which they needed to reduce. The solution was to place floor-

to-ceiling mirrors next to each elevator door and the complaints plummeted! How to get happy

customers with lower costs at banks? A study on bank teller lines in 1990 at Bank of Boston

(now BankBoston) for three weeks, each week the line operating in a different mode: Status quo;

Silent Radio, Digital queue wait advisory. Silent Radio: placement of a Time Square type scrolling

alphanumeric readout with live news, sports, weather and even advertisements for bank services.

Silent with no disruption and easily seen if chosen to. Digital advisory: At the queue entrance, on a

poll attached to one of the queue stanchions marking the wait lane, the readout would say Current

Wait = 8 minutes (expensive device). Customers loved the Silent Radio so much that several regular

customers complained to the bank manager the Monday following the removal of the display. They

purchased and leased several also in front of busy congested ATMs. Digital Advisory actually

reminded customers of the waiting. Customers repeatedly looked at their wrist watches, trying to

play the game of Beat the Clock. In the 1980s the Savings Bank of New York employed not fancy

technology but rather live piano recitals each day during the lunch hour. Visiting the bank was so

appealing that an enterprising entrepreneur once sold tickets to sidewalk passersby just to get into

the bank lobby. At a Toronto bank shows an eight minutes looped videotape to its customers.

5 M/M/∞ Queues

Let X(t) be the number of customers in the system at time t. {X(t), t ≥ 0} is a birth and death process

with

λn = λ, n ≥ 0,

μn = nμ, n ≥ 0.

Let ρ = λ
μ . Solving the balance equations in terms of P0 yields Pn = ρn

n! P0 and P0 = e−ρ. So Pn is

Poisson with ρ and L = ρ. W = 1
μ and WQ = 0.
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6 Multiple stages

6.1 M/M/1 queues at each stage

The departure process of an M/M/1 queue. If a departing customer leaves behind an empty system with

probability P0 = 1 − ρ, the next departure will take place after a time equal in distribution to the sum

of two independend exponential random variables with λ and μ. If a customer leaves behind at least

one customer with probability ρ, the next departure will occur at an exponential amount of time with μ.

Hence,

P (T < t) = ρP (T < t|N = 0) + (1 − ρ)P (T < t|N ≥ 0)

= ρ(1 − e−μt) + (1 − ρ)
∫ t

0

P (X < t − y|Y = y)λe−λydy

= ρ(1 − e−μt) + (1 − ρ)
∫ t

0

(1 − e−μ(t−y))λe−λydy

= ρ(1 − e−μt) + (1 − ρ)

[∫ t

0

e−λtd(λt) − λe−μt

∫ t

0

e(μ−λ)ydy

]

= ρ(1 − e−μt) + (1 − ρ)

[

e−λt
∣
∣0
t
−

λ

μ − λ
e−μt

∫ t

0

e(μ−λ)td(μ − λ)y

]

= ρ(1 − e−μt) + (1 − ρ)

{

1 − e−λt −
ρ

1 − ρ
e−μt[e(μ−λ)t − 1]

}

= ρ(1 − e−μt) + (1 − ρ)(1 − e−λt) − ρ(e−λt − e−μt)

= 1 − e−λt.

So the departure time is exponential and each stage is an M/M/1 queue.

6.2 G/G/c queues at each stage

6.2.1 G/G/c queues

Let Ca = std of the interarrival time
mean of the interarrival time and Cs = std of the service time

mean of the service time , the coefficient of variation.

Then

LQ ≈
ρ
√

2(1+c)

1 − ρ

(
C2

a + C2
s

2

)

.

For the M/M/c queue, Ca = Cs = 1. Then WQ = LQ

λ , W = WQ + 1
μ , L = λW , and Ls = λ

μ .

6.2.2 Multi-stage, each with an G/G/c queue

C2
d = 1 + (1 − ρ2)(C2

a − 1) +
ρ2

√
c
(C2

s − 1),

C2
d = (1 − ρ2)C2

a + ρ2C2
s , if c = 1,

C2
d = 1, if c = 1 and M/M/1 queues.

Insights:
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• Variability propogates.

• Non-bottleneck can cause major problems.

• Variability early in process has more impact on W and L.


