
Introduction to R

Using a scriptable language, like R, and software that makes life a little easier, like R studio, are great ways
to create replicable and shareable sets of analyses.

So let’s begin with a few basic ideas about how R works. The fundamental worker is the function, which is
always followed by the open and close parantheses. Each function executes an operation as designated by the
series of arguments, which are set by values in the parentheses. Arguments can tell the function which data
to use, the methods (one-tail vs. two-tail), and many other options. Some functions are more complicated
that others and require many arguments, while other functions are similar and may require only one or two
arguments. Arguments can be set by using =, and some funtions will have default values for arguments and
others require specific arguments to be referenced.

Data structures (not necessarily the dataset you are analyzing) in R can be in several forms, and we will
begin with vectors. Vectors are sets of n elements, and you can generate them by using the function c() and
listing individual numbers separated by commas. In this function, the arguments are the individual elements
that need to be combined. If you need to generate a sequence of numbers, use the function seq() or if the
numerals are separated by 1, you can use the colon; if you need to repeat something, the rep() function is the
way to go. You can mix and match some of the functions, too.
c(1,2,3,4)

[1] 1 2 3 4
seq(1,4, by=1)

[1] 1 2 3 4
c(1:4)

[1] 1 2 3 4
rep(seq(1,4, by=1), 2)

[1] 1 2 3 4 1 2 3 4

Often, our datasets are not stored as vectors of data, but as matrices or dataframes. A matrix contains
(n × m) numeric elements, where n is the number of rows and m is the number of columns. Functions like
rbind() and cbind() can be used to glue vectors and matrices together, based on rows or columns. A dataframe
also contains (n × m) elements, but these can be stored as numeric and/or other data types besides numeric
(e.g. factor). Notice that the R displays matrices different than dataframes.
matrix(rep(seq(1,4, by=1),2), nrow=4)

[,1] [,2]
[1,] 1 1
[2,] 2 2
[3,] 3 3
[4,] 4 4
cbind(c(1,2,3,4), seq(1,4, by=1)) #This is still stored as a matrix

[,1] [,2]
[1,] 1 1

1

[2,] 2 2
[3,] 3 3
[4,] 4 4
rbind(c(1,2,3,4), seq(1,4, by=1)) #This is still a matrix

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 1 2 3 4
data.frame(cbind(c(1,2,3,4), seq(1,4, by=1)))

X1 X2
1 1 1
2 2 2
3 3 3
4 4 4

Another datastructure that might useful is an array, which is similar to a matrix, but has more than two
dimensions.
array(cbind(c(1,2,3,4), seq(1,4, by=1)),dim=c(3,2,2))

, , 1
##
[,1] [,2]
[1,] 1 4
[2,] 2 1
[3,] 3 2
##
, , 2
##
[,1] [,2]
[1,] 3 2
[2,] 4 3
[3,] 1 4
array(cbind(c(1,2,3,4), seq(1,4, by=1)),dim=c(2,2,2,2))

, , 1, 1
##
[,1] [,2]
[1,] 1 3
[2,] 2 4
##
, , 2, 1
##
[,1] [,2]
[1,] 1 3
[2,] 2 4
##
, , 1, 2
##
[,1] [,2]
[1,] 1 3
[2,] 2 4
##

2

, , 2, 2
##
[,1] [,2]
[1,] 1 3
[2,] 2 4

Finally, another traditional datastructure that you might encounter is a ‘list’, which has can have many
elements, data types and objects of different dimensions.
list(cbind(c(1,2,3,4), seq(1,4, by=1)),data.frame(rep(2,4)),c(1:5))

[[1]]
[,1] [,2]
[1,] 1 1
[2,] 2 2
[3,] 3 3
[4,] 4 4
##
[[2]]
rep.2..4.
1 2
2 2
3 2
4 2
##
[[3]]
[1] 1 2 3 4 5

3

OK, so we can generate these sequences, but mostly we need to save these as ‘variables’ or ‘objects’. In R, I
find the best practice is to use ‘<-’ to assign a value to object. An object is stored in the computer memory
while your R session is active, and can be named whatever is convient to you, but it cannot start with a
numeral and cannot include spaces. Capitalization matters for object names, and it is a general rule to not
name an object that is the same name as a function. For instance, don’t name an object mean because there
is a function mean(), so instead name the object myMean or something.
var1<-c(1:4)
var2<-matrix(rep(seq(1,4, by=1),2), nrow=4)
var3<-data.frame(cbind(c(1,2,3,4), seq(1,4, by=1)))
var4<-array(cbind(c(1,2,3,4), seq(1,4, by=1)),dim=c(3,2,2))
var5<-list(cbind(c(1,2,3,4), seq(1,4, by=1)),data.frame(rep(2,4)),c(1:5))

Now we can do things, like multiply or identify elements within an variable. . .
var1*.4 #multiply each element by .4

[1] 0.4 0.8 1.2 1.6
var1*var2 #performs matrix multiplication

[,1] [,2]
[1,] 1 1
[2,] 4 4
[3,] 9 9
[4,] 16 16
var3[2,] #yields the second row

X1 X2
2 2 2
var3[,2] #yields the second column

[1] 1 2 3 4
var4[,1,2] #yields the first column of the second matrix

[1] 3 4 1
var5[[2]] #yields the second item of the list

rep.2..4.
1 2
2 2
3 2
4 2
var5[[1]][3,2] #yields the element in the third row, second column in the second item on the list

[1] 3

4

Other fun and useful functions
runif(5) #draw 5 random numbers from a uniform distirbution between 0 and 1

[1] 0.2182858 0.8424067 0.7120580 0.9674401 0.9247717
runif(5, 1,10) #draw 5 random numbers from a uniform distribution between 1 and 10

[1] 9.511835 3.618496 9.818324 4.376753 8.510775
rnorm(5) #draw 5 random numbers from a normal distribution, mean of 0, sd of 1

[1] -1.1801059 -0.5742422 1.1672223 -1.0522932 -1.3051982
rnorm(5,1,2) #draw 5 random numbers from a normal distribution, mean of 1, sd of 2

[1] -0.2736560 4.9242422 0.1503116 0.1112048 -1.0558610
sample(var1) #sample without replacement from var1

[1] 2 1 3 4
sample(var1, replace=TRUE) #sample with replacement from var1

[1] 2 2 4 4

5

More often, we need to read in data from an external file. Common file types include comma separated files
(.csv) and tab delimited files (.txt). Other formats, such as Excel files (.xls, .xlsx) or Minitab worksheets
(.mtp) require other packages (we’ll get to them in a bit) to import into R.

Note that I use forwardslashes (‘/’) rather than backslashes (”) when identifying the folder to
import the data.
#Climate data for Springfield
prism <- read.csv('c:/users/sean maher/dropbox/Teaching/Biostatistics/springfield_prismdata.csv')
head(prism)

Year Month tmin_deg_F tmax_deg_F ppt_inches
1 2002 1 22.9 46.2 3.04
2 2002 2 26.1 48.1 1.34
3 2002 3 29.3 52.2 4.50
4 2002 4 46.5 69.2 3.50
5 2002 5 51.1 71.2 9.90
6 2002 6 63.4 83.7 1.31
class(prism)

[1] "data.frame"
#Mammal data
rmnp <- read.csv('c:/users/sean maher/dropbox/Teaching/Biostatistics/rmnp_data.csv')
head(rmnp)

Location Date dumb.date AM.PM Species Sex TTL TL
1 Mid-Upper BB 24-Jul-07 24-Jul-07 AM Peromyscus maniculatus F 130 54
2 Mid-Upper BB 26-Jul-07 26-Jul-07 AM Peromyscus maniculatus F NA 51
3 Mid-Upper BB 26-Jul-07 26-Jul-07 AM Peromyscus maniculatus F NA 52
4 Mid-Upper BB 24-Jul-07 24-Jul-07 AM Peromyscus maniculatus F 138 52
5 Mid-Upper BB 24-Jul-07 24-Jul-07 AM Peromyscus maniculatus F 153 61
6 Mid-Upper BB 25-Jul-07 25-Jul-07 AM Peromyscus maniculatus F 135 54
HF EL Mass ElevOrder Elevation
1 17 16 11.0 8 3043.733
2 18 16 11.0 8 3043.733
3 18 17 12.5 8 3043.733
4 16 17 16.5 8 3043.733
5 17 13 19.0 8 3043.733
6 18 19 19.5 8 3043.733

Let’s get some summary statistics from our data. . .
#Provides general summaries for each column
summary(prism)

Year Month tmin_deg_F tmax_deg_F
Min. :2002 Min. : 1.00 Min. :15.20 Min. :35.80
1st Qu.:2005 1st Qu.: 3.75 1st Qu.:31.20 1st Qu.:52.15
Median :2008 Median : 6.50 Median :45.05 Median :68.40
Mean :2008 Mean : 6.50 Mean :45.36 Mean :66.70
3rd Qu.:2012 3rd Qu.: 9.25 3rd Qu.:61.25 3rd Qu.:82.30
Max. :2015 Max. :12.00 Max. :71.90 Max. :97.30
ppt_inches
Min. : 0.250
1st Qu.: 2.353
Median : 3.520

6

Mean : 4.009
3rd Qu.: 5.388
Max. :14.220
#Calculate mean for each month
mean.tmin.month<-aggregate(tmin_deg_F~Month,data=prism,mean)

#Calculate mean for each year
mean.precip.year<-aggregate(ppt_inches~Year,data=prism,mean)

#Tabulate counts of species by location
rmnp.sum<-table(rmnp$Species, rmnp$Location)
rmnp.sum

##
Cow Creek Hollowell Park Lower BB
Callospermophilus lateralis 8 15 0
Myodes gapperi 0 0 6
Neotoma cinerea 0 0 8
Peromyscus maniculatus 23 64 29
Tamias minimus 15 10 6
Tamias umbrinus 4 0 13
Urocitellus elegans 0 11 0
##
Mid-Upper BB Mid BB RNF Upper BB WindRiver A
Callospermophilus lateralis 7 2 0 1 2
Myodes gapperi 0 16 0 17 1
Neotoma cinerea 0 1 0 0 4
Peromyscus maniculatus 21 25 32 20 32
Tamias minimus 10 0 0 18 2
Tamias umbrinus 1 12 0 0 6
Urocitellus elegans 0 0 0 0 0
##
WindRiver B
Callospermophilus lateralis 2
Myodes gapperi 0
Neotoma cinerea 0
Peromyscus maniculatus 5
Tamias minimus 0
Tamias umbrinus 3
Urocitellus elegans 0

7

What is the first thing we should do with our data? Plot it! R has a base set of plotting functions that take
a little time to sort out, but allow for flexibility. Let’s start with histograms:
par(mar=c(4,4,1,1)) #this changes the margins around plots
hist(prism$tmin_deg_F) #histogram of minimum temperatures

Histogram of prism$tmin_deg_F

prism$tmin_deg_F

F
re

qu
en

cy

20 30 40 50 60 70

0
10

20

hist(prism$tmin_deg_F, #histograms of log10(meadow area)
xlab='Minimum Temp (?F)', #let's apply our own label
main='Springfield (2002-2015)') #and adjust the title

Springfield (2002−2015)

Minimum Temp (?F)

F
re

qu
en

cy

20 30 40 50 60 70

0
10

20

hist(prism$tmin_deg_F, #histograms of log10(meadow area)
xlab=expression(paste('Minimum Temp (',degree,'F)')), #alternative to above
main='Springfield (2002-2015)')

Springfield (2002−2015)

Minimum Temp (°F)

F
re

qu
en

cy

20 30 40 50 60 70

0
10

20

And barplots. . .
par(mar=c(4,4,1,1)) #this changes the margins around plots
barplot(rmnp.sum, main="Small mammals")

8

Cow Creek Mid BB WindRiver A

Small mammals

0
40

80

barplot(rmnp.sum[1,], main="Golden-mantled Squirrel")

Cow Creek Mid BB WindRiver A

Golden−mantled Squirrel

0
4

8
14

barplot(rmnp.sum[3,], main="Bushy-tailed woodrat")

Cow Creek Mid BB WindRiver A

Bushy−tailed woodrat

0
2

4
6

8

barplot(rmnp.sum[c(2,4),], main="Deer Mice and S. Red-Backed Voles")

9

Cow Creek Mid BB WindRiver A

Deer Mice and S. Red−Backed Voles

0
20

50

Now let’s look at some additional plots:
par(mar=c(4,4,1,1)) #this changes the margins around plots
stripchart(Mass~Location, data=subset(rmnp, Species=='Peromyscus maniculatus'), vertical=TRUE, method="jitter")

Cow Creek Mid BB WindRiver A

10
25

M
as

s

boxplot(Mass~Location, data=subset(rmnp, Species=='Peromyscus maniculatus'))

Cow Creek Mid BB WindRiver A

10
25

Location

M
as

s

plot(prism$tmin_deg_F~prism$Month,
xlab = "Month",
ylab = expression(paste('Min. Temp (',degree,'F)')))

10

2 4 6 8 10 12

20
40

60
Month

M
in

. T
em

p
(°

F
)

plot(subset(prism$tmin_deg_F, prism$Month==1), subset(prism$tmax_deg_F, prism$Month==7),
xlab = expression(paste('January Min. Temp (',degree,'F)')),
ylab = expression(paste('July Max. Temp (',degree,'F)')))

15 20 25 30

84
90

96

January Min. Temp (°F)

Ju
ly

 M
ax

. T
em

p
(°

F
)

One big reason to use R, is that it is statistics software. We’ll see if minimum temp in January is correlated
with maximum temperature in July.
cor(subset(prism$tmin_deg_F, prism$Month==1), subset(prism$tmax_deg_F, prism$Month==7))

[1] 0.3115645
cor.test(subset(prism$tmin_deg_F, prism$Month==1), subset(prism$tmax_deg_F, prism$Month==7))

##
Pearson's product-moment correlation
##
data: subset(prism$tmin_deg_F, prism$Month == 1) and subset(prism$tmax_deg_F, prism$Month == 7)
t = 1.1358, df = 12, p-value = 0.2782
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.2623907 0.7226783
sample estimates:
cor
0.3115645

11

Packages are basically add-ons to R that provide additional functions and options. They can be for specific
types of analysis (e.g. ape, adehabitat), different graphical options (e.g. lattice and ggplot2), or connecting R
to other software (e.g R2Winbugs). R-Studio allows for a simple installation of packages to your hard drive,
and the code to load one or more is straightforward:
library(sp) #loads the library

Warning: package 'sp' was built under R version 3.6.3
library(maptools) #notice the error message!

Warning: package 'maptools' was built under R version 3.6.3

Checking rgeos availability: FALSE
Note: when rgeos is not available, polygon geometry computations in maptools depend on gpclib,
which has a restricted licence. It is disabled by default;
to enable gpclib, type gpclibPermit()
require(raster) #also loads the library, but should be used in specific circumstances

Loading required package: raster

Warning: package 'raster' was built under R version 3.6.3

Just like R has different versions, packages can have different versions. What this means from a user
stand-point, is that sometimes alterations to the underlying code may break your script or do something
unexpected. Using R-studio can help with a bit of version control, but this could be problematic when using
some of the campus machines where the drive is wiped after you log out.

Because we also want to give credit where credit is due, packages contain citation information:
citation('base')

##
To cite R in publications use:
##
R Core Team (2019). R: A language and environment for
statistical computing. R Foundation for Statistical Computing,
Vienna, Austria. URL https://www.R-project.org/.
##
A BibTeX entry for LaTeX users is
##
@Manual{,
title = {R: A Language and Environment for Statistical Computing},
author = {{R Core Team}},
organization = {R Foundation for Statistical Computing},
address = {Vienna, Austria},
year = {2019},
url = {https://www.R-project.org/},
}
##
We have invested a lot of time and effort in creating R, please
cite it when using it for data analysis. See also
'citation("pkgname")' for citing R packages.
citation(package='raster')

##
To cite package 'raster' in publications use:
##

12

Robert J. Hijmans (2020). raster: Geographic Data Analysis and
Modeling. R package version 3.0-12.
https://CRAN.R-project.org/package=raster
##
A BibTeX entry for LaTeX users is
##
@Manual{,
title = {raster: Geographic Data Analysis and Modeling},
author = {Robert J. Hijmans},
year = {2020},
note = {R package version 3.0-12},
url = {https://CRAN.R-project.org/package=raster},
}
citation('sp')

##
To cite package sp in publications use:
##
Pebesma, E.J., R.S. Bivand, 2005. Classes and methods for
spatial data in R. R News 5 (2),
https://cran.r-project.org/doc/Rnews/.
##
Roger S. Bivand, Edzer Pebesma, Virgilio Gomez-Rubio, 2013.
Applied spatial data analysis with R, Second edition. Springer,
NY. https://asdar-book.org/
##
To see these entries in BibTeX format, use 'print(<citation>,
bibtex=TRUE)', 'toBibtex(.)', or set
'options(citation.bibtex.max=999)'.

13

Using RStudio

RStudio works as shell to allow for a easier interaction with R. The RStudio window contains four panes that
allow for viewing the script, console (or other function), environment (or history or connections), and plots
(or packages, help, or files) simultaneously. This can make the user experience a bit more friendly because
it limits the pop up windows and facilitates checking on available variables and figures. Further, RStudio
includes features such as RMarkdown which allows you to generate readily available documents (inlcuding
Word and PDF) that include data analysis and comments. For the record, I use RMarkdown to generate the
lecture slides because I can create the formulas and plots much more easily than in other available formats.

If you want to work in RStudio rather than base R, that is fine with me. You can follow the base R instructions
on the Blackboard site, but might have to tweak aspects of printing or saving documents.

To begin a Script you’ll need to click File. . . New File. . . R Script

You can then type your commands in the script pane then send the commands to R using Ctrl+Enter or by
highlighting the appropriate text and hitting the “Run” button on the top right of the pane. You would save
your script by choosing File. . . Save (or Save As) and picking a place. Remember to add “.r” and the name to
designate the file as an R script.

14

If you choose to explore RMarkdown, you would need to open a new R Markdown document, which on your
first time will lead to a pop-up box to load several packages. Click “Yes” and then they will load. A new
pop-up box will eventually appear to choose what type of output you want to create, and you will see this
box immediately after the first time.

If you want to generate PDFs or Beamer presentations, you will need to load another piece of software that
can interpret LaTex code.

I recommend viewing the instructions at https://rmarkdown.rstudio.com/lesson-1.html if you really want to
learn how to use RMarkdown effectively.

15

https://rmarkdown.rstudio.com/lesson-1.html

Homework Assigment 0

Generate an R script that accomplishes each of the following steps and email that script to [me at spmaher@
missouristate.edu by the due date.

1. Create the following vector using both the functions seq() and rep().

4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5, 5.1, 5.2, 2, 2, 2, 2

2. Read in the Spider Amputation data from chapter 3 (I posted it on Blackboard).

3. Use the stripchart() function to recreate a version of this graph. Set vertical=TRUE and method=“jitter”.

after before

2
3

4
5

sp
ee

d

4. Use the function subset() twice to split the data into two new variables for ‘before’ and ‘after’, then
determine the mean speed for each group using mean().

before<-subset(spider, treatment=="before")
after<-subset(spider, treatment=="after")

[1] 2.668125

[1] 3.85375

5. Find the standard error of each group, using the function sd() to find the standard deviation and sqrt()
for the square root of the sample size.

[1] 0.1603881

[1] 0.248158

16

mailto:spmaher@missouristate.edu
mailto:spmaher@missouristate.edu

6. Read in the Firefly dataset, also posted on Blackboard.

7. Generate a histogram using the hist() function.

Histogram of firefly$flash

firefly$flash

F
re

qu
en

cy

80 90 100 110 120

0
2

4
6

8

8. Use quantile(), with the arguments probs=c(0.25,0.75) and type=5, to find the first and third quartiles.

25% 75%
87.25 102.50

9. Take a random sample of 10 from the firefly data and calculate the mean of the sample. It should look
like this. . .

mean(sample(firefly$flash,10))

10. Read in the PRISM dataset, also on Blackboard.

11. Convert the minimum temperature data to Celsius, and precipitation data to millimeters. You may
want to store these as new variables.

12. Use plot() to create a scatterplot for minimum temperature in Celsius and precipitation in millimeters.

−10 −5 0 5 10 15 20

0
10

0
25

0

min.temp

pr
ec

ip

17

	Using RStudio
	Homework Assigment 0

