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Abstract

The goal of this research is to find out the Performance of the bootstrap confidence
region of a binomial distribution with unknown parameters. The research is designed
as follow:

The first step is to estimate unknown parameters m and p from binomial distribu-
tion. In my case, I focus on method of moment to estimate. Since these estimators do
not have moments of all orders, I cannot obtain the mean, variance, and covariance
for these estimators. Thus, the Delta Method is used to derive the asymptotic nor-
mality of the joint distribution of the Method of Moments estimators. After finding
the estimators p, and m, I will work on the Asymptotic Normality of the Estimators.

For Asymptotic Normality of the Estimators by method of moment, I will find
the sampling from the binomial distribution with sample mean X — mp and sample
variance S? — mp(1 — p) are asymptotically normal with zero mean vector and co-
variance matrix. I will apply the Delta-method consists of expansion of p, and m

into two-dimensional Taylor series expansion, then using partial derivatives of these



functions, so I should have the covariance matrix.

Next section, I find out that if random vector X is normally distributed with the
mean vector F and covariance matrix ¥ is distributed as chi-square with 2 degrees of
freedom. Therefore, the 100(1 — «)% confidence region should be X3 (p, m) < XZ(«)
with 2 degree of freedom.

Some general steps of using the independent and dependent bootstrap sampling
will be the next. I will give example of creating both independent and dependent
bootstrap samples with different &k, where k is the number of copies of original sample.
I also will talk about the coverage probability of confidence regions and the areas of

confidence regions.
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Chapter 1

Introduction

1.1 Research Objectives

The estimation of binomial distribution parameters m and p achieve in four com-
mon inference methods: Bayesian Method, the Maximum Likelihood, Method of
Moments, Method of Least Squares. Method of Moments is the only method for this
research.

The independent bootstrap sampling method will be applied for resampling the
estimators 1 and p, in order to construct the 100(1 — «)% Confidence regions and
calculate the converage probabilities, as well as the dependent bootstrap sampling
method with different k.

The asymptotic normality of the joint distribution of method of moment estima-
tors m and p is proved by the delta method.

The confidence region of estimators m and p can be written as form which follows



the chi-square distribution with two degree of freedom.

1.2 Research Hypothesis

The goal is to see whether the bootstrap procedure can influence the confidence
regions for Bin(m,p), such as changing the coverage probability, and the areas of
confidence regions. Furthermore, I will compare the results for both independent
bootstrap samples and dependent bootstrap samples, in order to test the performance
of bootstrap sampling. In my case, I focus on method of moment to estimate. Delta
Method is used to derive the asymptotic normality of the joint distribution of the
Method of Moments estimators. After finding the estimators p, and m, I will work
on the Asymptotic Normality of the Estimators.

For the simulation part, I plan to generate N binomial samples with fixed m and p
with each sample size n. Then I will generate the estimators for all m and p. Applying
the independent and dependent bootstrap for re-sampling propose, I will have B sets
of bootstrap samples of the estimators for m and p. A summary of all B

bootstrap samples of coverage probabilities can give some results of this research.
Moreover, I can change the value of true m, p, B and k to compare all the results by

plots and tables.



1.3 Research Statement

Using chi-square test, to define the rules for Confidence regions of Estimation of
m and p from binomial distribution by method of moment on independent bootstrap
method and dependent bootstrap method with different k. The coverage probabilies

of confidence regions are not evidently different, but the Areas of confidence regions.

1.4 The Significance of This Research

The method of Sampling is the first step of statistical analysis. However, the
samples which selected from the population are not perfect. Because the dataset of
population must include every entry of the select topic, it is impossible to find all of
them. Therefore, constructing samples in statistical way is one of the major goal for
statisticians.

A good statistical analysis relying on precise samples. The statisticians and data
analyst spend time, patience, and financial support ceaselessly, in order to construct
accurate samples. The classical sampling method, such as simple random sampling
is often costly and inefficient due to all elements with same probability of being
selected (Yates, David, and Daren, 2008). This research will focus on using simple
and accurate sampling method: the bootstrap sampling.

One of the superiority of the bootstrap sampling is that the bootstrap method

does not rely on a highly completed sample data. The method of bootstrap sampling



is designed for replacing and controlling the statistical features (Efron and Tibshirani,
1993). The simple sampling methods, such as random sampling methods are suitable
for applying any statistical problems (Varian, 2005). The bootstrap procedure can
easily estimate the confidence regions and standard errors for Binomial distribution
with two unknown parameters. This works even when we do not have large and
perfect samples. Even though it is not possible to find the real confidence regions,
the bootstrap can derive precise and stable results (DiCiccio, and Efron, 1996). A
perfect data will be costly and difficult to find, sometimes it does not even exist.
Therefore, the bootstrap allow us to get good statistical information, even with data
set small or some sampling issue. The bootstrap sampling can be done in two ways
(independent bootstrap and dependent bootstrap).

Confidence region (confidence ellipse) is a generalized form of confidence interval
with two or more dimensions. To understand confidence region, a ground work of
understanding confidence interval, which is one of the major tool in statistical analysis
is important. For example, If a researcher gets the sample with known standard

deviation, the 100(1 — «)% confidence interval can be written as

(i — 7 (95)6/v/m, i+ 7 (95)5/v/m)

where av = 0.05. This is clear to see that when the researchers would like analyzing
one estimator at one time, so in such a case it is one-dimensional intervals to ana-
lyze. Somehow, to analyze the two-dimension Binomial distribution with unknown

4



m (number of trials) and p (probability of success of each trials), the performance of

Confidence region is crucial and essential.



Chapter 2

Literature Review

2.1 General Statistics Literature

This chapter is introduction of the statistical literature which related to my re-
search. I will show the theorem definition and explanation.

In statistics, some researchers often find confidence intervals (CI) for the param-
eters of their interest. CI is a range of values of interest, for example the mean of
random samples. CIs must be with particular probabilities also called confidence
coefficient in statistics words. The confidence coefficient can be changed by the re-
searcher; and CI relevant to the estimator of sampling distribution (Dekking, 2005).
In other words, the exact value of the unknown parameter is inside of the CI by v%
chance. In my thesis, I set up v% equal to 0.9 and 0.95.

Statistical median is useful method to measure the centre of sample data, which

it can separate first and second half of data. The statistical mean is different to the



median, since the mean is the average number of data. To calculate the median, we
can rank all numbers of the data. If the total number of data set is odd number,
the median is the number with middle position of order. If the total number of data
set is even number, the median can be calculate as the half of summation of the last

number of first half of data and the first number of second half of data.

2.2 Binomial Distribution

In statistics, the binomial distribution is discrete distribution which has two un-
known parameters m and p. In the experiment, a total number of m independent
trials can have k success trials, and p is the probability of success. Because p is prob-
ability of success, so the interval of p is 0 < p < 1; moreover, k < m. The probability

mass function of binomial distribution can be written as

P(X =k) = (Z)pk(l )k k=0,1,...,m.

Haldane was the first researcher that published statistically problems of binomial
distribution(Haldane, 1941). According to his results, we can estimated parameter m
and p by solving Method of Moments estimation. After solving the first two moments,
it will be easy to find sample mean and sample variance which often denote as X and

S2. Solving the equations obtain the estimation of m and p ( will show in ch3).



2.3 Point Estimation

Point Estimation is a significant content of statistical inference. There are two
general methods of finding point estimators, the method of moment estimation and
Maximum Likelihood Estimation. The method of moment estimation is the oldest and
simplest way to obtain the point estimators, even though it sometimes is not the best
option. The Maximum Likelihood method is the most prevalent estimation method.
According to Casella, a measurable function f = f(Y,...Y;) is called a statistic. Any
estimator is a statistic. Estimate is a numerical value of an estimator [2]. It can
be considerable to identify estimator and estimate. The estimator is a function of
random sample and estimate is the accurate value of the random sample. Thus, the
estimator is f = f(Y3,...Y;) , and the estimate is accurate value f = f(yi,...y;), where
Y1, ..., Y; is iid random sample.

In statistics, we are really care to get a “good” estimators. The good estimators
must Satisfy several standards, such as Unbiased estimator, and small value of mean

squared error.

2.3.1 Unbiased Estimator

Before we talk about unbiased estimator, the definition of bias of an estimator is

a requirement. If a estimator is biased, the estimate will be different than the exact



value of the parameter of interest. Also, it does not equal to the mathematical expec-
tation of the random sample. In mathematical notation, suppose € is an estimator of

any random sample Y7, ..., Y,,. The bias of 6 can be written as
Biasgl0] = Eypl0] — 6 = E,[0 — 6]

where FEjp means the mathematical expectation of any unknown distribution of y.
For unbiased estimator, the bias of estimator must equal to zero. Thus, the math-
ematical expectation of the estimator must equal to the true value of the population

parameter. we can define as:

Biasgl0] =
E[f]—0=0
E[f] =0

For example, the sample mean is unbiased estimator. Suppose Y7, ..., Y,, is iid random

variables,we knew that Y = % Yo, Y. it can be shown as:

MV%;M%E:E>
— E(%(Yl F Yot o+ V)
:%@m@+Eﬂa+m+ﬂEm
:%m+u+m+m
1
= p



where E(Y;) = p. Therefore, we can see that sample mean is unbiased estimator.

2.3.2 Mean Square Error

The error is measurement of the difference between the estimate of sample param-
eter and the exact value of population parameter. The mean squared error (MSE) of
an estimator is average of squared difference between the estimate and the expected
value of parameter. MSE is most likely greater than zero due to sampling random-
ization. In other words, the random sample for our estimator can only carry the data
which can improve the precision of estimator (lahmann, 2004).

In real world, If we are interesting in some topics (say the average income of
citizen in Beijing), it can be very costly to get information of all citizen in Beijing.
Over 20 millions data need to collect, that will cost too much money and time.
The best solution is survey sampling. However, there is always some errors existed.
In numerical case, the estimate of sample parameter minus the expected value of
population parameter can be either positive or negative; after squared up the result,
it would be positive.

Let Y, ...,Y,, be a random sample,\ is an estimator of G(Y7,...,Y,,). The MSE

can be defined by MSE\(G) = Ey\[(G — \?)].

10



We can expand the square as:

MSE\(G) = E\[(G — \?)]
= E\(G — Ex(G) + EA(G) — %))
= E\[G — E\(Q)])? +2E,\[G — Ex(Q)][Ex(G) — N] + [EA(G) — N]?
= E\[G — EA(G)]” + 2(Ex(G) = N)(EA(G) — EA(G)) + [EA(G) — \]”
= E)\[G — Ex(G)) + [EA(G) = A?
= Vary(G) + (Bias\(G))?

where Biasy = E)\(G) — A.
If G is an unbiased estimator of A\, the MSE will be equal to variance of G. We

can notate as:

MSE)\(G) = VCL?")\(G).

2.4 Method of Moment

The method of moment is the very first method to obtain population parame-
ters. it was first introduced by Chebyshev. it generally set k unknown parameters
01,05,. .. .0, is found by solving the system of k equations obtained by equating the

first k sample moments with first population moments. so that is

M; = pi = %ZX;
k=1

11



sample " moment.

fis = B(X)

shown as the population i*hA moment. Thus, the method of moment estimator can be

solving M; = [i; where i=1,2,...k.

2.4.1 Sample Mean and Sample Variance Estimation

The sample mean and sample variance are very significant element to any sta-
tistically analysis. The sample mean The first sample moment M, = %22:1 Xy, is
called the sample mean and usually denoted as X. Then the sample variance S? can
be obtained by second sample moment M, = 1 370 (X; — X)2. To have the value of

method of moment estimators, setting equation system of

1 n
= E(X)= E;Xk

and

then solve for parameters.

12



2.5 Maximum Likelihood Estimation

The Maximum Likelihood Method is another prevalent estimation method, and
it estimates the population parameters by finding the maximum values of the like-
lihood equations. The value can be a point in the parameter space, so Maximum
Likelihood Estimation is one of the major method of point estimation(Rossi, 2018).
General steps of Maximum Likelihood Estimation: First, we need to make the the
likelihood function is differentiable. The Second step is taking the first derivative of
the likelihood function. Then, setting it equal to Zero and solving for the estimator.
The last step is testing whether its second derivative is less than Zero.

Mathematically, the Maximum Likelihood Estimators can be written as:

Say, if we have a Random sample of (Y7,Ys,...,Y;), then the pdf or pmf can be

shown as f(z;;6). The likelihood function is
Ly, g2, ... ) = PNV =y, Ya=1y2,....Yi = y;)

= f(1:0) - Fi0) -+ f (i 0) = [ ] F03:0).

In this case, we denote 0 as the Maximum Likelihood Estimators of 6.

2.6 Delta Method

The Delta method is used as tool of driving the variance of asymptotic distribution.

In some books, the author gives a general idea of Delta method,such as (Cramér,

13



2016).0ne of the simplest way can be defined as:
suppose Z, has an asymptotic normal distribution, so v/n(Z, — a) 4N (0, B?) as

n — oo. If W is a continuous and differentiable function, and W’(«a) # 0, then
VAW (Zy) = W (@) S N(O, (W'(a))*5°).

Since W'(«) # 0, we can derive it as:

Vn(W(Z,) — W(a))

@ N

as n — 0.

2.6.1 Convergence in Distribution

Convergence in distribution is also named as converge weakly. It converges very
slowly to a “better” distribution. In other words, when n small, it can be very different
to the current distribution. And, as n goes up, it will be more and more closer to the
distribution with more and more slower speed. Formly, it can be written as:

suppose Gy (y) is distribution function of any random variable Y, {Y,,,n > 1} is a

. d .
sequence of random variables and —co <y < 00. Y, = Y as n — oo. iff

lim Fy, (y) = Fy(y), for all y such that Fy is continues.

n—oo

14



2.6.2 Slutsky’s Theorem

The Slutsky’s Theorem gave idea of operation for convergent sequence of random
variables (Goldberger, 1964). If A, — A in distribution and B,, — ¢ in probability,

where c¢ is constant, then

1. A, B, % Ac

2. An+Bni>A+c

g

3. 4u % A/e, where ¢ # 0

n

sy

2.7 Bootstrap

Sampling often is the first step of a statistical analysis. The bootstrap method
is an important method of sampling. The propose of applying bootstrap method is
making scientific decision of the population parameters. The bootstrap method was
first shown to the public in 1979 from a book ”Bootstrap methods: another look at the
jackknife” authored by Bradley Efron (Efron, 1979). The characteristic of bootstrap
method is a re-sampling method rather than sampling method for the original sample,
that is directly from the population. Because it is a re-sampling method, the MSE of
estimator reduced manifestly and relevantly. Generally, some steps of bootstrap as

follow:

1. Set the original sample with sample size n from population

15



2. Take B sets of bootstrap sample with sample size m

3. Find the estimate of all B bootstrap samples

4. Make statistical inference (Confidence intervals)

Figure 2.1: Figure shows the general steps of bootstrapping from towards data

science [16].

B sets of Bootstrap B sets of Bootstrap Further
Samples of Size n Estimates of @ Inference
H \ /,‘ - ‘.\
\ /EgEEER =
A ( i_%’!%{c%;ii\ 88| Estimate 1
H = | \m & =/
E | \u{izz/ =
| P oofj| Estimate 2
/ /2 gRE 5,
/ { Bty \ =
| AR =
] 2 ’é%‘r@%ﬁ 55| Estimate 3
&y 2
(BB me =
B. | ;& p el fafal= :
Original Sample with Sample Size n ‘ "~.EZE§%?E.%EJ’ 95| Estimate B
& BgatE

I am going to apply the Bootstrap method for my thesis, because I am inter-
esting in if the bootstrap sampling can reducing the errors of the estimate for both
parameters m and p of binomial distribution. Furthermore, the bootstrap has two
re-sampling methods, the independent bootstrap and dependent bootstrap. I will
set the Confidence Regions for each independent bootstrap and dependent bootstrap
samples. Moreover, the Probability of coverage of Confidence Region is a numerical

standard to clarify the precision of estimation.

16



2.7.1 Independent Bootstrap

In statistics, we make inference and conclusion on sample, but the bootstrap re-
sampling method play the same game on bootstrap samples. Bootstrap samples can
be taking in two ways. The independent bootstrap method as a re-sampling method
need to have a sample directly from population called original sample. Often, a sim-
ple random sampling works well in this situation. Mathematically, the independent
bootstrap may written as follow:

Suppose, there exists an unknown distribution G, a simple random sample Y =
(y1,...,Yn). For the Bootstrap sample Y* = (yj,...,y},), the value of estimate of
sample parameter should be equal to the estimate of Bootstrap sample parameter
a=g(Y)=g(Y")=a"

The independent bootstrap randomly selects variables with replacement from orig-
inal sample of n iid random variables from population. All variables have % probability
to be selected, and we stop selecting once we have m random variables. An indepen-
dent bootstrap sample with sample size m is completed. For example, suppose a se-
quence of 1,2,3,4,5,6,7,8,9,0 as an original sample where n = 10. An independent
bootstrap sample with m = 20 can be 1,1,2,2,4,4,5,6,0,2,7,8,4,6,7,8,9,5,2,0.
An extreme sample of 20 ones can be exist with probability of (15)*. In Statistical

analysis, independent bootstrap sample size m is often greater than or equal to the

17



original sample size n(m > n). The independent bootstrap CI can be written as
CI= (04613, 0+ G0 ti_g) )

Where

The independent bootstrap sample mean and standard deviation as follow:

1 m
Yp = E;y;ba

_\/Z]lyjb )

2.7.2 Dependent Bootstrap

and

The dependent bootstrap has same propose of reducing the variety of sample
estimator, but it design in different re-sampling method. There are 3 differences as

following;:

1. selecting dependent bootstrap sample with replacement

2. selecting from k copies of original sample

3. the sample size of dependent bootstrap sample will less than or equal to k copies

time the original sample size(m < nk)

18



Due to the differences, dependent bootstrap sample actually has lower MSE of the
estimator.Especially, k is small, that decreases more variation compare with larger k.
In other words, as k increases, dependent bootstrap sample is more and more closer
to independent bootstrap sample. If k& — oo, independent bootstrap and dependent
bootstrap appear similar characteristic.

The same example for the independent bootstrap, suppose £k = 5 and m = 20
as well. 1,1,2,2,4,4,5,6,0,2,7,8,4,6,7,8,9,5,2,0 can also be a dependent boot-
strap sample; however, the extreme sample of 20 ones does not Satisfy the nature of
dependent bootstrap (Smith and Taylor,2001).

The dependent bootstrap CI can be written as
C[ - (é\‘i‘ 0/'\0 : tZ%),é\+ O/'\Q : tzl—%)) .

Where
o — 0

~e
Top

tr =

The dependent bootstrap sample mean and standard deviation as follow:

A. —0 1 . [ ]
0 =7, = m Z Yjb
j=1

and

. _\/Z;’Ll (o —7)° [ kn—m

To0 = m—1 m(kn — 1)

—m

Where ’Znn_l is the finite population correction factor.

19



2.8 Coverage Probability

The coverage probability is proportion of times of the exact value of estimates
inside of the confidence interval. But we often calculate the number of times of
estimates which are outside of the confidence interval, the coverage probability equal
to one minus the number over the total sample size. Suppose the population mean

E(x) as the interest of any distribution, the coverage probability is

#{L > E[X]} + #{U <E[X]}
#{C}

Y

P(L<E[X]<U)=1-

For the numerator, the number of E(x) less than lower limit plus the the number
of E(z) greater than upper limit. The number of all Cls are the denominator. In
general, the coverage probability is a standard of the design of experiment. The cov-
erage probability approximately equal to the confidence level appears a good result of
experiment. Even though coverage probability slightly greater or less than confidence

level is acceptable, I am more desirable of less than confidence level.

2.9 Chi-Square Distribution

The Chi-square distribution has very close relation with normal distribution.
When mean equal to 0 and variance equal to 1, a special case of normal distribu-
tion called the standard normal distribution. The Chi-square distribution contain

the summation of v iid random variables of standard normal distribution, where v

20



equal to the degree of freedom of Chi-square distribution. The Chi-square distribution

with v degree of freedom has a pdf

where y > 0, otherwise, f(y) = 0.

2.9.1 Chi-Squared Test

The chi-squared test is normally used for goodness of fit or test of independency. In
this paper, the confidence region asymptotically distributed as chi-square distribution
with 2 degree of freedom, since the confidence region is two-dimensional (m and p).
Similar to any other statistical test, whether the null hypothesis is current at o level
of significant.

Some general steps for chi-squared test:

1. set the null hypothesis versus alternative hypothesis

2. calculate the test statistic

3. calculate the degree of freedom

4. compare the test statistic with value of chi-square with degree of freedom
5. conclude whether the null hypothesis is rejected

Reject region: x? > x3__(df).

21



Chapter 3

Research Methods

3.1 Introduction of Research Methods

There are several methodologies in this research, include Binomial distribution
with unknown parameter (m, p), method of moment estimation, Asymptotic Normal-
ity of the Estimators, Delta method, confidence regions, bootstrap sampling method.
The theoretical results will be proved in this chapter. The aim of this chapter is
comparing the confidence regions of the independent and dependent bootstrap with
different k. In addition, the effect of probability of coverage of confidence regions
with different value of population parameter m and p. The methods and general
simulation results can be applies in this chapter, but I will collect all tables and plots

of the simulation results in chapter 4.
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3.2 Bivariate Normal Distribution

According to Colin Rose, suppose {Xj,..., X, } are iid random samples follow
normal distribution(ux,o%), and {Yi,...,Y,} are iid random samples follow nor-

mal distribution(uy, 0% ). The Bivariate Normal Distribution is distributed by vector

X
(2011) . The pdf can be written as:

Y
fxr(@,y) :
YT,Y) =
Y 2roxoyy\/1 — p?

Xexp{_l _1p2 [(37 —ng)Q _ 2p(l’ —M;()z((jyy— Ly ) + (y _UgY)Q] }

Some the mathematical results:

EX; = ux, EY; = py, Var(X;) = 0%, Var(¥;) = 03 and Cov(X;,Y;) = poxoy,

Cov(X,Y

Where the correlation coefficient p = ), Thus, the covariance matrix is

OX0Yy

and the mean vector is

Ky

According to delta method, /n(Z, — a) 4 N(0,3%) as n — oo, we can easily show
that as n — oo.
X, — x J 0 03( pPOXxOy

Y, — py 0 poxoy 0%



where X,, = %22:1 X; and Y, = %22:1 Y, n>1.

3.3 Method of Moment Estimator

Suppose {Y1,...,Y,} are iid random samples follow binomial distribution (m,p).

We can find the mean and variance as follow:

n

I 1 _
YI—E YkaHdS2: E(Yk—Y)Z
n
k=1

n—1
k=1

. The population mean and variance of binomial distribution are:

E(y) = mp,Var(y) = mp(1 —p).

Theorem 3.3.1 The estimators of the parameters m and p by the Method of Mo-

ments are

Proof. By method of moment, M; = puy = = > | X?. The i'* moment are:
fis = B(X) = M,
Since E(y) = mp, Var(y) = mp(1 — p).
Y =mp

S% = mp(1 - p).
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Solving these equations

S2P=Y -Yp
Yp=Y — 52
sof)—g.Then
Y =mp
dA_Y—Sz
and p = 5
. Yy — §? then 17 y?
=m = en m = — .
b vy )’ By
QED

3.4 The First Four Moments of Binomial Distribution

The moment generating function is the common way to find the moments. Let

Y ={Y1,...,Y,} follows Binomial distribution, the MGF of Binomial distribution:
My (t) = [(1 - p) +pe'".
Proof The First four moments of the Binomial distribution are
E(Y)=mp, E(Y = EY)? =mp(1 —p), E(Y — EY)*> = mp(1 — p)(1 - 2p),

E(Y — EY)* = 3m*p*(1 — p)* + mp(1 — p)(1 — 6p(1 — p)),
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Taking derivative of MGF:
m—1
My (t) = m[l —p+ pe']™ (pe')
setting t = 0
/ tym—1 t
My (0) = m[l —p+pe’ ] (pe’)
m—1
=m[l —p+pe’]"" (pe)
=m(l—p+p™ p
oy mp

Thus, p = My = p) = mp.

Taking second derivative of MGF:
MY (t) =m[lL = p+pe']™ " (pe') + (pe'ym(m — 1)[1 — p + pe']™ " (pe)

setting ¢ =0

Mty (0) = m[1 — p+ pe®]™ " (pe®) + (pe®)m(m — 1)[1 — p + pe]™ " (pe°)

=m[l—p+p]"" (p) +pm(m — DL = p+p"p
= m(1)" " (p) + pm(m — 1)1

= mp +m(m — 1)p*

Since E(Y)? = mp?, the variance is
Var(Y) = pa = E(Y?)=(EY)? = mp+m(m—1)p*—(mp)* = mp-+(mp)*~mp*—(mp)* = mp(1-p).
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Taking second derivative of MGF:
M"(t) = [1 —p+ pet} ™ (pet) +m (pet) (m—1) [1 —p +pet]m_2 (pet)

+p*e**m (m — 1) (m —2) [1 — p + pe'] mes (pe') + [1 — p+ pe'] " (m — 1) (2p*e*)

again setting ¢ = 0.

M"(0) = mp(1 + 3mp — 3p — 3mp® + 2p*> + (mp)?)

Then E(Y?) = uy = mp(1 + 3mp — 3p — 3mp?® + 2p? + (mp)?). The formula of

third moment:
fi3 = iy — 34y iy + 24ty
then ps is given as following :
E(Y — EY)* = g = mp(1 — p)(1 — 2p).

Where pf = mp and iy, = mp +m(m — 1)p?.

Taking fourth derivative of MGF:

m—4

M™(t) = m (m — 1) (m — 2) (m — 3) p*e* [pe’ + (1 — p)]

+3m (m — 1) (m — 2) &p? [pe! + (1 —p)]™ " +3m (m — 1) (m — 2) p?e [pe’ + (1 — p)]" "

-1

+m (m — 1) p*e” [pe’ + (1 — p)]m_2 + mpe' [pe' + (1 —p)|"

again setting t = 0

E(X*Y =, =mp [m3p3 — 6m*p® + 11mp® — 6p® + 6m*p? — 18mp? + 12p* + Tmp — Tp + 1}
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The formula of fourth moment:

pua = ply — 4 iy + 6, — 3py!

then p, is given as following :
E(X — EX)* = juy = 3m?*p*(1 — p)* + mp (1 — p) [1 — 6p(1 — p)].

QED

3.5 Delta Method

ﬁn - D
According salma’s thesis, \/n for n — oo converges to the bi-
My, —m
variate normal distribution with the zero mean vector and covariance matrix X =
2

o M3
(Saad, 2019). Then, plug in the value of the First four moments:

ps frg — o’

02 = py = mp(1 — p),us = mp(1 — p)(1 — 2p)For py — o* can be written as:
4_ g 22 2 2
pa— 0" =3mp (1 —p)”+mp(l—p)[1 = 6p(l —p)] = (mp(1 - p))

= 2m*p*(1 — p)* +mp (1 — p) [1 — 6p(1 — p)]

therefore

«_ mp(1 — p) mp(1 —p)(1 — 2p)
mp(1 —p)(1—2p) 2m?*p*(1 — p)* + mp(1 — p)(1 — 6p(1 — p))

Apply the of delta method of p,, and 772,,, We chnage variables and set k; = Y and

ky = S2. Therefore, in this term

_ v 5 ki — k
pn=aq(Y,S%) = v , that is, g1(k1, ko) = 1k 2
1
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and
ki
ky — ko

_ Y2
“ o

that is, go(k1, k2) =

3
3
Il
Nat
Pl
=~
N
N
|

Partial derivatives:

891(l€1, k?Q) o ko

ok, k2
Ogi(k1,ks) 1
0ks k1
Ogs(ka, k) _ ha(a — 2k)
ok, (kr — k)2
Ogalkike) K
ko (k1 — ko)?

Also taking into consideration that p; = E(Y) = E(Y) = mp and uy, = E(S?) =

Var(Y') = mp(1 — p) we can write that

mp —mp(l —p
g1(p, po) = ( ) =p
mp
(mp)?
mp —mp(1 — p)

Og1(p, 2)  mp(l—p) 1—p

=m

92(#17,“2) =

oty  (mp)2 mp
Ogi(pa,p2) 1
Ots mp
9g92(p1, p2)  mp(mp —2mp(1 —p))  2p—1
ot (mp—mp(l-p)?> P
dga(pa, pi2) (mp)® 1
oty  (mp—mp(l—p))2  p*
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A

Pn—D

By the Delta method, the random vector y/n is asymptotically nor-
My, —m
— — 0 ~
mal N(0,3) with zero mean 0 = and covariance matrix ¥ = BXB’, where
0
lp _ 1
B— mp mp
2p—1 1
p? P2
And
s (mp(1 = p))? mp(1 —p)(1 - 2p)

mp(1 —p)(1—2p) 2m*p*(1 — p)* + mp(1 — p)(1 — 6p(1 — p))

solving the matrix equation we can easily get:

o PO,

2 _ (-p)(atp) 2 _ m(l-p)a
where Up = O = 2

p=—1\/aty »and a =2(1 —p)(m —1).

3.6 Confidence Region

The Confidence Region of Binomial distribution is the major part for research.
Some the theorem was proved by lehmann of the statistical inference of parameters

p and m (Lehmann, 2004).
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3.6.1 Confidence Region for Binomial Distribution

Suppose Y = (Y1,Y5, ..., Y,) is a random vector follows normal distribution with
mean 7 = (v1, Vs, ..., V), and covariance matrix X.Thus, (Y — 7)TS~1(Y — 7) follows
chi-square distribution with n degree freedom (Lehmann, 2004).

It is clear that the binomial distribution has two parameters, so n=2 for Method of

p
moment estimates. It can be show that the mean vector /' = . From previous

page, the covariance matrix

2
o, POpOm
M=
PO m o
The inverse matrix:
T
oo 1 o, PR,
det[X] )
PO m o
o2 — 00,0
1 m POp
92 92 _ 9 o
0,00 — PO O, )
—pPOOm o,
1 __P
. 1 U% TpOm
_ 2
L=r{ __, 4
OpOm o2,

(1-p)(atp) ;2 _ m(l-pla

Now plug in the value of o) = =2 62 2
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p=—1/atp -and a =2(1 —p)(m —1).

a

__m atp
o1 1 (1—p)(a-+p) _\/<17p3r(ba+p)\/m<;p)a
o | = .
\/<17p37<la+p) \/m%p)a m(1—p)a
m _ aip
_a+p (1=p)(atp) U=p(apa
p _ V aip p2
(1—p)2(a+p)a m(lfp)a
P2
m ap2
_a +p (1-p)(a+p) '\ (a+p)2a(l-p)?
p . aP?2 P2
(a+p)2a(1-p)? m(1—p)a
m _ P
_atp| Tty ~ @rp)l-p
p B p 2
(a+p)(1-p) m(l—p)a
m P
1 - a - a —
= (1-p)p+a) (1=p)(a+p) (a+p)(1—p)
p(l - p) P p2
" (atp)(1-p) m(1—p)a
1 m -p
p(l_p) —p p2§i:a)

3.6.2 Test Statistic of Confidence Region

The statistics is asymptotically distributed to Chi-square distribution. Since there

are two unknown parameters, degree of freedom is two. The mathematical form
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follows:

. |
2\psm) = ——<\{ p—p m—m
p(1—p) _p Pl " —

simplify the matrix:

X300 m) = s (= = 200~ )~ ) +

follows chi-square distribution with 2 degree of free asymptotically.
For a « level of significance, the 100(1 — )% confidence region shall inside of this

ellipse {(p,m)|X3(p,m) < X3(a)}.

3.7 The Performance of Confidence Region

There are total 1000 binomial samples as original sample. Then, B = 2000
independent bootstrap samples, and B = 2000 dependent bootstrap samples with
k = 5,10, 25, 50,100,500, 1000. To evaluate the performance, the coverage of proba-

bility of confidence region, 9, and area of confidence region,fl, will be applied.

3.7.1 Coverage Probability of Confidence Region

From section 2.8, the coverage probability were derived as

#{L >E[X]} + #{U <E[X]}

P(L<E[X|<U)=1- 410
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However, the coverage of probability of confidence region,d approximately equal to
the proportion which is the number of total confidence regions less or equal to critical
value of chi-square distribution with 2 degree of freedom at significant level «, over
the total number of confidence regions. Since each bootstrap sample can determine a
confidence region, the total number of confidence regions will equal to total bootstrap
samples. In this research, the total bootstrap samples B = 2000. We can write the

mathematical form:

0~ P(X3(p,m) < X3(a) = #{X;(f)’g()pgm))? _

Furthermore, § ~ (1 — «). It will accept that the coverage probability slightly less or
greater than confidence level, but I am more desirable of less than confidence level.
As a reason, the errors exist and they will change the proportion; § > (1 — «) will be

considered as being perfect and perfection does not exist in real the world.

3.7.2 Area of Confidence Region

The mean of parameters p and m of each bootstrap samples are used to find the
area of confidence region. The areas of confidence region of each method (independent
bootstrap samples, dependent bootstrap samples with different k) are evidences for
effectiveness of each method. To determine the area of confidence region, we need

three steps.

1. find the center of confidence region
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2. calculate the maximum and minimum distance on the confidence region to cen-

ter

3. area of confidence region equals to 7 times the maximum and minimum distance

on the confidence region to center.

Figure 3.1: Figure shows the confidence region of mean of p and m from 2000

independent bootstrap sample follows Bin(500,0.55)
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bmm

The area A = mab = 0.1289 where a is the maximum distance on the confidence

region to center, and b is the minimum distance on the confidence region to center.
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Chapter 4

Statistical Simulation

4.1 Introduction

The simulation study generated n = 1000 random samples from Bin(m, p). Then,
8 different re-sampling methods are independent bootstrap and dependent bootstrap
when k = 5,10, 25,50, 100, 250, 500. Each bootstrap samples has same sample size
m = 1000 and total B = 2000 bootstrap samples in one experiment. For one ex-
periment, 16,000 samples are generated, and in total of 16,000,000 random variables.
Moreover, 10 values for population parameter p, and 4 values for population parame-
ter m, so there are 40 experiments. In this research, 40 experiments need to generate

640,000 samples and 640,000,000 random variables.
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4.2 Simulation

In this section, I will fix the value for population parameters p and m. Let p equal
to 0.05 to 0.90 by 0.05 and m equal to 100; 250; 500; 750. This gives combinations
of 10 x 4 = 40 of 2 parameters.

I will set up tables of the mean and median of coverage probabilities of differ-
ent values of p and m for independent bootstrap samples and dependent bootstrap

samples with k = 5, 10, 25, 50, 100, 250, 500.

4.3 Coverage Probability of 95% Confidence Region

The goal of this section is to find out that whether the coverage probability in-
creases by the two methods of bootstrap re-sampling. In addition, at what value of
p that the coverage probability will be closest to confidence level 1 — . There are 8
tables of mean and median of coverage probability by different bootstrap methods.

For the independent bootstrap method, when m = 100, probability p = [0.2,0.25]
have the best outcome of § ~ (1 — «). Similarly, that m = 250,p = [0.35,0.4];m =
500,p = [0.55,0.6];m = 750,p = [0.65,0.7]. The similar result can be applied for
dependent bootstrap method with different value of k, since different values of &

slightly change coverage probabilities.
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Table 4.1: Coverage probabilities of 95% confidence regions of Independent

Bootstrap samples

Probability\Sucess trial m=100 m=250 m=500 m=750

P Mean Median Mean Median Mean Median Mean Median
0.05 0.5708 0.5710 0.392 0.392 0.2847 0.2840 0.2344 0.2340
0.1 0.7532 0.7530 0.5603 0.5610 0.4071 0.4070 0.3468 0.3470
0.15 0.8662 0.8660 0.6801 0.6800 0.5194 0.5200 0.4334 0.4340
0.2 0.9314 0.9310 0.746 0.746 0.6122 0.6120 0.5087 0.5090
0.25 0.9659 0.9660 0.8199 0.8200 0.6688 0.6690 0.5616 0.5620
0.3 0.9847 0.9850 0.8199 0.820 0.6688 0.6690 0.5616 0.5620
0.35 0.9938 0.9940 0.9265 0.9270 0.7808 0.7810 0.7001 0.700
0.4 0.9983 0.9980 0.9512 0.9510 0.818 0.818 0.7493 0.7490
0.45 0.9989 0.9990 0.9687 0.9690 0.8676 0.8680 0.7798 0.7800
0.5 0.9998 1 0.9853 0.9850 0.9137 0.9140 0.8244 0.8240
0.55 0.9999 1 0.9913 0.9910 0.9320 0.9321 0.8657 0.8660
0.6 1 1 0.9976 0.998 0.9559 0.9560 0.912 0.912
0.65 1 1 0.9991 0.9990 0.9785 0.9790 0.9469 0.9470
0.7 1 1 0.9994 1 0.9923 0.9920 0.9663 0.9670
0.75 1 1 1 1 0.9973 0.998 0.9833 0.9840
0.8 1 1 1 1 0.9984 0.9990 0.9954 0.9960
0.85 1 1 1 1 0.9999 1 0.9982 0.9980
0.9 1 1 1 1 1 1 0.9998 1
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Table 4.2: Coverage probabilities of 95% confidence regions of dependent Bootstrap

samples kK =5

Probability\Sucess trial m=100 m=250 m=>500 m=750

p Median Mean Median Mean Median Mean Median Mean
0.05 0.5700 0.5703 0.3920 0.3919 0.2850 0.2846 0.2340 0.2344
0.1 0.7530 0.7528 0.5600 0.5602 0.4080 0.4078 0.3470 0.3474
0.15 0.8660 0.8659 0.6795 0.6795 0.5190 0.5189 0.4330 0.4331
0.2 0.9310 0.9312 0.7460 0.7459 0.6130 0.6127 0.5090 0.5086
0.25 0.9660 0.9658 0.8200 0.8199 0.6690 0.6682 0.5620 0.5627
0.3 0.9850 0.9848 0.8790 0.8792 0.7340 0.7341 0.6400 0.6396
0.35 0.9940 0.9939 0.9270 0.9265 0.7810 0.7811 0.7000 0.6991
0.4 0.9990 0.9983 0.9510 0.9508 0.8180 0.8182 0.7500 0.7495
0.45 0.9990 0.9989 0.9690 0.9686 0.868 0.868 0.7800 0.7797
0.5 1.0000 0.9997 0.9850 0.9851 0.9140 0.9138 0.8240 0.8244
0.55 1 1 0.9910 0.9912 0.932 0.932 0.8660 0.8654
0.6 1 1 0.9980 0.9976 0.9560 0.9561 0.912 0.912
0.65 1 1 0.9990 0.9991 0.9560 0.9561 0.912 0.912
0.7 1 1 1 0.9994 0.9920 0.9923 0.9670 0.9665
0.75 1 1 1 1 0.9970 0.9973 0.9830 0.9833
0.8 1 1 1 1 0.9990 0.9984 0.9960 0.9954
0.85 1 1 1 1 1 0.9998 0.9980 0.9982
0.9 1 1 1 1 1 1 1 0.9998

39



Table 4.3: Coverage probabilities of 95% confidence regions of dependent Bootstrap

samples k£ = 10

Probability\Sucess trial m=100 m=250 m=>500 m=750

p Median Mean Median Mean Median Mean Median Mean
0.05 0.5700 0.5705 0.3920 0.3916 0.2850 0.2845 0.2340 0.2344
0.1 0.7530 0.7527 0.5600 0.5603 0.4080 0.4073 0.347 0.347
0.15 0.8650 0.8655 0.6800 0.6801 0.5200 0.5192 0.4340 0.4335
0.2 0.9310 0.9311 0.7450 0.7451 0.7450 0.7451 0.5080 0.5075
0.25 0.9660 0.9657 0.8190 0.8194 0.6690 0.6688 0.5620 0.5619
0.3 0.9850 0.9847 0.8800 0.8799 0.7340 0.7338 0.6400 0.6403
0.35 0.9940 0.9938 0.9270 0.9265 0.781 0.781 0.6990 0.6991
0.4 0.9980 0.9983 0.9510 0.9507 0.8185 0.8185 0.7490 0.7494
0.45 0.9990 0.9989 0.9990 0.9989 0.9990 0.9989 0.780 0.780
0.5 1 0.9997 0.985 0.985 0.9140 0.9136 0.8245 0.8246
0.55 1 0.999 0.9910 0.9911 0.932 0.932 0.8660 0.8656
0.6 1 1 0.9980 0.9976 0.932 0.932 0.8660 0.8656
0.65 1 1 0.9990 0.9991 0.9790 0.9785 0.9470 0.9465
0.7 1 1 1 0.9994 0.9920 0.9923 0.9670 0.9663
0.75 1 1 1 1 0.9970 0.9973 0.9830 0.9832
0.8 1 1 1 1 0.9990 0.9984 0.9950 0.9953
0.85 1 1 1 1 1 0.9998 0.9980 0.9982
0.9 1 1 1 1 1 1 1 0.9998
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Table 4.4: Coverage probabilities of 95% confidence regions of dependent Bootstrap

samples k = 25

Probability\Sucess trial m=100 m=250 m=>500 m=750

p Median Mean Median Mean Median Mean Median Mean

0.05 0.5700 0.5705 0.3920 0.3918 0.2840 0.2840 0.2340 0.2343
0.1 0.7530 0.7526 0.7530 0.7526 0.4070 0.4073 0.3470 0.3468
0.15 0.8650 0.8653 0.6810 0.6803 0.5190 0.5192 0.4340 0.4336
0.2 0.9310 0.9307 0.746 0.746 0.6120 0.6122 0.5080 0.5083
0.25 0.9660 0.9657 0.8200 0.8194 0.6690 0.6685 0.5630 0.5628
0.3 0.9850 0.9845 0.8790 0.8789 0.734 0.734 0.6400 0.6402
0.35 0.9940 0.9939 0.9270 0.9267 0.7810 0.7809 0.7000 0.6995
0.4 0.9980 0.9983 0.9510 0.9509 0.8180 0.8185 0.7490 0.7494
0.45 0.9990 0.9989 0.9990 0.9989 0.8680 0.8679 0.7790 0.7791
0.5 1 0.9998 0.9850 0.9853 0.9140 0.9138 0.8240 0.8239
0.55 1 0.9999 0.9910 0.9911 0.932 0.932 0.8660 0.8656
0.6 1 1 0.9980 0.9976 0.956 0.956 0.9120 0.9121
0.65 1 1 0.9990 0.9991 0.9790 0.9785 0.9470 0.9465
0.7 1 1 1 0.9994 0.9930 0.9924 0.9660 0.9663
0.75 1 1 1 1 0.9970 0.9973 0.9830 0.9833
0.8 1 1 1 1 0.9990 0.9984 0.9960 0.9954
0.85 1 1 1 1 1 0.9998 0.9980 0.9982
0.9 1 1 1 1 1 1 1 0.9998

41



Table 4.5: Coverage probabilities of 95% confidence regions of dependent Bootstrap

samples k = 50

Probability\Sucess trial m=100 m=250 m=>500 m=750

p Median Mean Median Mean Median Mean Median Mean
0.05 0.5700 0.5705 0.3920 0.3917 0.2840 0.2843 0.2340 0.2344
0.1 0.7530 0.7526 0.560 0.560 0.4070 0.4076 0.3470 0.3469
0.15 0.8650 0.8655 0.6790 0.6797 0.5180 0.5184 0.4330 0.4328
0.2 0.931 0.931 0.7460 0.7458 0.6130 0.6132 0.5080 0.5084
0.25 0.9660 0.9657 0.8200 0.8197 0.669 0.669 0.5630 0.5629
0.3 0.9850 0.9847 0.8790 0.8792 0.7340 0.7341 0.640 0.640
0.35 0.9940 0.9939 0.9260 0.9259 0.7810 0.7809 0.7000 0.6997
0.4 0.9980 0.9983 0.9510 0.9508 0.8185 0.8186 0.7500 0.7494
0.45 0.9990 0.9989 0.9680 0.9685 0.8680 0.8678 0.7800 0.7798
0.5 1 0.9998 0.9850 0.9851 0.9130 0.9136 0.8250 0.8247
0.55 1 0.9999 0.9910 0.9911 0.9320 0.9321 0.8660 0.8659
0.6 1 1 0.9980 0.9976 0.9560 0.9559 0.9120 0.9121
0.65 1 1 0.9990 0.9991 0.9790 0.9783 0.9460 0.9464
0.7 1 1 1 0.9994 0.9920 0.9922 0.9660 0.9663
0.75 1 1 1 1 0.9970 0.9973 0.9840 0.9834
0.8 1 1 1 1 0.9990 0.9984 0.9960 0.9954
0.85 1 1 1 1 1 0.9998 0.9980 0.9982
0.9 1 1 1 1 1 1 1 0.9998
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Table 4.6: Coverage probabilities of 95% confidence regions of dependent Bootstrap

samples k = 100

Probability\Sucess trial m=100 m=250 m=>500 m=750

p Median Mean Median Mean Median Mean Median Mean
0.05 0.5710 0.5709 0.392 0.392 0.285 0.285 0.2340 0.2347
0.1 0.7530 0.7534 0.5610 0.5605 0.4070 0.4074 0.3470 0.3473
0.15 0.8660 0.8656 0.6800 0.6803 0.5195 0.5192 0.4330 0.4334
0.2 0.9310 0.9309 0.7460 0.7458 0.6130 0.6127 0.5090 0.5084
0.25 0.9660 0.9658 0.820 0.820 0.6700 0.6692 0.563 0.563
0.3 0.9850 0.9847 0.8800 0.8795 0.7350 0.7346 0.6390 0.6398
0.35 0.9940 0.9939 0.9260 0.9262 0.7810 0.7812 0.7000 0.6993
0.4 0.9980 0.9983 0.9510 0.9511 0.8190 0.8186 0.7490 0.7495
0.45 0.9990 0.9989 0.9690 0.9689 0.8670 0.8674 0.7800 0.7798
0.5 1 0.9997 0.9850 0.9852 0.9140 0.9136 0.8240 0.8244
0.55 1 0.9999 0.9910 0.9911 0.9320 0.9321 0.8660 0.8659
0.6 1 1 0.9981 0.9976 0.9562 0.9559 0.912 0.9121
0.65 1 1 0.9990 0.9991 0.9790 0.9779 0.9461 0.9464
0.7 1 1 1 0.999 0.992 0.9925 0.9663 0.9659
0.75 1 1 1 1 0.9968 0.9977 0.9840 0.9835
0.8 1 1 1 1 0.9991 0.9986 0.9960 0.9958
0.85 1 1 1 1 1 0.9998 0.9980 0.9982
0.9 1 1 1 1 1 1 1 0.9998
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Table 4.7: Coverage probabilities of 95% confidence regions of dependent Bootstrap

samples k = 250

Probability\Sucess trial m=100 m=250 m=>500 m=750

p Median Mean Median Mean Median Mean Median Mean
0.05 0.571 0.570 0.3910 0.3915 0.2840 0.2842 0.2340 0.2339
0.1 0.7530 0.7528 0.5600 0.5596 0.4080 0.4076 0.3470 0.3471
0.15 0.8660 0.8656 0.6810 0.6803 0.5190 0.5186 0.433 0.433
0.2 0.9310 0.9309 0.7450 0.7451 0.6120 0.6124 0.5080 0.5084
0.25 0.9660 0.9657 0.8200 0.8197 0.669 0.669 0.5630 0.5629
0.3 0.9850 0.9847 0.8790 0.8792 0.7340 0.7341 0.640 0.640
0.35 0.9940 0.9939 0.9260 0.9259 0.7810 0.7809 0.7000 0.6998
0.4 0.9980 0.9983 0.9512 0.9508 0.8184 0.8186 0.7500 0.7494
0.45 0.9990 0.9989 0.9680 0.9685 0.8680 0.8678 0.7800 0.7799
0.5 1 0.9998 0.9850 0.9851 0.9132 0.9136 0.8251 0.8247
0.55 1 0.9999 0.9910 0.9911 0.9320 0.9323 0.8660 0.8659
0.6 1 1 0.9980 0.9974 0.9559 0.9559 0.9120 0.9121
0.65 1 1 0.9990 0.9991 0.9790 0.9783 0.9460 0.9464
0.7 1 1 1 0.9994 0.9920 0.9923 0.9660 0.9663
0.75 1 1 1 1 0.9970 0.9973 0.9840 0.9834
0.8 1 1 1 1 0.9990 0.9985 0.9960 0.9954
0.85 1 1 1 1 1 0.9998 0.9980 0.9982
0.9 1 1 1 1 1 1 1 0.9998
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Table 4.8: Coverage probabilities of 95% confidence regions of dependent Bootstrap

samples k£ = 500

Probability\Sucess trial m=100 m=250 m=>500 m=750

p Median Mean Median Mean Median Mean Median Mean
0.05 0.571 0.571 0.3920 0.3922 0.2850 0.2847 0.2350 0.2346
0.1 0.7530 0.7536 0.5610 0.5607 0.4080 0.4075 0.3475 0.3472
0.15 0.8660 0.8661 0.6800 0.6804 0.5190 0.5188 0.4330 0.4337
0.2 0.9310 0.9312 0.7460 0.7463 0.6120 0.6123 0.5080 0.5084
0.25 0.9660 0.9658 0.8200 0.8198 0.6690 0.6684 0.5620 0.5623
0.3 0.9850 0.9847 0.8790 0.8794 0.7340 0.7336 0.640 0.640
0.35 0.9940 0.9939 0.9260 0.9263 0.7810 0.7811 0.7000 0.6992
0.4 0.9980 0.9983 0.9510 0.9509 0.8190 0.8185 0.750 0.750
0.45 0.999 0.999 0.969 0.969 0.8680 0.8675 0.7800 0.7798
0.5 1 0.9997 0.9850 0.9853 0.9140 0.9135 0.8250 0.8244
0.55 1 0.9999 0.9910 0.9912 0.9325 0.9322 0.8660 0.8658
0.6 1 1 0.9980 0.9976 0.956 0.956 0.9120 0.9121
0.65 1 1 0.9990 0.9991 0.9790 0.9785 0.9460 0.9464
0.7 1 1 1 0.9994 0.9920 0.9923 0.9660 0.9663
0.75 1 1 1 1 0.9970 0.9973 0.9830 0.9831
0.8 1 1 1 1 0.9990 0.9984 0.9960 0.9954
0.85 1 1 1 1 1 0.9998 0.9980 0.9982
0.9 1 1 1 1 1 1 1 0.9998

4.4 Coverage Probability of 90% Confidence Region

I also set tables (table 4.9 and 4.10) of 90% confidence region. Because there is
no strong evidence to show that the coverage probabilities are changed by dependent
bootstrap method with different value of k, I just select £ = 5,50 for table 4.10

and table 4.11. An independent bootstrap method of coverage Probability of 90%

45



confidence region is shown in table 4.9.

Table 4.9: Coverage probabilities of 90% confidence regions of independent

Bootstrap samples

Probability\Sucess trial m=100 m=250 m=>500 m="750

p Median Mean Median Mean Median Mean Median Mean
0.05 0.5190 0.5196 0.392 0.392 0.2840 0.2847 0.2340 0.2344
0.1 0.7020 0.7015 0.5045 0.5045 0.3620 0.3615 0.3070 0.3067
0.15 0.8190 0.8194 0.618 0.618 0.4650 0.4645 0.3850 0.3849
0.2 0.8960 0.8962 0.686 0.686 0.5520 0.5525 0.4540 0.4543
0.25 0.9420 0.9417 0.7620 0.7622 0.6060 0.6056 0.5030 0.5032
0.3 0.9690 0.9693 0.8290 0.8285 0.6710 0.6707 0.5785 0.5785
0.35 0.9850 0.9849 0.8860 0.8855 0.7190 0.7191 0.6370 0.6368
0.4 0.9940 0.9935 0.9160 0.9155 0.7580 0.7585 0.6870 0.6873
0.45 0.9970 0.9966 0.9430 0.9427 0.8160 0.8159 0.7180 0.7179
0.5 0.9990 0.9989 0.9680 0.9684 0.8700 0.8695 0.7660 0.7659
0.55 1 0.9996 0.9790 0.9792 0.8940 0.8936 0.8110 0.8110
0.6 1 1 0.9920 0.9917 0.9230 0.9228 0.8680 0.8672
0.65 1 1 0.9970 0.9964 0.9570 0.9566 0.9100 0.9101
0.7 1 1 0.9980 0.9982 0.9800 0.9803 0.9380 0.9382
0.75 1 1 1 0.9997 0.9910 0.9913 0.9640 0.9634
0.8 1 1 1 1 0.9960 0.9954 0.9870 0.9866
0.85 1 1 1 1 0.9990 0.9993 0.9950 0.9945
0.9 1 1 1 1 1 1 1 0.9994
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Table 4.10: Coverage probabilities of 90% confidence regions of dependent

Bootstrap samples £k = 5

Probability\Sucess trial m=100 m=250 m=>500 m=750

p Median Mean Median Mean Median Mean Median Mean
0.05 0.5190 0.5194 0.3490 0.3489 0.2510 0.2514 0.2070 0.2069
0.1 0.7010 0.7012 0.5040 0.5044 0.3620 0.3619 0.3070 0.3073
0.15 0.8190 0.8192 0.6180 0.6176 0.4640 0.4641 0.3850 0.3848
0.2 0.8960 0.8959 0.6860 0.6862 0.5530 0.5532 0.4540 0.4539
0.25 0.9420 0.9415 0.7630 0.7624 0.6060 0.6053 0.5040 0.5042
0.3 0.9700 0.9694 0.8280 0.8278 0.6700 0.6711 0.5780 0.5781
0.35 0.9850 0.9851 0.8850 0.8855 0.7200 0.7197 0.6360 0.6357
0.4 0.9940 0.9936 0.9150 0.9153 0.7590 0.7586 0.6870 0.6873
0.45 0.9970 0.9966 0.9430 0.9427 0.8170 0.8165 0.7180 0.7179
0.5 0.9990 0.9989 0.9680 0.9683 0.8700 0.8699 0.7660 0.7658
0.55 1 0.9996 0.9790 0.9792 0.894 0.894 0.8110 0.8109
0.6 1 1 0.9920 0.9916 0.9230 0.9229 0.8670 0.8673
0.65 1 1 0.9970 0.9964 0.9570 0.9564 0.9090 0.9094
0.7 1 1 0.9980 0.9982 0.9800 0.9803 0.9380 0.9384
0.75 1 1 1 0.9997 0.9910 0.9913 0.9640 0.9635
0.8 1 1 1 1 0.9960 0.9955 0.9870 0.9866
0.85 1 1 1 1 0.9990 0.9993 0.9950 0.9944
0.9 1 1 1 1 1 1 1 0.9994
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Table 4.11: Coverage probabilities of 90% confidence regions of dependent

Bootstrap samples k£ = 50

Probability\Sucess trial m=100 m=250 m=>500 m=750

p Median Mean Median Mean Median Mean Median Mean
0.05 0.5190 0.5193 0.3480 0.3487 0.2510 0.2513 0.2070 0.2069
0.1 0.7010 0.7008 0.5040 0.5040 0.362 0.362 0.3070 0.3069
0.15 0.8190 0.8191 0.6170 0.6177 0.4640 0.4637 0.3840 0.3845
0.2 0.8960 0.8958 0.6860 0.6857 0.5540 0.5537 0.4540 0.4539
0.25 0.9410 0.9414 0.762 0.762 0.6060 0.6059 0.5040 0.5046
0.3 0.9690 0.9694 0.8280 0.8276 0.6710 0.6708 0.5780 0.5785
0.35 0.9850 0.9851 0.8850 0.8851 0.7190 0.7192 0.6360 0.6365
0.4 0.9940 0.9936 0.9150 0.9152 0.7590 0.7589 0.6880 0.6876
0.45 0.9970 0.9966 0.9430 0.9426 0.8160 0.8162 0.7170 0.7177
0.5 0.9990 0.9989 0.9680 0.9682 0.8690 0.8695 0.7660 0.7661
0.55 1 0.9996 0.979 0.979 0.8940 0.8936 0.8110 0.8111
0.6 1 1 0.9920 0.9916 0.9230 0.9231 0.8670 0.8674
0.65 1 1 0.9970 0.9964 0.9570 0.9564 0.9100 0.9099
0.7 1 1 0.9980 0.9982 0.9810 0.9803 0.9380 0.9382
0.75 1 1 1 0.9997 0.9910 0.9912 0.9640 0.9635
0.8 1 1 1 1 0.9960 0.9955 0.9870 0.9867
0.85 1 1 1 1 0.9990 0.9993 0.9950 0.9945
0.9 1 1 1 1 1 1 1 0.9994

From the table 4.9, we can see that for independent bootstrap method, when
m = 100, probability p = [0.2,0.25] have the best outcome of § ~ (1 — «). Similarly,
that m = 250,p = [0.35,0.4]; m = 500,p = [0.55,0.6]; m = 750,p = [0.6,0.65].
From table 4.10 and 4.11, the similar results can be applied for dependent bootstrap
method with different value of k, since different values of k slightly change coverage

probabilities.
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4.5 Areas of Confidence Region

The areas of confidence regions of Bin(p = 0.4, m = 250) are different by inde-
pendent bootstrap and dependent bootstrap with £ = 5,50. The area of independent
bootstrap method confidence region is A = 0.01224842. The area for dependent boot-
strap method k£ = 5 confidence region is A = 0.009778989. The area for dependent
bootstrap method k& = 50 confidence region is A =0.01155577. The Figure 4.1 shows
the areas of confidence regions of three methods. We can conclude that the indepen-
dent bootstrap confidence region has the largest area than the dependent bootstrap
confidence regions. Moreover, as k increases, the area of dependent bootstrap confi-

dence regions are closer to the independent bootstrap confidence region.

49



Figure 4.1: The Areas 95% Confidence regions of Bin(p = 0.4, m = 250) for

independent bootstrap and dependent bootstrap with £ = 5,50
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For the same bootstrap method, the value of population parameter p and m can
influence the areas of confidence regions. The figure 4.2 shows independent bootstrap
confidence regions of fixed m and p = {0.4,0.6,0.8}. The area of confidence region
of Bin(p = 0.4,m = 500) is A = 0.04209973. The area of confidence region of
Bin(p = 0.6, m = 500) is A = 0.009022365. The area of confidence region of Bin(p =
0.8, m = 500) is A = 0.001286966. Therefore, as p increases, and m is fixed, the area

of independent bootstrap confidence region is decreasing.

o1



Figure 4.2: The Areas 95% Confidence regions of Bin(p = {0.4,0.6,0.8}, m = 500)

for independent bootstrap method
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The figure 4.3 shows that independent bootstrap confidence regions of fixed p =
0.6 and m = {100,250,500}. The area of confidence region of Bin(p = 0.6,m =
100) is A = 0.001112208. The area of confidence region of Bin(p = 0.6,m = 250)
is A = 0.003049787. The area of confidence region of Bin(p = 0.6,m = 500) is

A = 0.009022365. Therefore, as m increases, and p is fixed, the area of independent

bootstrap confidence region is increasing.

23



Figure 4.3: The Areas 95% Confidence regions of Bin(p = 0.6, m = {100, 250, 500})

for independent bootstrap method
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The figure 4.4 shows dependent bootstrap with k¥ = 5 confidence regions of fixed
m = 250 and p = {0.4,0.6,0.8}. The area of confidence region of Bin(p = 0.4,m =
250) is A = 0.009778989. The area of confidence region of Bin(p = 0.6,m = 250)
is A = 0.002416341. The area of confidence region of Bin(p = 0.8,m = 250) is

A = 0.0004680606. Therefore, as p increases, and m is fixed, the area of dependent

bootstrap confidence region is decreasing.
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Figure 4.4: The Areas 95% Confidence regions of Bin(p = 0.6, m = {100, 250, 500})

for dependent bootstrap method
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The figure 4.5 shows that dependent bootstrap with £ = 5 confidence regions of
fixed p = 0.6 and m = {250,500, 750}. The area of confidence region of Bin(p =
0.6, m = 250) is A = 0.002416341. The area of confidence region of Bin(p = 0.6,m =
500) is A = 0.007431883. The area of confidence region of Bin(p = 0.6,m = 750)
is A = 0.0135053. Therefore, as m increases, and p is fixed, the area of dependent

bootstrap confidence region is increasing.
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Figure 4.5: The Areas 95% Confidence regions of Bin(p = 0.6, m = {100, 250, 500})

for dependent bootstrap method
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this section, the results from chapter 4 will be concluded. Firstly, this re-
search is designed to recognize the performance of bootstrap method. After gen-
erating the original samples of Bin(p,m), I calculate the coverage probabilities of
confidence regions without resampling. The coverage probabilities of original sample
confidence regions is smaller than the coverage probabilities of bootstrap confidence
regions. For example, the mean of coverage probabilities of 95% confidence regions
Bin(p = 0.5,m = 500) is 0.786, but mean of coverage probabilities of independent
bootstrap 95% confidence regions Bin(p = 0.5,m = 500) is 0.9137. Similarly, the
mean of coverage probabilities of dependent bootstrap(k = 5) 95% confidence regions

Bin(p = 0.5,m = 500) is 0.9138. Thus, the bootstrap re-sampling method increases
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the coverage probability d. In other words, the bootstrap re-sampling method posi-
tively influences the coverage probability of confidence region.

Next, the difference between independent and dependent bootstrap is not evident.
For the fixed value of parameters p and m, independent and dependent bootstrap
confidence regions have cognate coverage probabilities. Furthermore, different k of
dependent bootstrap confidence regions have closer coverage probabilities.

The areas of independent and dependent bootstrap confidence regions are slightly
different. For the same value of parameters p and m, the area of independent boot-
strap confidence region is larger than dependent bootstrap confidence region. How-

ever, Both independent and dependent bootstrap confidence region follow:

1. as p increases, and m is fixed, the area of dependent bootstrap confidence region

is decreasing.
2. as m increases, and p is fixed, the area of independent bootstrap confidence

region is increasing.

5.2 Future Work

1. In this research, the confidence region of binomial distribution was investigated.
Other distributions have two or more dimensions will be my next goal, such as weibull

distribution (2-dimension) or generalized gamma distribution (3-dimension).
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2. In chapter 4, the results are based on simulated outcomes. I will find some real
data follows binomial distribution, and test whether these conform the conclusion of
this research.

3. Different methods of estimating the parameters compare with method of mo-
ment to show which method gives the better estimators, in other words, the estimators

obtain lower mean square error.
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Appendix R code

# install packages
library(survival)
library(Matrix)
library(MatrixModels)
library(matrixStats)
library(ellipse)
library(car)
library(jocre)

rm(list=1s())

#Independent Bootstrap 957, confidence region of Bin(0.55,500)
#generating 1000 Bin samples
set.seed(2)

times=1000
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x=matrix(nrow=times, ncol=1000)
for (i in 1:times){

x[1i,]=rbinom(n=1000,500,0.55)

#Method of moment of estimators P and M

m=rowMeans (x)

v=rowVars (x)

p_hat=(m-v)/m

m_hat=(m"~2)/(m-v)

#coverage probability of confidence region without bootstrapping
p=.55;m=500;a=2*(1-p) *(m-1)

E=c(m,-p,-p, ((p~2) *(p+a))/(m*a))

inv_E=1/(p*(1-p))*matrix(E,nrow = 2)
chi=(1/(p*(1-p)))*((m* (p_hat-p) "2) - (2*p* (m_hat-m) * (p_hat-p) ) +(((p~2) *(p+a)) / (m*a) )

count (chi<=qchisq(.95,df=2))

#B=2000 independent bootstrap samples
nboot=2000;n=times

#data=data.frame(p_hat,m_hat)
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tmpdata = sample(p_hat,n*nboot, replace=TRUE)

pbs= matrix(tmpdata, nrow=nboot, ncol=n)

tmpdata = sample(m_hat,n*nboot, replace=TRUE)

mbs= matrix(tmpdata, nrow=nboot, ncol=n)

#coverage probability of confidence region with independent bootstrapping
chi=(1/(p*(1-p)))* ((m* (pbs-p) "2) - (2*p* (mbs-m) * (pbs-p) )+ (((p~2) *(p+a) ) / (m*a) ) * (mbs-
mt=(rowCounts (chi<=qchisq(.95,df=2)))/n

summary (mt)

plot (mt)

bmm=rowMeans (pbs) ; bpm=rowMeans (mbs)

df=data.frame (bmm, bpm)

plot(df)

with(df, dataEllipse(bmm, bpm, level = 0.95, add = TRUE))
abline (1m(bpm~bmm) )

cset(df, method="boot.kern",alpha = 0.05)

plot(cset(df, method="boot.kern",alpha = 0.05))
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plot(df)
with(df, dataEllipse(bmm, bpm, level = 0.95, add = TRUE))

abline (1m(bpm~bmm) )

#area of mean of confidence region
require(car)

dataEllipse(df$bmm, df$bpm, levels=0.5)

me = apply(df, 2, mean)

v =var(df)

rad = sqrt(2*qf(0.95, 2, nrow(df)-1))

z = ellipse(me, v, rad, segments=1001)
dist2center = sqrt(rowSums((t(t(z)-me))"~2))
area=pi*min(dist2center)*max(dist2center)

area

#Independent Bootstrap 95% confidence region of Bin(0.6,250)
#generating 1000 Bin samples

set.seed(2)
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times=1000
x=matrix(nrow=times, ncol=1000)
for (i in 1:times){

x[i,]=rbinom(n=1000,250,0.6)

#Method of moment of estimators P and M

m=rowMeans (x)

v=rowVars (x)

p_hat=(m-v)/m

m_hat=(m"2)/ (m-v)

#coverage probability of confidence region without bootstrapping
p=.6;m=250;a=2*(1-p)*(m-1)

E=c(m,-p,-p, ((p~2)*(p+a))/(m*a))

inv_E=1/(p*(1-p))*matrix(E,nrow = 2)

chi=(1/(p*(1-p)))* ((m* (p_hat-p) “2) - (2*p* (m_hat-m) * (p_hat-p) ) +(((p~2) *(p+a) )/ (m*a))

count (chi<=qchisq(.95,df=2))

#B=2000 independent bootstrap samples

nboot=2000;n=times
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#data=data.frame(p_hat,m_hat)

tmpdata = sample(p_hat,n*nboot, replace=TRUE)

pbs= matrix(tmpdata, nrow=nboot, ncol=n)

tmpdata = sample(m_hat,n*nboot, replace=TRUE)

mbs= matrix(tmpdata, nrow=nboot, ncol=n)

#coverage probability of confidence region with independent bootstrapping
chi=(1/(px(1-p)) ) * ((m* (pbs-p) “2) - (2*p* (mbs-m) * (pbs-p) ) +(((p~2) * (p+a) ) / (m*a) ) * (mbs-
mt=(rowCounts (chi<=qchisq(.95,df=2)))/n

summary (mt)

plot (mt)

bmm=rowMeans (pbs) ; bpm=rowMeans (mbs)

df=data.frame (bmm, bpm)

plot(df)
with(df, dataEllipse(bmm, bpm, level = 0.95, add = TRUE))
abline (1m(bpm~bmm) )

cset(df, method="boot.kern",alpha = 0.05)
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plot(cset(df, method="boot.kern",alpha = 0.05))
plot(df)
with(df, dataEllipse(bmm, bpm, level = 0.95, add = TRUE))

abline (1m(bpm~bmm))

#area of mean of confidence region
require(car)

dataEllipse(df$bmm, df$bpm, levels=0.5)

me = apply(df, 2, mean)

v =var(df)

rad = sqrt(2xqf(0.95, 2, nrow(df)-1))

z = ellipse(me, v, rad, segments=1001)
dist2center = sqrt(rowSums((t(t(z)-me))"~2))
area=pi*min(dist2center)*max(dist2center)

area

#Independent Bootstrap 95% confidence region of Bin(0.6,100)

#generating 1000 Bin samples
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set.seed(2)

times=1000

x=matrix(nrow=times, ncol=1000)
for (i in 1:times){

x[i,]=rbinom(n=1000,100,0.6)

#Method of moment of estimators P and M

m=rowMeans (x)

v=rowVars (x)

p_hat=(m-v)/m

m_hat=(m"~2)/(m-v)

#coverage probability of confidence region without bootstrapping
p=.6;m=100;a=2*(1-p) *(m-1)

E

c(m,-p,-p, ((p~2)*(p+a))/(m*a))
inv_E=1/(p*(1-p))*matrix (E,nrow = 2)
chi=(1/(p*(1-p)))*((m* (p_hat-p) ~2) - (2+px (m_hat-m) * (p_hat-p) ) +(((p~2) * (p+a)) / (m*a))

count (chi<=qchisq(.95,df=2))

#B=2000 independent bootstrap samples
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nboot=2000;n=times

#data=data.frame(p_hat,m_hat)

tmpdata = sample(p_hat,n*nboot, replace=TRUE)

pbs= matrix(tmpdata, nrow=nboot, ncol=n)

tmpdata = sample(m_hat,n*nboot, replace=TRUE)

mbs= matrix(tmpdata, nrow=nboot, ncol=n)

#coverage probability of confidence region with independent bootstrapping
chi=(1/(p*(1-p)))*((m* (pbs-p) “2) - (2*p* (mbs-m) * (pbs-p) ) +(((p~2) *(p+a) )/ (m*a) ) * (mbs-
mt=(rowCounts (chi<=qchisq(.95,df=2)))/n

summary (mt)

plot (mt)

bmm=rowMeans (pbs) ; bpm=rowMeans (mbs)

df=data.frame (bmm, bpm)

plot(df)
with(df, dataEllipse(bmm, bpm, level = 0.95, add = TRUE))

abline (1m(bpm~bmm))

73



cset(df, method="boot.kern",alpha = 0.05)

plot(cset(df, method="boot.kern",alpha = 0.05))

plot (df)

with(df, dataEllipse(bmm, bpm, level = 0.95, add = TRUE))

abline (1m(bpm~bmm) )

#area of mean of confidence region
require(car)

dataEllipse(df$bmm, df$bpm, levels=0.5)

me = apply(df, 2, mean)

v =var (df)

rad = sqrt(2*qf(0.95, 2, nrow(df)-1))

z = ellipse(me, v, rad, segments=1001)
dist2center = sqrt(rowSums((t(t(z)-me))"2))
area=pi*min(dist2center)*max(dist2center)

area

#Independent Bootstrap 95 confidence region of Bin(0.4,250)
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#generating 1000 Bin samples
set.seed(2)

times=1000

x=matrix(nrow=times, ncol=1000)
for (i in 1:times){

x[1i,]=rbinom(n=1000,250,0.4)

#Method of moment of estimators P and M

m=rowMeans (x)

v=rowVars (x)

p_hat=(m-v)/m

m_hat=(m"2)/ (m-v)

#coverage probability of confidence region without bootstrapping
p=.4;m=250;a=2*(1-p) *(m-1)

E=c(m,-p,-p, ((p~2) *(p+a))/(m*a))

inv_E=1/(p*(1-p))*matrix(E,nrow = 2)

chi=(1/(p*x(1-p)))* ((m*(p_hat-p) "2) - (2*p* (m_hat-m) * (p_hat-p) ) +(((p~2) *(p+a) )/ (m*a))

count (chi<=qchisq(.95,df=2))
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#B=2000 independent bootstrap samples

nboot=2000;n=times

#data=data.frame(p_hat,m_hat)

tmpdata = sample(p_hat,n*nboot, replace=TRUE)

pbs= matrix(tmpdata, nrow=nboot, ncol=n)

tmpdata = sample(m_hat,n*nboot, replace=TRUE)

mbs= matrix(tmpdata, nrow=nboot, ncol=n)

#coverage probability of confidence region with independent bootstrapping
chi=(1/(p*x(1-p)) ) *((m* (pbs-p) “2) - (2*p* (mbs-m) * (pbs-p) )+ (((p~2) * (p+a) ) / (m*a) ) * (mbs-
mt=(rowCounts (chi<=qchisq(.95,df=2)))/n

summary (mt)

plot (mt)

bmm=rowMeans (pbs) ; bpm=rowMeans (mbs)

df=data.frame (bmm, bpm)

plot(df)

with(df, dataEllipse(bmm, bpm, level = 0.95, add = TRUE))
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abline (1m(bpm~bmm))

cset(df, method="boot.kern",alpha = 0.05)

plot(cset(df, method="boot.kern",alpha = 0.05))

plot(df)

with(df, dataEllipse(bmm, bpm, level = 0.95, add = TRUE))

abline (1m(bpm~bmm) )

#area of mean of confidence region
require(car)

dataEllipse(df$bmm, df$bpm, levels=0.5)

me = apply(df, 2, mean)

v =var(df)

rad = sqrt(2+qf(0.95, 2, nrow(df)-1))

z = ellipse(me, v, rad, segments=1001)
dist2center = sqrt(rowSums((t(t(z)-me))~2))
area=pi*min(dist2center)*max(dist2center)

area
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#Independent Bootstrap 95% confidence region of Bin(0.4,100)
#generating 1000 Bin samples

set.seed(2)

times=1000

x=matrix(nrow=times, ncol=1000)

for (i in 1:times){

x[i,]=rbinom(n=1000,100,0.4)

#Method of moment of estimators P and M

m=rowMeans (x)

v=rowVars (x)

p_hat=(m-v)/m

m_hat=(m"~2)/(m-v)

#coverage probability of confidence region without bootstrapping
p=.4;m=100;a=2*(1-p) *(m-1)

E=c(m,-p,-p, ((p~2)*(p+a))/(m*a))

inv_E=1/(p*(1-p))*matrix (E,nrow = 2)

chi=(1/(p*x(1-p)))*((m* (p_hat-p) “2) - (2*p* (m_hat-m)* (p_hat-p) ) +(((p~2) *(p+a))/(m*a))

count (chi<=qchisq(.95,df=2))
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#B=2000 independent bootstrap samples

nboot=2000;n=times

#data=data.frame(p_hat,m_hat)

tmpdata = sample(p_hat,n*nboot, replace=TRUE)

pbs= matrix(tmpdata, nrow=nboot, ncol=n)

tmpdata = sample(m_hat,n*nboot, replace=TRUE)

mbs= matrix(tmpdata, nrow=nboot, ncol=n)

#coverage probability of confidence region with independent bootstrapping
chi=(1/(px(1-p)))* ((m* (pbs-p) "2) - (2*p* (mbs-m) * (pbs-p) ) +(((p~2) * (p+a) ) / (m*a) ) * (mbs-
mt=(rowCounts (chi<=qchisq(.95,df=2)))/n

summary (mt)

plot (mt)

bmm=rowMeans (pbs) ; bpm=rowMeans (mbs)

df=data.frame (bmm, bpm)

plot(df)
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with(df, dataEllipse(bmm, bpm, level = 0.95, add = TRUE))
abline (1m(bpm~bmm) )

cset(df, method="boot.kern",alpha = 0.05)

plot(cset(df, method="boot.kern",alpha = 0.05))

plot(df)

with(df, dataEllipse(bmm, bpm, level = 0.95, add = TRUE))

abline (1m(bpm~bmm) )

#area of mean of confidence region
require(car)

dataEllipse(df$bmm, df$bpm, levels=0.5)

me = apply(df, 2, mean)

v =var(df)

rad = sqrt(2*qf(0.95, 2, nrow(df)-1))

z = ellipse(me, v, rad, segments=1001)
dist2center = sqrt(rowSums((t(t(z)-me))"~2))
area=pi*min(dist2center)*max(dist2center)

area
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#Dependent Bootstrap with k=500 95} confidence region of Bin(0.5,500)
rm(list=1s())

set.seed(2)

times=1000

x=matrix(nrow=times, ncol=1000)

for (i in 1:times){

x[i,]=rbinom(n=1000,500,0.5)

m=rowMeans (x)
v=rowVars (x)
p_hat=(m-v)/m
m_hat=(m"~2)/(m-v)
k=500
nboot=2000;n=times
ordp=c (rep(p_hat,k))
ordm=c (rep(m_hat,k))

#tpdata = sample(ordp,n, replace=FALSE)
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samp <- matrix(NA, ncol = 1000, nrow = 2000)
for(i in 1:2000){

samp[i,] <- sample(ordp, size = n, replace = F)

#tmdata = sample(ordm,n, replace=FALSE)
samm <- matrix(NA, ncol = 1000, nrow = 2000)
for(i in 1:2000){

samm[i,] <- sample(ordm, size = n, replace = F)

p=.5;m=500;a=2*(1-p) *(m-1)

chi=(1/(p*x(1-p)) ) * ((m* (samp-p) "2) - (2*p* (samm-m) * (samp-p) )+ (((p~2) * (p+a) ) / (m*a) ) * (s
mt=(rowCounts (chi<=qchisq(.9,df=2)))/n

summary (mt)

dbpm=rowMeans (samp)

dbmm=rowMeans (samm)
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df=data.frame (dbmm,dbpm)
cset(df, method="boot.kern",alpha = 0.05)

plot(cset(df, method="boot.kern",alpha = 0.05))

plot(df)

with(df, dataEllipse(dbmm, dbpm, level = 0.95, add = TRUE))
abline (1m(dbpm~dbmm) )

require(car)

dataEllipse(df$dbmm, df$dbpm, levels=0.5)

me = apply(df, 2, mean)

v =var(df)

rad = sqrt(2xqf(0.95, 2, nrow(df)-1))

z = ellipse(me, v, rad, segments=1001)
dist2center = sqrt(rowSums((t(t(z)-me))"~2))
area=pi*min(dist2center)*max(dist2center)

area

#Dependent Bootstrap with k=250 95% confidence region of Bin(0.5,500)

rm(1list=1s())
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set.seed(2)

times=1000

x=matrix(nrow=times, ncol=1000)
for (i in 1:times){

x[i,]=rbinom(n=1000,500,0.5)

m=rowMeans (x)
v=rowVars (x)
p_hat=(m-v)/m
m_hat=(m"~2)/(m-v)
k=250
nboot=2000;n=times
ordp=c (rep(p_hat,k))
ordm=c (rep(m_hat,k))

#tpdata = sample(ordp,n, replace=FALSE)

samp <- matrix(NA, ncol = 1000, nrow = 2000)
for(i in 1:2000){

samp[i,] <- sample(ordp, size = n, replace = F)
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#tmdata = sample(ordm,n, replace=FALSE)
samm <- matrix(NA, ncol = 1000, nrow = 2000)
for(i in 1:2000){

samm[i,] <- sample(ordm, size = n, replace = F)

p=.5;m=500;a=2*(1-p) *(m-1)

chi=(1/(p*(1-p)) ) * ((m* (samp-p) "2) - (2*p* (samm-m) * (samp-p) )+ (((p~2) * (p+a) ) / (m*a) ) * (s
mt=(rowCounts(chi<=qchisq(.9,df=2)))/n

summary (mt)

dbpm=rowMeans (samp)

dbmm=rowMeans (samm)

df=data.frame (dbmm,dbpm)

cset(df, method="boot.kern",alpha = 0.05)

plot(cset(df, method="boot.kern",alpha = 0.05))
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plot(df)

with(df, dataEllipse(dbmm, dbpm, level = 0.95, add = TRUE))
abline (1m(dbpm~dbmm) )

require(car)

dataEllipse(df$dbmm, df$dbpm, levels=0.5)

me = apply(df, 2, mean)

v =var(df)

rad = sqrt(2+qf(0.95, 2, nrow(df)-1))

z = ellipse(me, v, rad, segments=1001)
dist2center = sqrt(rowSums((t(t(z)-me))"~2))
area=pi*min(dist2center)*max(dist2center)

area

#Dependent Bootstrap with k=100 95% confidence region of Bin(0.5,500)
rm(list=1s())

set.seed(2)

times=1000

x=matrix(nrow=times, ncol=1000)
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for (i in 1:times){

x[i,]=rbinom(n=1000,500,0.5)

m=rowMeans (x)
v=rowVars (x)
p_hat=(m-v)/m
m_hat=(m"2)/(m-v)
k=500
nboot=2000;n=times
ordp=c (rep(p_hat,k))
ordm=c (rep(m_hat,k))

#tpdata = sample(ordp,n, replace=FALSE)

samp <- matrix(NA, ncol = 1000, nrow = 2000)
for(i in 1:2000){

samp[i,] <- sample(ordp, size = n, replace = F)

#tmdata = sample(ordm,n, replace=FALSE)

samm <- matrix(NA, ncol = 1000, nrow = 2000)
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for(i in 1:2000){

samm[i,] <- sample(ordm, size = n, replace = F)

p=.5;m=500;a=2*%(1-p)*(m-1)

chi=(1/(px(1-p)))* ((m* (samp-p) ~2) - (2*p* (samm-m) * (samp-p) )+ (((p~2) * (p+a) ) / (m*a) ) * (s
mt=(rowCounts(chi<=qchisq(.9,df=2)))/n

summary (mt)

dbpm=rowMeans (samp)
dbmm=rowMeans (samm)
df=data.frame (dbmm,dbpm)

cset (df, method="boot.kern",alpha = 0.05)

plot(cset(df, method="boot.kern",alpha = 0.05))
plot(df)

0.95, add = TRUE))

with(df, dataEllipse(dbmm, dbpm, level

abline (1m(dbpm~dbmm) )
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require(car)

dataEllipse(df$dbmm, df$dbpm, levels=0.5)

me = apply(df, 2, mean)

v =var(df)

rad = sqrt(2+qf(0.95, 2, nrow(df)-1))

z = ellipse(me, v, rad, segments=1001)
dist2center = sqrt(rowSums((t(t(z)-me))"~2))
area=pi*min(dist2center)*max(dist2center)

area

#Dependent Bootstrap with k=50 95}, confidence region of Bin(0.5,500)
rm(list=1s())

set.seed(2)

times=1000

x=matrix(nrow=times, ncol=1000)

for (i in 1:times){

x[1i,]=rbinom(n=1000,500,0.5)
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m=rowMeans (x)
v=rowVars (x)
p_hat=(m-v)/m
m_hat=(m"~2)/(m-v)
k=50
nboot=2000;n=times
ordp=c(rep(p_hat,k))
ordm=c (rep(m_hat,k))

#tpdata = sample(ordp,n, replace=FALSE)

samp <- matrix(NA, ncol = 1000, nrow = 2000)
for(i in 1:2000){

samp[i,] <- sample(ordp, size = n, replace = F)

#tmdata = sample(ordm,n, replace=FALSE)
samm <- matrix(NA, ncol = 1000, nrow = 2000)
for(i in 1:2000){

samm[i,] <- sample(ordm, size = n, replace = F)
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p=.5;m=500;a=2*(1-p) *(m-1)

chi=(1/(px(1-p)))* ((m* (samp-p) ~2) - (2*p* (samm-m) * (samp-p) )+ (((p~2) *(p+a) ) / (m*a) ) * (s
mt=(rowCounts(chi<=qchisq(.9,df=2)))/n

summary (mt)

dbpm=rowMeans (samp)
dbmm=rowMeans (samm)
df=data.frame (dbmm,dbpm)

cset(df, method="boot.kern",alpha = 0.05)

plot(cset(df, method="boot.kern",alpha = 0.05))

plot(df)

with(df, dataEllipse(dbmm, dbpm, level 0.95, add = TRUE))
abline (1m(dbpm~dbmm) )

require(car)

dataEllipse(df$dbmm, df$dbpm, levels=0.5)
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me = apply(df, 2, mean)

v =var(df)

rad = sqrt(2*qf(0.95, 2, nrow(df)-1))

z = ellipse(me, v, rad, segments=1001)
dist2center = sqrt(rowSums((t(t(z)-me))"~2))
area=pi*min(dist2center)*max(dist2center)

area

#Dependent Bootstrap with k=25 95% confidence region of Bin(0.5,500)
rm(1list=1s())

set.seed(2)

times=1000

x=matrix(nrow=times, ncol=1000)

for (i in 1:times){

x[i,]=rbinom(n=1000,500,0.5)

m=rowMeans (x)

v=rowVars (x)
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p_hat=(m-v)/m
m_hat=(m"~2)/(m-v)
k=25
nboot=2000;n=times
ordp=c(rep(p_hat,k))
ordm=c (rep(m_hat,k))

#tpdata = sample(ordp,n, replace=FALSE)

samp <- matrix(NA, ncol = 1000, nrow = 2000)
for(i in 1:2000){

samp[i,] <- sample(ordp, size = n, replace = F)

#tmdata = sample(ordm,n, replace=FALSE)
samm <- matrix(NA, ncol = 1000, nrow = 2000)
for(i in 1:2000){

samm[i,] <- sample(ordm, size = n, replace = F)

p=.5;m=500;a=2%(1-p) *(m-1)
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chi=(1/(px(1-p)) ) * ((m* (samp-p) "2) - (2*p* (samm-m) * (samp-p) )+ (((p~2) * (p+a) ) / (m*a) ) * (s
mt=(rowCounts (chi<=qchisq(.9,df=2)))/n

summary (mt)

dbpm=rowMeans (samp)

dbmm=rowMeans (samm)

df=data.frame (dbmm,dbpm)

cset(df, method="boot.kern",alpha = 0.05)

0.05))

plot(cset(df, method="boot.kern",alpha

plot(df)

with(df, dataEllipse(dbmm, dbpm, level = 0.95, add = TRUE))
abline (1m(dbpm~dbmm) )

require(car)

dataEllipse(df$dbmm, df$dbpm, levels=0.5)

me = apply(df, 2, mean)

v =var (df)
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rad = sqrt(2*qf(0.95, 2, nrow(df)-1))

z = ellipse(me, v, rad, segments=1001)
dist2center = sqrt(rowSums((t(t(z)-me))"~2))
area=pi*min(dist2center)*max(dist2center)

area

#Dependent Bootstrap with k=10 95% confidence region of Bin(0.5,500)
rm(list=1s())

set.seed(2)

times=1000

x=matrix(nrow=times, ncol=1000)

for (i in 1:times){

x[i,]=rbinom(n=1000,500,0.5)

m=rowMeans (x)
v=rowVars (x)
p_hat=(m-v) /m
m_hat=(m"2)/ (m-v)

k=10
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nboot=2000;n=times
ordp=c (rep(p_hat,k))
ordm=c (rep(m_hat,k))

#tpdata = sample(ordp,n, replace=FALSE)

samp <- matrix(NA, ncol = 1000, nrow = 2000)
for(i in 1:2000){

samp[i,] <- sample(ordp, size = n, replace = F)

#tmdata = sample(ordm,n, replace=FALSE)
samm <- matrix(NA, ncol = 1000, nrow = 2000)
for(i in 1:2000){

samm[i,] <- sample(ordm, size = n, replace = F)

p=.5;m=500;a=2*(1-p) *(m-1)

chi=(1/(p*(1-p)) ) * ((m* (samp-p) "2) - (2*p* (samm-m) * (samp-p) )+ (((p~2) * (p+a) ) / (m*a) ) * (s

mt=(rowCounts (chi<=qchisq(.9,df=2)))/n
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summary (mt)

dbpm=rowMeans (samp)
dbmm=rowMeans (samm)
df=data.frame (dbmm,dbpm)

cset(df, method="boot.kern",alpha = 0.05)

plot(cset(df, method="boot.kern",alpha 0.05))
plot(df)

with(df, dataEllipse(dbmm, dbpm, level

0.95, add = TRUE))
abline (1m(dbpm~dbmm) )
require(car)

dataEllipse(df$dbmm, df$dbpm, levels=0.5)

me = apply(df, 2, mean)

v =var(df)

rad = sqrt(2*qf(0.95, 2, nrow(df)-1))
z = ellipse(me, v, rad, segments=1001)

dist2center = sqrt(rowSums((t(t(z)-me))"~2))

97



area=pi*min(dist2center)*max(dist2center)

area

#Dependent Bootstrap with k=5 95) confidence region of Bin(0.5,500)
rm(list=1s())

set.seed(2)

times=1000

x=matrix(nrow=times, ncol=1000)

for (i in 1:times){

x[i,]=rbinom(n=1000,500,0.5)

m=rowMeans (x)
v=rowVars (x)
p_hat=(m-v)/m
m_hat=(m"~2)/(m-v)
k=5
nboot=2000;n=times
ordp=c(rep(p_hat,k))

ordm=c (rep(m_hat,k))
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#tpdata = sample(ordp,n, replace=FALSE)

samp <- matrix(NA, ncol = 1000, nrow = 2000)
for(i in 1:2000){

samp[i,] <- sample(ordp, size = n, replace = F)

#tmdata = sample(ordm,n, replace=FALSE)
samm <- matrix(NA, ncol = 1000, nrow = 2000)
for(i in 1:2000){

samm[i,] <- sample(ordm, size = n, replace = F)

p=.5;m=500;a=2*(1-p) *(m-1)

chi=(1/(px(1-p)))* ((m* (samp-p) ~2) - (2*p* (samm-m) * (samp-p) )+ (((p~2) *(p+a) ) / (m*a) ) * (s

mt=(rowCounts(chi<=qchisq(.9,df=2)))/n

summary (mt)
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dbpm=rowMeans (samp)
dbmm=rowMeans (samm)
df=data.frame (dbmm,dbpm)

cset(df, method="boot.kern",alpha = 0.05)

plot(cset(df, method="boot.kern",alpha = 0.05))

plot(df)

with(df, dataEllipse(dbmm, dbpm, level = 0.95, add = TRUE))
abline (1m(dbpm~dbmm) )

require(car)

dataEllipse(df$dbmm, df$dbpm, levels=0.5)

me = apply(df, 2, mean)

v =var(df)

rad = sqrt(2+qf(0.95, 2, nrow(df)-1))

z = ellipse(me, v, rad, segments=1001)
dist2center = sqrt(rowSums((t(t(z)-me))~2))
area=pi*min(dist2center)*max(dist2center)

area
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#Dependent Bootstrap with k=5 95) confidence region of Bin(0.6,500)
rm(list=1s())

set.seed(2)

times=1000

x=matrix(nrow=times, ncol=1000)

for (i in 1:times){

x[i,]=rbinom(n=1000,500,0.6)

m=rowMeans (x)
v=rowVars (x)
p_hat=(m-v)/m
m_hat=(m"2)/ (m-v)
k=5
nboot=2000;n=times
ordp=c(rep(p_hat,k))
ordm=c (rep(m_hat,k))

#tpdata = sample(ordp,n, replace=FALSE)

samp <- matrix(NA, ncol = 1000, nrow = 2000)
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for(i in 1:2000){

samp[i,] <- sample(ordp, size = n, replace = F)

#tmdata = sample(ordm,n, replace=FALSE)
samm <- matrix(NA, ncol = 1000, nrow = 2000)
for(i in 1:2000){

samm[i,] <- sample(ordm, size = n, replace = F)

p=.6;m=500;a=2*%(1-p)*(m-1)

chi=(1/(p*x(1-p)))* ((m* (samp-p) ~2) - (2*p* (samm-m) * (samp-p) )+ (((p~2) *(p+a) ) / (m*a) ) * (s
mt=(rowCounts(chi<=qchisq(.9,df=2)))/n

summary (mt)

dbpm=rowMeans (samp)
dbmm=rowMeans (samm)

df=data.frame (dbmm,dbpm)
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cset(df, method="boot.kern",alpha = 0.05)

plot(cset(df, method="boot.kern",alpha = 0.05))

plot (df)

with(df, dataEllipse(dbmm, dbpm, level = 0.95, add = TRUE))
abline (1m(dbpm~dbmm) )

require(car)

dataEllipse(df$dbmm, df$dbpm, levels=0.5)

me = apply(df, 2, mean)

v =var(df)

rad = sqrt(2*qf(0.95, 2, nrow(df)-1))

z = ellipse(me, v, rad, segments=1001)
dist2center = sqrt(rowSums((t(t(z)-me))"~2))
area=pi*min(dist2center)*max(dist2center)

area

#Dependent Bootstrap with k=5 95), confidence region of Bin(0.6,250)
rm(list=1s())

set.seed(2)
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times=1000
x=matrix(nrow=times, ncol=1000)
for (i in 1:times){

x[i,]=rbinom(n=1000,250,0.6)

m=rowMeans (x)
v=rowVars (x)
p_hat=(m-v)/m
m_hat=(m"~2)/(m-v)
k=b
nboot=2000;n=times
ordp=c(rep(p_hat,k))
ordm=c (rep(m_hat,k))

#tpdata = sample(ordp,n, replace=FALSE)

samp <- matrix(NA, ncol = 1000, nrow = 2000)

for(i in 1:2000){

samp[i,] <- sample(ordp, size = n, replace = F)
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#tmdata = sample(ordm,n, replace=FALSE)
samm <- matrix(NA, ncol = 1000, nrow = 2000)
for(i in 1:2000){

samm[i,] <- sample(ordm, size = n, replace = F)

p=.6;m=250;a=2*(1-p)*(m-1)

chi=(1/(px(1-p)) ) * ((m* (samp-p) "2) - (2*p* (samm-m) * (samp-p) )+ (((p~2) * (p+a) ) / (m*a) ) * (s
mt=(rowCounts(chi<=qchisq(.9,df=2)))/n

summary (mt)

dbpm=rowMeans (samp)

dbmm=rowMeans (samm)

df=data.frame (dbmm,dbpm)

cset(df, method="boot.kern",alpha = 0.05)
plot(cset(df, method="boot.kern",alpha = 0.05))

plot(df)
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with(df, dataEllipse(dbmm, dbpm, level = 0.95, add = TRUE))
abline (1m(dbpm~dbmm) )
require(car)

dataEllipse(df$dbmm, df$dbpm, levels=0.5)

me = apply(df, 2, mean)

v =var(df)

rad = sqrt(2*qf(0.95, 2, nrow(df)-1))

z = ellipse(me, v, rad, segments=1001)
dist2center = sqrt(rowSums((t(t(z)-me))"~2))
area=pi*min(dist2center)*max(dist2center)

area

#Dependent Bootstrap with k=5 95}, confidence region of Bin(0.6,100)
rm(list=1s())

set.seed(2)

times=1000

x=matrix(nrow=times, ncol=1000)

for (i in 1:times){
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x[i,]=rbinom(n=1000,100,0.6)

m=rowMeans (x)
v=rowVars (x)
p_hat=(m-v)/m
m_hat=(m"~2)/(m-v)
k=b
nboot=2000;n=times
ordp=c(rep(p_hat,k))
ordm=c (rep(m_hat,k))

#tpdata = sample(ordp,n, replace=FALSE)

samp <- matrix(NA, ncol = 1000, nrow = 2000)
for(i in 1:2000){

samp[i,] <- sample(ordp, size = n, replace = F)

#tmdata = sample(ordm,n, replace=FALSE)
samm <- matrix(NA, ncol = 1000, nrow = 2000)

for(i in 1:2000){
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samm[i,] <- sample(ordm, size = n, replace = F)

p=.6;m=100;a=2*%(1-p)*(m-1)

chi=(1/(px(1-p)) ) * ((m* (samp-p) "2) - (2*p* (samm-m) * (samp-p) )+ (((p~2) * (p+a) ) / (m*a) ) * (s
mt=(rowCounts (chi<=qchisq(.9,df=2)))/n

summary (mt)

dbpm=rowMeans (samp)
dbmm=rowMeans (samm)
df=data.frame (dbmm,dbpm)

cset(df, method="boot.kern",alpha = 0.05)

plot(cset(df, method="boot.kern",alpha = 0.05))

plot(df)

with(df, dataEllipse(dbmm, dbpm, level = 0.95, add = TRUE))
abline (1m(dbpm~dbmm) )

require(car)
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dataEllipse(df$dbmm, df$dbpm, levels=0.5)

me = apply(df, 2, mean)

v =var (df)

rad = sqrt(2*qf(0.95, 2, nrow(df)-1))

z = ellipse(me, v, rad, segments=1001)
dist2center = sqrt(rowSums((t(t(z)-me))"2))
area=pi*min(dist2center)*max(dist2center)

area
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