
Acorn RunnerINFO1110 / COMP9001
Acorn Runner: An escape to survive

Milestone Deadline: Friday 15th May, 11:59 pm

Final Deadline: Friday 29th May, 11:59 pm

Weighting: 5% Milestone, 10% Final

You are an acorn, heir to the Honourable Furious Forest Throne. Your beauty shines like no
other, reflecting the colourful solar rays into the eyes of all spectators. But instead of your
usual coat of beautiful acorn shell, you find yourself covered in ash. Not only that, but
you've fallen great depths from the heights of the towering trees of the Honourable Furious
Forest that once cared for you.

You shed a tear of loss. The horrid memories of the Fire Nation's invasion flash before you
as you relive the moments your hometown, the Honourable Furious Forest, was burnt to
ashes. Your friends, the koalas and kangaroos, your family, the Honourable Furious Forest
members, all burnt to a crisp.

Mustering up your motivation for revenge, you, the acorn, heir to the Honourable Furious
Forest Throne, stumble forward and find yourself in a maze. You observe walls of fire,
helicopter search lights and teleporting pads within.

You cry out and slam your little acorn fist on the greyed Honourable Furious Forest floor of
dried up leaves. You swear upon your Father's name, Lord Scarlet Oak of the Honourable
Furious Forest, that you will conquer this maze and restore the Honourable Furious Forest
back to its former glory of rainbow and sunshine.

af://n3

Check the Ed pinned posts for a video demonstrating this assignment in action!

This document may receive updates. Please keep an eye on Ed announcements for any
amendments.

Description
In this assignment there will be three parts:

A game component. You must be able to play the game yourself.

The game will be a 2D maze with the objective of moving from start to end.

A solver component.

It should play the game as many times as it needs to generate a successful path.

More on this in the Solver section of this specification.

A report.

3 questions on testing and a short analysis on the solver algorithms involved.

Example screenshot with emojis:

Legend:

🌰: The acorn (start)!

🏴: Ending/Goal cell

➖: Wall cell

💧: Water bucket cell

🔥: Fire cell

1/2: Teleport cell

Unfortunately as Ed doesn't support emojis, your game will have to be in ASCII letters as shown
in the sample outputs below!

af://n17

Cell
character

Meaning

A Player cell (stands for Acorn)

' ' Air cell (space bar)

X Starting cell

Y Ending/Goal cell

* Wall cells

1, 2, 3, 4,
5, 6, 7, 8,
9

Teleport cells. These numbers will come in pairs. On stepping onto the cell,
you enter the cell '1', you teleport to the other '1'. Values greater than 9 will
not be given. Note: 0 is not a valid teleport pad!

W
A water bucket cell. On stepping onto the cell, the player gains a water
bucket.

F A fire obstacle that you cannot pass unless you have a water bucket.

Cells

Configuration
There will be one txt file which contains an ASCII representation of the maze. The maze may have
more than one viable solution. The symbols correspond to the cell characters outlined above. All
letters shall be in upper case.

Example configuration file:

*X*************
* 2 * *
* *** ** **** *
* * W* 1 *
* ***** ***** *
* 2 * ** *F*
* ** *** F *
* 1******** *
*************Y*

af://n55
af://n85

Command Meaning

w Move up

a Move left

s Move down

d Move right

e Wait a turn

q Quit the game

Commands

If the user enters an invalid move, print Please enter a valid move (w, a, s, d, e, q). .
The game should then continue to ask for the next move.

These commands are case-insensitive!

See the sample outputs below for usage!

Implementation details
Your program will be written in Python 3. The only in-built module methods and attributes you
are allowed to use are:

sys.argv

sys.exit()

os.system("clear") <--- (More on this later)

You may not import any other modules.

To help you, a scaffold of a suggested implementation structure is provided. Some test cases
require certain features of your code and cannot be modified.

af://n91
af://n117

File Function/Attribute Why it must not be modified

game_parser.py parse()

parse(lines) must take in a list of strings
and must return a list of lists of cells. This will
be tested.

grid.py grid_to_string()

grid_to_string(grid, player) must take in
a list of list of cells and a player and must
return a single string representing the grid &
water buckets. This will be tested

cells.py display
The display attribute will be used to test
your grid_to_string() function.

player.py display Same as above.

player.py num_water_buckets
The num_water_buckets attribute will be used
to test your grid_to_string() function.

player.py row Specifies their row in the grid.

player.py col Specifies their col in the grid.

Things you CANNOT modify (these are tested):

You may modify any other files to your liking. The rest of the scaffold is to help you with some
basic structure! You may, of course, import your own modules...! You are also encouraged to
write helper functions appropriately.

Note: No file other than run.py and solver.py should print to the screen! Only run.py should
print to the screen while playing the game. This is good programming practice, so get used to it
early! If needed, you may use it sparingly to debug your program!

game.py

It is recommended you write your game engine here. By writing a Game class, you can easily run
and delete game instances for your solver. The game engine should hold all the relevant data
regarding the game's state. This includes the moves made, the player's position, the cells, etc.

You should call read_lines() which uses the parse() function to parse the lines in the file.
Your read_lines() function should return the grid as well. If you decide to do this differently
however, that is also ok!

cells.py

It is recommended that you write your cells here. All cells must have a display attribute. We
recommend your cells also have a step() method. The step() method should take in a Game
object (defined above) and make modifications to the game depending on the cell.

If you are a strong programmer and know how to use inheritance, you may use it. Using
inheritance will not advantage you much however, and the assignment is completely doable
without it! We will not teach it in this course, so it is up to you if you want to use it!

Notable cells:

af://n165
af://n168
af://n171

Wall Cell

If a user steps onto a Wall cell, the user should be pushed back to their original cell and the
message You walked into a wall. Oof! should be returned. The game should not record
illegal user moves onto walls or out of bounds!

Water Cell

If a user steps onto a Water cell, it should increment the player's water bucket count and return
the message Thank the Honourable Furious Forest, you've found a bucket of water! . It
should then behave like an Air block.

Fire Cell

If a user steps onto a Fire cell, two things can happen:

If the user has at least one water bucket, it should return the message With your strong
acorn arms, you throw a water bucket at the fire. You acorn roll your way

through the extinguished flames! and reduce the player's water bucket count by one.
The fire block should then behave like an Air block.

If the user does not have a water bucket, it should return the message You step into the
fires and watch your dreams disappear :(. and end the game.

Teleport Cell

If a user steps onto a Teleport cell, it should teleport the user to the destination and return the
message Whoosh! The magical gates break Physics as we know it and opens a wormhole
through space and time. .

If a user waits (by inputting 'e') on a teleport cell after stepping on one, they will be teleported
again.

If the Acorn is currently on a teleport pad and walk into a wall, when the Acorn is pushed back, it
does not re-trigger the teleport pad.

player.py

It is recommend that you write your Player class here. It must contain the attribute
num_water_buckets . The Player class should also contain a method called move(...) which
will receive a move command and move the player.

The Player class must have a row and col attribute which represents their location on the
grid. The grid_to_string() function must use these attributes when drawing the player.

If a Player tries to leave the grid (say there was a hole in the perimeter), it should act as if the
player walked into a wall.

game_parser.py

It is recommended that you write your parser functions here. A parser is a module which reads
an input and processes it into something useful.

af://n172
af://n174
af://n176
af://n183
af://n187
af://n191

You may assume that the input grid given in the configuration file is a rectangle (i.e. each
row has the same number of entries). You may also assume that the border of the maze
given in the configuration file will be surrounded with wall cells (except the starting and
ending cells)!

Your parse() function will be tested. It should receive a list of strings. The parse()
function must be able to handle \n characters at the end of each string in the input list.
There are certain error cases it must be able to handle. In this specific order:

If the configuration file contains an unknown letter (including teleport pad '0'), raise a
ValueError with message Bad letter in configuration file: <letter>. . If there
are multiple unknown letters, you only need to output a single unknown letter in the
message. You do not need to find them all and concatenate the output!

If the configuration file does not contain exactly one X , raise a ValueError with
message Expected 1 starting position, got <number>. , where number is the
occurrence of X .

If the configuration file does not contain exactly one Y , raise a ValueError with
message Expected 1 ending position, got <number>. , where number is the
occurrence of Y .

If the teleport pads do not come in exact pairs, raise a ValueError with message
Teleport pad <number> does not have an exclusively matching pad. , where
number is the number of the teleport pad. If there are multiple pairs of non-matching
pads, you only need to output a single pad number in the message. You do not need to
find them all and concatenate the output!

The function read_lines() will not be tested. You will need to use this to prepare your data to
pass into the parse() function. If the file doesn't exist, print <filename> does not exist! and
exit gracefully.

The order of function calls in this file should look like:

Call read_lines()

Call parse(lines)

Return grid

Return grid

grid.py

It is recommended that you write helper functions for the grid here.

The grid_to_string() function must be implemented in this file as it is tested. It should take in
a grid (list of lists of Cells) and a Player . It should return the grid and the number of water
buckets the player has as a single string.

Note: Your returned string should include \n characters.

Example contents of the string:

af://n219

run.py

This file is the entry-point to your game program. It will be run given a single command line
argument that represents the filename of the configuration file.

If no command line arguments are provided, print Usage: python3 run.py <filename> [play]
and exit gracefully.

run.py should create a game object, handle user inputs, and handle messages from the game
object to display to the user.

You may import os and use os.system("clear") to clear the screen after each user input. This
creates a much better user experience. See the attached demonstration video to see it in action.
Ensure that this mode is only activated if the user provides the optional play command line
argument. This screen clearing functionality is not tested and you may skip this.

*A*************
* 2 W*
* *** ** **** *
* * WW* 1 F*
* ***** *****F*
* 2 * ** *F*
*W**W*** FFFF*
* 1********FFF*
*************Y*

You have 0 water buckets.

af://n225

solver.py - Solver

This file is the entry-point to your solver program. Your solver should have two modes, Depth
First Search (DFS) and Breadth First Search (BFS). These are two maze solving algorithms and the
pseudocode will be provided in the corresponding lab sheet. Your solver should take in two
command line arguments that represents the filename of the configuration file and the mode
(DFS or BFS).

If no command line argument is provided, print Usage: python3 solver.py <filename>
<mode> and exit gracefully.

It should print out the number of moves made as well as the path. There may be more than one
path at the shortest path length. These are all accepted solutions. You only need to find and
output one such path. The output shall follow the format:

If there are no solutions:

Some tips:

You should only need to change one line to move between DFS and BFS modes!

Truly understand how these algorithms work. Their advantages, shortcomings,
appropriateness, etc.

Avoid recursion as it is not very efficient and your solves may time out!

You may want to prohibit your solver from "waiting" more than three turns consecutively.

You may ask your tutor for assistance in the solver component regarding your algorithm
design. Not your code!

Ed test cases will test both DFS and BFS modes. While the test cases will be as lenient as
possible in terms of run-time, If your solver times out, you need to rethink how you
approach the problem!

The DFS and BFS modes will be given different configuration files as they shine in
different scenarios.

Your BFS solver must produce an optimal path. There may be multiple optimal paths
and these will all be considered correct! (what do you think 'optimal' here means?)

Your DFS solver only needs to produce a valid path since there are many paths it can
take.

$ python3 solver.py <filename> <mode>
Path has <number> moves.
Path: <moves comma delimited>

$ python3 solver.py <filename> <mode>
There is no possible path.

af://n231

Game Finish
When the player finishes the game successfully by reaching the ending/goal cell, print:

When the player finishes the game unsuccessfully, print:

You conquer the treacherous maze set up by the Fire Nation and reclaim the
Honourable Furious Forest Throne, restoring your hometown back to its former
glory of rainbow and sunshine! Peace reigns over the lands.

Your made <num of moves> moves.
Your moves: <moves comma delimited>

=====================
====== YOU WIN! =====
=====================

The Fire Nation triumphs! The Honourable Furious Forest is reduced to a pile of
ash and is scattered to the winds by the next storm... You have been roasted.

Your made <number of moves> moves.
Your moves: <moves comma delimited>

=====================
===== GAME OVER =====
=====================

af://n261

Item Where Time

Game code Milestone Ed Milestone submission page
Milestone
Deadline

Game code Ed Final submission page
Final
deadline

Solver code Ed Final submission page
Final
deadline

Test code (unit tests and E2E tests) Ed Final submission page
Final
deadline

Report (no more than 500 words as
specified above)

Ed Final submission page and
Canvas TurnItIn

Final
deadline

Submission
You will submit your code on two separate assessment pages on Ed, a milestone submission
assessment page and a final submission assessment page. There will be some public and hidden
test cases to guide you, however, be aware that there is a portion of marks allocated to writing
your own test cases!

Here is a brief checklist of the things you will be required to submit:

Milestone:

The following will be tested against automated test cases. There is no manual marking
component.

game_parser.py:

parse()

Please only use the cell's display attribute to pass the test cases in parse() .

grid.py:

grid_to_string()

player.py:

num_water_buckets attribute (int)

row attribute (int)

col attribute (int)

af://n267
af://n296

Criteria Weighting

Milestone test cases 33%

Final submission test cases 27%

Final submission solver test cases 10%

Final submission student test cases 10%

Code style and structure 10%

Report 10%

Marking breakdown
This assignment is worth 15% of your final mark. The breakdown of this 15% is outlined below.

All Ed test cases are case sensitive.

Student test cases - 10%

You will be required to write your own test cases. The public test cases are general end-to-end
(E2E) tests and are not sufficient! You will be required to write unit tests and end to end tests
using input vs output. Refer to the relevant tutorial sheet for more information regarding these
techniques.

Further breakdown:

Unit tests and edge case coverage - 5%

Tests should cover edge cases.

Unit tests should comprehensively test each module.

Tests should be justified.

End to end tests covering most normal usage - 5%

Test cases should be general.

Test cases should represent normal usage by a player.

Test cases should cover program operation from start to end.

E2E test cases should be in a test folder with all the test cases labelled appropriately
(e.g. 1.in , 1.out , 1.txt) where the justification is in the corresponding text file.

You do not need to write tests for your solver.

You are expected to create the other unit test files yourself. If you believe that a file/module is not
worth unit testing, create the file and justify it as a comment why you believe you don't need to
unit test it!

Code style and structure - 10%

Code style and structure is essential to the success of a coding project. The scaffold provides a
basic structure for writing the program, however there will be parts where you need to decide
where to write certain functionality. Does the player class make the player teleport? Should it
have a set_position() method? etc.

af://n322
af://n347
af://n374

Further breakdown:

Self documenting code - 2.5%

The code should largely talk for itself.

Avoid complex one liners that others may not understand.

Ensure variable names are meaningful.

Good comments - 2.5%

Not too many, not too few.

Should compliment code, not act as a band-aid for nonsensical code!

Layout - 2.5%

Code should be spaced out vertically.

Code should be spaced out horizontally (i = 0 is better than i=0).

import s are at the top of the file.

Structure - 2.5%

Modularity: should this be in its own function/method?

Program flow is well thought out and makes sense.

Code and state are stored in relevant places.

Code should not be overly complex if there is a clearly easier way to do it.

Side effects should be kept to a minimum.

Hint: You may directly ask your tutor during the lab sessions what they like, and what they don't
like to see! They will be the ones manually marking your assignment.

Report - 10%

Please attach your report as a pdf file into the same workspace as your final submission titled
Report.pdf . There will be a strict word limit of 500 words. Your answers do not need to be long.
You may use dot points to list your responses where appropriate. We want content in your
answers, not word fluff!

Please also submit your report to TurnItIn via Canvas.

Section 1 - Testing (3% total, 1% each question):

1. List 3 reasons why it is good to write test cases.

2. We have not discussed mocks. Research and briefly explain the use of mocks in testing. List
two advantages and two disadvantages of mocking. Where should mocks generally be used?
(unit tests or E2E tests?)

3. Give a real life example of where insufficient code testing led to problems. Cite your
resource appropriately. If you are unsure how to cite appropriately, use the Harvard
referencing standard.

Section 2 - Solver (7%):

You may assume that the starting cell is on the top row and the ending cell is on the bottom row
of the map. Qualitatively consider run-time and correctness.

1. What are the strengths and weaknesses of the BFS algorithm? When would you want to use
BFS? (2%)

af://n417
af://n420
af://n428

2. What are the strengths and weaknesses of the DFS algorithm? When would you want to use
DFS? (2%)

3. What happens if the ending cell is very close to the starting cell? Is DFS guaranteed to be
faster than BFS? (1%)

4. In normal BFS and DFS algorithms, there is usually a list of visited cells that help the
algorithm perform faster by not re-visiting a cell. However, this game setup has a certain
feature in it that does not allow you to use this. What feature of the game stops you from
using a list of visited cells to improve run-time? Justify briefly by giving a simple example.
(Hint: Think scenarios where you have to re-visit a cell to complete the game. What about
you changed since the previous time you were there?) (2%)

FAQ

Where do I start!?

After reading through this sheet, you are recommended to start by tackling the milestone
components!

I need help!

You are strongly encouraged to ask questions about the assignment to your tutors and on the
discussion board, Ed. Tutors will be able to support you through the difficult sections of this
assignment. Please read this assignment description carefully before you ask questions though!

DO NOT POST YOUR CODE (including small snippets) PUBLICLY. You will be penalised. You can
post some code if it is made private and only view-able by tutors. However, limited help will be
offered for the implementation of this assignment.

The solver looks too difficult! How can we do this as first
years!?

You can easily achieve a distinction this assignment if you completely ignore the solver
component. If you want an HD, you have to earn it!

The solver component was designed to be do-able for first year students who thoroughly
understand procedural programming. Believe in yourself! You can do it!

Advice?

Start early. You can complete 90% of this assignment once you take the week 9 lab.

Develop on your own local environment. It's much faster and efficient to do so!

Write tests as you write your modules (or even before)!

Can I use for and in in the assignment?

Yes!

Sample outputs

af://n440
af://n441
af://n443
af://n446
af://n452
af://n461
af://n463
af://n464

Simple Win

Simple Lose

Config
X
* *
Y

Output
A
* *
Y

You have 0 water buckets.

Input a move: s
X
* A *
Y

You have 0 water buckets.

Input a move: s
X
* *
A

You have 0 water buckets.

You conquer the treacherous maze set up by the Fire Nation and reclaim the
Honourable Furious Forest Throne, restoring your hometown back to its former
glory of rainbow and sunshine! Peace reigns over the lands.

You made 2 moves.
Your moves: s, s

=====================
====== YOU WIN! =====
=====================

Config
X
F
Y

Output
A
F
Y

You have 0 water buckets.

Input a move: s

af://n464
af://n466

Solver - No path found

Quit game

X
A
Y

You have 0 water buckets.

You step into the fires and watch your dreams disappear :(.

The Fire Nation triumphs! The Honourable Furious Forest is reduced to a pile of
ash and is scattered to the winds by the next storm... You have been roasted.

You made 1 moves.
Your moves: s

=====================
===== GAME OVER =====
=====================

Config
X
F
Y

Output
There is no possible path.

Config
X*
* *
* ** *
* *
* *
****Y*

Output
A*
* *
* ** *
* *
* *
****Y*

You have 0 water buckets.

Input a move: s
X*
* A *
* ** *
* *
* *

af://n468
af://n470

Walking into a wall

****Y*

You have 0 water buckets.

Input a move: q

Bye!

Config

X Y

Output

A Y

You have 0 water buckets.

Input a move: d

XAY

You have 0 water buckets.

Input a move: w

XAY

You have 0 water buckets.

You walked into a wall. Oof!

Input a move: s

XAY

You have 0 water buckets.

You walked into a wall. Oof!

Input a move: d

X A

You have 0 water buckets.

af://n473

Water and Fire interactions

You conquer the treacherous maze set up by the Fire Nation and reclaim the
Honourable Furious Forest Throne, restoring your hometown back to its former
glory of rainbow and sunshine! Peace reigns over the lands.

You made 2 moves.
Your moves: d, d

=====================
====== YOU WIN! =====
=====================

Config

XWFFY

Output

AWFFY

You have 0 water buckets.

Input a move: d

XAFFY

You have 1 water bucket.

Thank the Honourable Furious Forest, you've found a bucket of water!

Input a move: d

X AFY

You have 0 water buckets.

With your strong acorn arms, you throw a water bucket at the fire. You acorn
roll your way through the extinguished flames!

Input a move: d

X AY

You have 0 water buckets.

You step into the fires and watch your dreams disappear :(.

af://n475

Teleport cells

Solver - BFS

The Fire Nation triumphs! The Honourable Furious Forest is reduced to a pile of
ash and is scattered to the winds by the next storm... You have been roasted.

You made 3 moves.
Your moves: d, d, d

=====================
===== GAME OVER =====
=====================

Config

X1 1Y

Output

A1 1Y

You have 0 water buckets.

Input a move: d

X1 AY

You have 0 water buckets.

Whoosh! The magical gates break Physics as we know it and opens a wormhole
through space and time.

Input a move: d

X1 1A

You have 0 water buckets.

You conquer the treacherous maze set up by the Fire Nation and reclaim the
Honourable Furious Forest Throne, restoring your hometown back to its former
glory of rainbow and sunshine! Peace reigns over the lands.

You made 2 moves.
Your moves: d, d

=====================
====== YOU WIN! =====
=====================

af://n477
af://n479

Solver - DFS

Config
*X*************
* 2 * *
* *** ** **** *
* * W* 1 *
* ***** ***** *
* 2 * ** *F*
* ** *** F *
* 1********F *
*************Y*

Output
Path has 25 moves.
Path: s, d, d, d, d, s, s, w, w, d, d, d, a, a, s, s, d, d, d, d, s, s, s, s, s

Config ###
*X*************
* 2 W*
* *** ** **** *
* * WW* 1 F*
* ***** *****F*
* 2 * ** *F*
*W**W*** FFFF*
* 1********FFF*
*************Y*

Output
Path has 60 moves.
Path: s, d, d, d, d, d, d, d, d, a, d, d, d, d, d, a, d, s, s, a, a, a, a, w, s,
d, a, a, w, w, d, a, a, a, a, s, s, a, d, w, w, d, d, d, d, s, w, a, d, d, d, d,
d, s, s, s, s, s, s, s

af://n481

Academic declaration
By submitting this assignment, you declare the following:

I declare that I have read and understood the University of Sydney Student Plagiarism: Coursework
Policy and Procedure, and except where specifically acknowledged, the work contained in this
assignment/project is my own work, and has not been copied from other sources or been previously
submitted for award or assessment.

I understand that failure to comply with the Student Plagiarism: Coursework Policy and Procedure can
lead to severe penalties as outlined under Chapter 8 of the University of Sydney By-Law 1999 (as
amended). These penalties may be imposed in cases where any significant portion of my submitted
work has been copied without proper acknowledgment from other sources, including published works,
the Internet, existing programs, the work of other students, or work previously submitted for other
awards or assessments.

I realise that I may be asked to identify those portions of the work contributed by me and required to
demonstrate my knowledge of the relevant material by answering oral questions or by undertaking
supplementary work, either written or in the laboratory, in order to arrive at the final assessment
mark.

I acknowledge that the School of Computer Science, in assessing this assignment, may reproduce it
entirely, may provide a copy to another member of faculty, and/or communicate a copy of this
assignment to a plagiarism checking service or in-house computer program, and that a copy of the
assignment may be maintained by the service or the School of Computer Science for the purpose of
future plagiarism checking.

af://n484

	INFO1110 / COMP9001 Acorn Runner
	Description
	Cells
	Configuration
	Commands
	Implementation details
	game.py
	cells.py
	Notable cells:
	Wall Cell
	Water Cell
	Fire Cell
	Teleport Cell

	player.py
	game_parser.py
	grid.py
	run.py
	solver.py - Solver

	Game Finish
	Submission
	Milestone:

	Marking breakdown
	Student test cases - 10%
	Code style and structure - 10%
	Report - 10%
	Section 1 - Testing (3% total, 1% each question):
	Section 2 - Solver (7%):

	FAQ
	Where do I start!?
	I need help!
	The solver looks too difficult! How can we do this as first years!?
	Advice?
	Can I use for and in in the assignment?

	Sample outputs
	Simple Win
	Simple Lose
	Solver - No path found
	Quit game
	Walking into a wall
	Water and Fire interactions
	Teleport cells
	Solver - BFS
	Solver - DFS

	Academic declaration

