
 1 VERSION 1 18/03/2020

Snow

COMP0015 Term 2 Coursework 6 – 20% of the module
This document explains the arrangements for the coursework. You will create an application to embed a secret
message in a file and, conversely, to decode the secret message hidden in a file. You will use steganography to do this.
It’s possible to embed steganographic messages in pictures, audio clips or in text and steganography is the practice of
embedding secret content in an artefact such that it cannot be detected by the reader, viewer or listener. But why is
this coursework called ‘Snow’? This is a reference to Matthew Kwan’s program snow, an application that you can install
on your computer and use to create encrypted steganographic messages in real life.

Deadline
4pm Tuesday 23rd March 2021.

Aim
At a high-level, the aim of this coursework is for you to demonstrate that you can use text files. You are given some

starter code; you do not need to change this code. You are required to complete some of the functions as described

in this document.

Starting Your Assignment
You are provided with some starter code and some text files which you must download and save before starting the

assignment. Feel free to use CoCalc to develop your code.

Running the stegsnow program
There are two ways to run the program from the terminal depending on whether you want to encode or decode a

secret message. The code in main() contains code to handle the options you type on the command line, you are not

required to edit the code in main().

Encoding a secret message

Note: for the purposes of this coursework, you will only be required to use secret messages that contain the lower

case characters a-z and space, for example: “dinner at eight pm”.

Type the following at the terminal:

python3 stegsnow.py -m “dinner at eight pm” okonomiyaki.txt secret.txt

python3 The python interpreter. On macos this will be python3

and on Windows, this will be py or python.

stegsnow.py Name of the python program.

-m Use this option when you want to encrypt a secret

message.

http://www.darkside.com.au/snow/index.html

 2 VERSION 1 18/03/2020

“dinner at eight pm” The secret message.

okonomiyaki.txt The input file in which the secret message will be

embedded. You are provided with the file

okonomiyaki.txt

secret.txt The output file containing the steganographic text.

Table 1 Running the program when encoding a secret message

Decoding a secret message

Type the following at the terminal:

python3 stegsnow.py secret.txt

python3 The python interpreter. On macos this will be python3

and on Windows, this will be py or python.

stegsnow.py Name of the python program.

secret.txt The file containing the steganographic text.

Table 2 Running the program when decoding a secret message

Representing characters as binary
Creating the secret message relies on some facts about the way that characters are represented in the computer.

Computers represent all information as a series of 0s and 1s or binary. Characters are represented by a set of

commonly used binary numbers. The mapping of characters to numbers is known as ASCII which stands for American

Standard Code for Information Interchange. Some characters and the mapping to binary numbers are shown in the

table below.

Letter Binary representation

a 1100001

b 1100010

c 1100011

d 1100100

Table 3 ASCII representation of characters

 3 VERSION 1 18/03/2020

In stegsnow.py there is a dictionary, CHAR_TO_BINARY, that contains a mapping from a character to binary:

CHAR_TO_BINARY = { # binary representation of ASCII characters

 'a': '1100001',

 'b': '1100010',

 'c': '1100011',

 'd': '1100100',

 'e': '1100101',

 'f': '1100110',

 'g': '1100111', ….

and another dictionary BINARY_TO_CHAR, that contains a mapping from binary to character:

BINARY_TO_CHAR = { # binary string to ascii characters

 '1100001': 'a',

 '1100010': 'b',

 '1100011': 'c',

 '1100100': 'd',

 '1100101': 'e',

 '1100110': 'f',

 '1100111': 'g', ….

You will use both dictionaries in your solution.

Functionality

The skeleton code contains the empty functions: encode_secret_message() and decode_secret_message()

you must complete them according to the instructions here and the specification in the docstrings (comments) at the

start of the functions.

1) Function encode_secret_message(message, infile, outfile, zero, one)

In this function you will take the secret message, encode it as a series of 1s and 0s, combine it with the input file and

write the result to the output file. Here is an example, let’s say your secret message is “dinner at eight pm” and the

input file is the file that is distributed with the coursework.

Input file – okonomiyaki.txt `Output file

Okonomiyaki

https://thejameskitchen.wordpress.com/2013/12/27/

okonomiyaki/

Serves 2

1 small Chinese cabbage

A small bunch of choi sum or any other bitter dark

greens like kale

2 large carrots

6 spring onions

Okonomiyaki1100100

https://thejameskitchen.wordpress.com/2013/12/27/okono

miyaki/1101001

1101110

Serves 21101110

1 small Chinese cabbage1100101

1110010

A small bunch of choi sum or any other bitter dark greens like

kale1111011

2 large carrots1100001

6 spring onions1110100

In this function you will perform 3 sub-tasks:

d

i
n

e
r

a
t

space

 4 VERSION 1 18/03/2020

a) Process the secret message character by character, producing a list of binary strings. Use the dictionary

CHAR_TO_BINARY.

b) Read the input file, infile, line by line.

c) Combine each line of the input file with one of the binary strings representing the secret message and write

the result to the output file.

You may need to decompose this function further, writing more functions. Make sure you document your

functions with docstrings.

You are probably thinking that this secret message is not very secret. Don’t worry! Once you have everything

working, you will attend to this detail.

2) Function decode_secret_message(infile, zero, one)

In this function you will take the file with file name infile, decode the secret message inside and then print it.

To do this, you will need to complete these sub-tasks:

a) For each line in the file, extract the last 7 characters. Check that the last 7 characters is composed of zeroes

and ones. Use the values passed in as parameters to the function to do this. If the 7 characters is composed

of zeroes and ones you have a binary string representing a character in your secret message.

b) Convert every binary string extracted to a character by using the dictionary BINARY_TO_CHAR. Add the

characters to a list.

c) You have your secret message, print it.

You may need to decompose this function further, writing more functions. Make sure you document your

functions with docstrings.

3) Making your message invisible

So far the message has been entirely visible, anyone intercepting the message will be able to see it and easily guess

at its meaning. What if we replaced every occurrence of a ‘1’ and a ‘0’ with different invisible characters such as a

space and a tab? Well then our message would disappear. There are two constants at the top of the program:

ZERO = '0' # Character representing zero ``

ONE = '1' # Character representing one

These are used in main() and passed as parameters to encode_secret_message() and

decode_secret_message().

You can change the values for the constants so that:

ZERO = '\t' # Character representing zero ``

ONE = ' ' # Character representing one

There’s a little more coding that we need to do before this will work.

 5 VERSION 1 18/03/2020

a) Function encode_secret_message()

In this function you translated the letters in the message to binary strings. This won’t change but now you must

also translate each digit in the binary string using the parameters passed to the function zero and one. You have

been provided with the function encode(binary_letter, zero, one) which you can use to do this. In this way,

you can replace the pattern of zeroes and ones in the binary letter with symbols that you can’t see such as a space and

a tab.

'1100001' would be translated as ' \t\t\t\t '

'1100010' would be translated as ' \t\t\t\ \t'

b) Function decode_secret_message()

In this function you translated the binary strings in the file to ASCII characters. Once again, there’s a little more

that we need to do. When you process the last 7 characters on a line you must translate the characters from,

say, spaces and tabs to zeroes and ones. Use the parameters zero and one which are passed as parameters to

the function. You have been provided with the function decode(binary_letter, zero_char, one_char),

use it to translate what you get from the file to a string of binary digits. If a tab character represents ‘0’ and a space

represents ‘1’ then:

' \t\t\t\t ' would be translated as '1100001'

' \t\t\t\ \t' would be translated as '1100010'

That’s it. The coursework is finished.

Testing:
You are responsible for testing your program carefully. Make sure that you have thought about all the things that
can go wrong and test your program to ensure that you know it works correctly in all circumstances.

Submitting your assignment
At the submission link on moodle:

1. Make sure your student number (not your name) is included in comments at the top of your program.

2. Upload your program.

a. You may upload multiple files but do not upload a folder containing your files because this can cause

compatibility issues for the marking team.

3. You must ensure that your program works properly either on your own computer or on the CoCalc platform

before you submit the code.

 6 VERSION 1 18/03/2020

Assessment
You are expected to show that you can code competently using the programming concepts covered so far in the course

including (but not limited to): use of files, strings, variables, conditions, loops and functions.

Marking criteria will include:

• Correctness – your code must perform as specified

• You must apply the Python concepts appropriately.

• Programming style – see section ‘Style Guide’ for more detail.

• Your assignment will be marked using the rubric at the end of this document. This is the standard rubric used

in the Department of Computer Science. Marks for your project work will be awarded for the capabilities (i.e.

functional requirements) your system achieves, and the quality of the code. Categories 5 and 6 will be used

for coding assignments.

Additional Challenges

• Additional marks may also be gained by taking on extra challenges but you should only attempt an additional

challenge if you have satisfied all requirements for the coursework. It’s up to you what you choose to do - if

anything.

• Note: You are strongly encouraged to follow the specification carefully and to use programming techniques as

described in the course materials and textbooks. Poor quality code with additional functionality will not

improve your marks.

• Options for this coursework might include:

1. Write some unit tests for the functions you have written. You can write your own tests in a separate

program using python or use doctest or unittest or pytest.

2. Change the encryption / decryption algorithm so that the start and end of the encrypted message

starts and ends with a special character that cannot appear in the text. For example: the binary

sequence ‘0000000’ could be used.

3. The brief specifies that you encode one letter (ascii character) per line. Amend your application so

that multiple ascii characters can be encoded, up to a specified maximum line length. The maximum

line length should be a constant in your program.

4. Take a look at the features of snow, can you add encryption / decryption using a Python cryptography

library?

Plagiarism
Plagiarism will not be tolerated. Your code will be checked using a plagiarism detection tool.

Style Guide
You must adhere to the style guidelines in this section.

Formatting Style

1. Use Python style conventions for your variable names (snake case: lowercase letters with words separated by

underscores (_) to improve readability).

2. Choose good names for your variables. For example, num_bright_spots is more helpful and readable

than nbs.

3. Name constants properly using capital letters and put them at the top of your program.

http://www.darkside.com.au/snow/index.html
https://pypi.org/project/cryptography/
https://pypi.org/project/cryptography/

 7 VERSION 1 18/03/2020

4. Use a tab width of 4 or 8. The best way to make sure your program will be formatted correctly is never to mix

spaces and tabs -- use only tabs, or only spaces.

5. Put a blank space before and after every operator. For example, the first line below is good but the second

line is not:

b = 3 > x and 4 - 5 < 32

b= 3>x and 4-5<32

6. Each line must be less than 80 characters long including tabs and spaces. You should break up long lines
using \. You don’t need a continuation character if you are breaking up the parameters of a function.

7. Function names should also be in snake_case: encrypt_message(), print_introduction.
8. Functions should be no longer than about 12 lines in length. Longer functions should be decomposed into 2

or more smaller functions.

Docstrings

If you add your own functions you must comment them using docstrings. Take a look at the code you’ve been given

for some examples. Your comments should:

1. Describe precisely what the function does.
2. Do not reveal how the function does it.
3. Make the purpose of every parameter clear.
4. Refer to every parameter by name.
5. Be clear about whether the function returns a value, and if so, what.
6. Explain any conditions that the function assumes are true. Examples: "n is an int", "n != 0", "the height and

width of p are both even."
7. Be concise and grammatically correct.
8. Write the docstring as a command (e.g., "Return the first ...") rather than a statement (e.g., "Returns the first

...")

Note: you can use any style of docstring you like, your editor may have a default style – you are welcome to use this.
Available styles include: NumPy, Google, ReStructuredText.

Here is a template for a NumPy-style docstring

def template(arg1, arg2):
 """
 Summary line.

 Extended description of function.

 Parameters

 arg1 : int
 Description of arg1
 arg2 : str
 Description of arg2

 Returns

 int
 Description of return value

 """
 pass

Here is a completed example:

 8 VERSION 1 18/03/2020

def random_number_generator(start_range, end_range):
 """
 Returns a random number from the range specified. Includes the start and end of the range.

 Parameters

 start_range : int
 Start of the range, inclusive
 end_range: int
 End of the range, inclusive

 Returns

 int
 Random number

 """

Computer Science Grading Criteria
Categories 5 and 6 will be used for assessing programs.

