
newhomework

March 20, 2021

1 Part 1 (9 points)
Julie-Ann’s friends pressure her into going bungee jumping for the first time. Julie-Ann is a cautious
woman, so she isn’t going to jump unless she is sure it is safe to do so. She decides that she’d like
you to simulate the bungee jump using Python, since you’ve taken a course in Computer Science,
and show her the results.

1. In the first step of this part, you’ll simulate a free fall in the absence of air friction.
2. In the second step, you’ll include calculations for air friction.
3. In the third step, you’ll add the spring forces of the bungee cord.

Rubric

Marks Task
2.0 Loop over time steps (same for all three steps)
3.0 Free fall: Update position, velocity, time (step

1)
2.0 Air friction: Update forces, update

acceleration (changes from step 1)
2.0 Bungee: Update forces (changes from step 2)
9.0 TOTAL

1.1 Step 1
Using Julie-Ann’s (wearing her clothes, the harness, and bungee cord) weight of 70kg, simulate the
motion of a free fall, without considering the forces of friction or the effect of the bungee. In other
words (in the simulation), let’s let Julie-Ann fall to her death (for science!). Only gravity will affect
Julie-Ann’s fall. For simplicity, use positive numbers to represent downward motion, so length will
represent how far from the platform Julie-Ann has traveled.

Note: Let’s assume that Julie-Ann’s height is infinite, so that we can see the pattern of her fall
more easily.

Create a Python function (simulateFreeFall), which takes 3 arguments: - mass: The mass of
Julie-Ann (or any falling object) - deltaT: The length of time (in seconds) of each time interval,
for the simulation - simulationTime: The length of time (in seconds) of the entire simulation

The function will calculate from deltaT and simulationTime how many time steps there should be.
For each of these time steps, you will calculate the length (distance from the platform, in metres),
velocity (in metres/s), and acceleration (which will be constant, 9.81 metres per second squared).

1

At each time step, record each of the following values in a Python list:

• elapsedTime: deltaT * the number of time steps that have passed
• length: the distance between the object (Julie-Ann) and the platform at that time step
• velocity: the velocity of the object (Julie-Ann) at that time step 2
• acceleration: the acceleration on the object at that time step

The function will return a tuple containing all four of these lists (times, lengths, velocities,
accelerations).

Updating the length:

When updating the length, use the current velocity and the current elapsed time, in the formula:

deltaD = v * deltaT

If you use a single time step duration for deltaT (deltaT), and the current velocity for v, then
deltaD will be the change in length, which you’ll need to add to the previous length.

Updating the velocity:

When updating velocity, we’ll calculate how the current acceleration will affect the value, using the
following formula:

deltaV = a * deltaT

If you use a single time step duration for deltaT (deltaT), and the current acceleration for a,
then deltaV will be the change in velocity, which you’ll need to add to the previous velocity.

Updating the acceleration:

This part of the assignment does not require any modification to acceleration. JulieAnn will
continue to accelerate downwards for the duration of the simulation.

Write some Python code to call your function, collecting the four input lists it returns.

• Use 70kg for Julie-Ann’s mass, deltaT of 0.01 seconds, and simulationTime of 60 seconds.
• Chart the length values vs. elapsedTime values, with red squares for markers, using Mat-

PlotLib.
– Be sure to include appropriate title, x-axis labels, and yaxis labels in your chart.

Sample output

[1]: #step 1 code and testing

1.2 Step 2
For the second step of this part, you will simulate another free fall, but this time you will incorporate
air friction (also known as drag). Start by making a copy of your function from step 1, and rename
it simulateFallFriction. Our function will have one new argument, in addition to the previous
arguments:

• surfaceArea: The surface area (in m2) of the falling person/object

We’ll perform this calculation by adding up all forces on our object. In this part, we have two
forces:

2

1. the force due to gravity (we’ll call this Fweight)
2. the force due to air friction (we’ll call this Ffriction)

Updating the length and velocity:

Updating the length and the velocity will use the same procedure as in the previous step, but
now the acceleration is not a constant, since it depends on air friction (which itself is dependent
upon velocity).

Updating the acceleration:

We didn’t really consider forces in the previous section, so we’ll need to consider the force created
by gravity, using the following formula:

Fweight = m * g

A simplified formula for air resistance at sea level is given below:

Ffriction = -0.65 * surfaceArea * v * |v| (|v| - absolute value of v)

For the sake of this simulation, we’ll use 0.2m2 for Julie’s surface area.

Now, the total force (Ftotal = Fweight + Ffriction) can be used to calculate the acceleration:

a = Ftotal / mass

As before, write some Python code to call your function and collect the returned lists.

• Again, plot the length values vs. the elapsedTime values in MatPlotLib, using blue circles
for markers.

Sample output

[2]: #step 2 code and testing

1.3 Step 3
In this part of the assignment, we will add the effect of the spring (bungee cord) on the falling
object, so that Julie-Ann can see a fairly realistic simulation of her bungee jump. Copy the function
from step 2, and rename it simulateBungeeJumper to start. We’ll have a new argument for this
function:

• unstretchedBungeeLength: The length (in m) of the bungee/spring

Updating the length and velocity:

Updating the length and the velocity will use the same procedure as before, but now the
acceleration is not a constant, since it depends on air friction (which itself is dependent upon
velocity).

Updating the acceleration:

We now have three forces acting on our falling object:

1. the force due to gravity (we’ll call this Fweight)
2. the force due to air friction (we’ll call this Ffriction)
3. the force due to spring resistance (we’ll call this Fspring)

3

The force applied to a spring stretched by a displacement (d) is given by Hooke’s Law:

Fspring = -kd (Hooke’s Law)

In this formula, k is the spring constant, which depends on the stretchiness of the bungee cord. For
our example, we’ll use k = 21.7 for the spring constant. In the formula, d represents how much
the spring has stretched (i.e. length). We’ll test the function with an unstretched bungee length
of 30m.

As before, write some Python code to call your function and collect the returned lists. - Again,
plot the length values vs. the elapsed time values in MatPlotLib, using green triangles for markers.

Sample output

[3]: #step 3 code and testing

2 Part 2 (6 points)
For this part of the assignment, you will write a simulation for the spread of an infectious disease.
For simplicity, we will assume that the disease has a constant recovery rate (0.15), fatality rate
(0.025), and recovery rate (0.15). Part of this program has been written for you in the
cell below.

• Your job is to fill in some of the missing functionality, as described in the two parts.

Rubric

Marks Task
3.0 Update the values of fatalities, infected, susceptible, and recovered
3.0 Generate plot
6.0 TOTAL

[4]: import random
import matplotlib.pyplot as plt

def simulateDay(numFatalities, numInfected, numRecovered, numSusceptible,␣
↪→numContacts, spreadProb, deathProb, recoverProb):

your code for Step 1 goes here

determine the fatalities from yesterday's infections

determine the spread of the disease

return numFatalities, numInfected, numRecovered, numSusceptible

def simulateNDays(numDays, initialInfected, numPeople, numContacts, spreadProb,␣
↪→deathProb, recoverProb):

numFatalities = 0
numInfected = initialInfected

4

numRecovered = 0
numSusceptible = numPeople - numInfected

fatalities = [numFatalities]
infected = [numInfected]
recovered = [numRecovered]
susceptible = [numSusceptible]
for day in range(numDays):

f,i,r,s = simulateDay(numFatalities, numInfected, numRecovered,␣
↪→numSusceptible, numContacts, spreadProb, deathProb, recoverProb)

fatalities.append(f)
infected.append(i)
recovered.append(r)
susceptible.append(s)

numFatalities = f
numInfected = i
numRecovered = r
numSusceptible = s

return fatalities, infected, recovered, susceptible

numDays = 50
f,i,r,s = simulateNDays(numDays, 1, 100, 30, 0.10, 0.025, 0.15)

your plot from step 2 goes here

2.1 Step 1
Write the function simulateDay that simulates a single day. This function will:

• For each susceptible person (not infected, dead, or recovered), simulate if he/she becomes
infected, using the following formula: “‘ infectionRate = spreadProb * numContacts * nu-
mInfected / numPeople

“‘

– spreadProb: In one contact with an infected person, the probability of the disease
spreading

– numContacts: How many times does a typical person come into contact with people in
a day

– numInfected: How many infected people are there in the population
– numPeople: How many people are there in the population (including infected, recovered,

and susceptible)

• For each infected person, simulate if he/she recovers or dies

– deathProb: The probability each day of someone infected dying from the disease
– recoverProb: The probability each day of someone infected recovering from the disease

5

As an example to illustrate how to simulate is a person dies from the disease, assuming that the
deathProb is a number between 0 and 1:

rand = random.random()
if rand < deathProb:

this patient has died

The return value for this function should be a tuple containing four values:

• The number of fatalities at the end of the day
• The number of infected people at the end of the day
• The number of recovered people at the end of the day
• The number of susceptible people at the end of the day

2.2 Step 2
In the code provided, the function simulateNDays is called with specific parameters for the proba-
bilities, the initial number of infected people, and the number of days to simulate. You will write
code to use the return values to draw a plot of the four categories of people after each day’s end.
As in simulateDay(), this function returns four values, but these values are lists:

• A list of fatalities after each day (red square)
• A list of infected after each day (yellow triangle)
• A list of recovered after each day (green circle)
• A list of susceptible after each day (blue plus)

Draw all four sets of values on a single plot using MatPlotLib. Use the markers and colours indicated
above, beside each category of people. The resulting plot is shown in figure 4 below.

Include in your plot a legend, so that the observer can know at a glance what each shape represents.
To include a legend for four plots, use the following code:

plt.legend(['Fatalities','Infected','Recovered','Susceptible'], loc='upper right')

Sample output

6

	Part 1 (9 points)
	Step 1
	Step 2
	Step 3

	Part 2 (6 points)
	Step 1
	Step 2

