Using SensorRanks for In-Network Detection of Faulty
Readings in Wireless Sensor Networks

Xiang-Yan Xiao, Wen-Chih Peng and

Chih-Chieh Hung
Hsinchu, Taiwan, ROC
{xyxiao, wcpeng,
hungcci@cs.nctu.edu.tw

ABSTRACT

In this paper, the problem of determining faulty readings in
a wireless sensor network without compromising detection
of important events is studied. By exploring correlations
between readings of sensors, a correlation network is built
based on similarity between readings of two sensors. (Bylexs

Performance studies are con-
ducted via simulation. Experimental results show that the
proposed algorithm outperforms majority voting and dis-
tance weighted voting, two state-of-the-art approaches for
in-network faulty reading detection.

Categories and Subject Descriptors: H.3.4 [Systems
and Software]: Distributed Systems

General Terms: Algorithms, Design, Reliability
Keywords: faulty readings, wireless sensor networks

1. INTRODUCTION

Sensors are prone to failure in harsh and unreliable envi-
ronments. Faulty sensors are likely to report arbitrary read-
ings which do not reflect the true state of environmental phe-
nomenon or events under monitoring. Meanwhile, sensors
may sometimes report noisy readings resulted from interfer-
ences [3]. Both arbitrary and noisy readings are viewed as
faulty readings in this paper. The presence of faulty readings
may cause inaccurate query results and hinder their useful-
ness. Thus, it is critical to identify and filter out faulty
readings so as to improve the query accuracy.

In this paper, we target at the problem of determining
faulty readings in sensor networks. Obviously, a naive ap-
proach to this problem is to collect all readings to a sink,
where statistical analysis is performed to determine what
readings are outliers. However, this centralized approach
may not be practical due to limited energy budget in sensor
nodes. If readings are sent to the sink all the time, sensor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MobiDE’07, June 10, 2007, Beijing, China.

Copyright 2007 ACM 978-1-59593-765-0/07/0006 ...$5.00.

Wang-Chien Lee
The Pennsylvania State University
State College, PA 16801, USA

wlee@cse.psu.edu

nodes may soon exhaust their energy. Nevertheless, simply
filtering out unusual readings at individual sensor nodes may
compromise monitoring accuracy of some important events.
The goal of this study is to design an energy efficient in-
network algorithm for determining faulty readings without
compromising detection of important events.

The fact that data readings of nearby sensors are similar
can be captured by spatial correlation [6]. Thus, an idea for
determining faulty readings is to exploit this spatial correla-
tion.

Based on the classical majority voting, each sensor (e.g., sen-
sor s;) in the witness set makes a judgment by comparing
its own reading with the unusual reading sent by the sus-
pected sensor (e.g., sensor s;). If the difference between
these two readings exceeds a predefined threshold, s; con-
siders the reading sent by s; as faulty and gives a negative
vote to s;. Otherwise, s; claims that s; is normal and re-
turns a positive vote to s;. After collecting votes from the
nearby sensors, s; then can conclude whether the reading
is faulty or not. If the number of negative votes is smaller
than that of positive votes, the unusual reading reported by
s; is identified as a faulty reading. Otherwise, it is viewed
as an observed event. However, this simple majority voting
approach does not work well when the number of faulty sen-
sors increases. To address the problem, two weighted voting
methods has been proposed in the literature [5, 9]. Moti-
vated by an assumption that the closer sensors have more
resemble readings, the weighted voting algorithms give more
weights to closer neighbors in voting (i.e., the weights are
assigned inverse to the distances from a sensor node to its
neighbors).

In this paper, however, we argue that the distance be-
tween two sensors does not fully represent the correlation

between readings of those two sensors. (Hifthermoreifithe
where the neighboring sensor nodes are

linked, Bach link is labeled by a weight (determined based
on heuristics adopted by different voting methods) that will
(PENtSEaNTNotifg) Assume that the weights of sensors s2, s3

and s4 are 0.3, 0.4 and 0.9, respectively, and sensor s4 is a
faulty sensor. Obviously, the reading of sensor s; is identi-
fied as a faulty reading when the weighted voting method is

Arunanshu
Highlight

Arunanshu
Highlight

Arunanshu
Highlight

Arunanshu
Highlight

Arunanshu
Highlight

Arunanshu
Highlight

Qo‘f@ O
O : 0.6 0-3@’0.2_2—@
Q" o

Figure 1: An illustrative topology of a wireless sen-
sor network.

performed (i.e., 0.3%¥140.4*%140.9%(-1)=-0.2) where positive
and negative votes are represented by 1 and -1, respectively).

As shown above, the distance-based weighted voting meth-
od has two primary deficiencies: 1) while the distance be-
tween sensor nodes may be a factor in generating similar
readings of nearby sensor nodes, it does not precisely cap-
ture what we really care about as the correlation between
sensor readings; 2) while it is a good idea to inquire opin-
ions of neighbors, the trustworthiness of neighbors is not
considered.

Based on the above observation, in this paper, we pro-
pose an innovative in-network voting scheme for determin-
ing faulty readings by takeing into account the correlation
of readings between sensor nodes and the trustworthiness of
a node.

correlation edges are participated in voting. The weightel

voting method actually uses the correlation (modeled as a
function of distance) between sensor nodes as weights. How-
ever, using the correlation alone may not correctly identify
faulty readings due to the domination problem discussed
above. Thus, in the proposed algorithm, each sensor node
is associated with a trustworthiness value (called Sensor-
Rank) that will be used in voting. SensorRank of a sensor
node implicitly represents the number of ’references’ (i.e.,
similar sensor nodes nearby) it has to support its opinions.
A sensor node will obtain a high SensorRank if this sen-
sor has many references. The number under each sensor
node in Figure 1 is its SensorRank. In the figure, s4 has a
small SensorRank because the readings in s4 are not very
similar to that of its neighbors. By using SensorRank, our
voting scheme takes the trustworthiness of each sensor into
account. A vote with small SensorRank has only a small
impact on the final voting result. For example, in Figure 1,
when s; inquires opinions from its neighbors (i.e., s2, s3 and
s4), the vote from s; has a small impact due to its lower
SensorRank.

Our design consists of two parts: 1) an algorithm that
calculates SensorRank for each sensor node; and 2) an al-
gorithm that use SensorRank to determine faulty readings.
Specifically, we first obtain correlations among sensor read-
ings and then model the sensor network as a Markov chain to
determine SensorRank. In light of SensorRank, the TrustVot-

ing algorithm we developed will be invoked as needed in op-
eration to effectively determine faulty readings. A prelim-
inary performance evaluation is conducted via simulation.
Experimental result shows that the proposed TrustVoting
algorithm is able to effectively identify faulty readings and
outperforms majority voting and distance weighted voting,
two state-of-the-art voting schemes for in-network faulty
reading detection for sensor networks.

A significant amount of research effort has been elabo-
rated upon issues of identifying faulty sensor readings |2,
5, 6, 9]. In [6], the authors explored spatial correlation
among sensors and proposed a distributed Bayesian algo-
rithm for detecting faulty sensors. By assuming that faulty
measurements are either much larger or much smaller than
normal measurements, the authors in [2] use a statistical
method to detect outlier measurements. Some variations of
the weighted voting technique for detecting faulty sensors
are proposed in [5] and [9]. In [5], the past performances
of sensors are considered to enhance the classical majority
voting, and the coverage of sensing range is considered in [9]
for its weighted voting. To the best of our knowledge, prior
works neither fully formulate the similarity of sensors nor
provide the concept of SensorRank, let alone devising filter-
ing algorithm based on SensorRank. These features distin-
guish this work from others.

The rest of this paper is organized as follows. The no-
tion of correlation network is presented in Section 2. The
SensorRank and the TrustVoting algorithms are described
in Section 3 and Section 4, respectively. A preliminary per-
formance evaluation is conducted in Section 5. Finally, the
conclusion and future work are discussed in Section 6.

2. CORRELATION NETWORK

As mentioned earlier, prior works only take the distance
between sensor nodes into consideration when modeling the
correlation of sensor readings. However, it is also possible
that the readings of two geographically close sensor nodes
to have dramatically different readings. Thus, it’s critical to
truly capture the correlation of sensor readings rather than
their distance.

Definition 1. Reading Vector: Assume that the over-
all readings of a sensor s; consists of a series of readings in
a sliding window At. The readings of s; can be expressed as
bi(t) ={zi(t—At+1), z; (t — At +2), ..., z; (t)}, where
x; (t) is the reading sensed by s; at the time ¢.

Clearly, the readings of a sensor within a sliding window
is represented as a reading vector. Therefore, we can define
the similarity of two sensor nodes in terms of their reading
vectors. Since a faulty reading may be very different from
other normal readings from the perspectives of trend and
magnitudes, we employ the Extended Jaccard similarity [7]
as our similarity function. The Extended Jaccard similarity
function for calculating the similarity of two sensors s; and
s; is denoted as corr; ; and defined as follows:

bi (t) - b; (¥)
[[B: ()15 + [16; (E)I]5 — bi (£) - bj ()
where Hbl(t)||§ = |xi(t—At—|—1)|2—|—~~+|a:i(t)|2

corTi

When the readings of two sensors have neither the similar
trend nor the similar difference, the value of corr; ; is close
to 0. On the other hand, the value will be set to 1 when the
reading vectors of two sensors are exactly the same.

Arunanshu
Highlight

Arunanshu
Highlight

Arunanshu
Highlight

Arunanshu
Highlight

Arunanshu
Highlight

Arunanshu
Highlight

Arunanshu
Highlight

Arunanshu
Highlight

Arunanshu
Highlight

Arunanshu
Highlight

Arunanshu
Highlight

Arunanshu
Highlight

Arunanshu
Highlight

Assume that the communication range of a sensor node
is denoted as R and the geographical distance of two sensor
nodes is represented as dist(s;i,s;). In light of the corre-
lations among sensor nodes in the network, a correlation
network is defined as follows:

Definition 2. Correlation network: The correlation
network is modeled as a graph G = (V, E), where V repre-
sents the sensor nodes in the deployment region and E =
{(si, 85)|si,85 € V, dist(si,s;) < R and corr;; > 0}. The
weight of an edge (s;, s;) is assigned to be corr; ;.

Once the correlation network of sensors is constructed
(and maintained), one can easily deduce the correlations
among sensor nodes. Based on the correlation network, we
shall further develop an algorithm to compute SensorRank
for each sensor node, in terms of the correlation with its
neighbors, in the network.

3. SENSORRANK

SensorRank is to represent the trustworthiness of sensor
nodes. By our design, two requirements need to be met in
deriving SensorRank for each sensor.

Requirement 1: If a sensor has a large number of neigh-
bors with correlated readings, the opinion of this sensor is
trustworthy and thus its vote deserves more weight.

Requirement 2: A sensor node with a lot of trustworthy
neighbors is also trustworthy.

These two requirements ensure that 1) a sensor node which
has a large number of similar neighbors to have a high rank;
and 2) a sensor node which has a large number of ’good ref-
erences’ to have a high rank. Given a correlation network
G = (V, E) derived previously, we determine SensorRank
for each sensor to meet the above two requirements.

We model the correlation network as a Markov chain M,
where each sensor s; is viewed as the state 7, and the tran-
sition probability from state i (i.e., semsor s;) to state j
(i.e., sensor s;) is denoted as p; ; and formulated as p;; =

CO"”"iﬁj F . . - 1
-2 —— For example, in Figure 2 —
> kenei(i) COTTi,k pie, g , D2,3

0.083. Based on the above setting, we can formulate Sen-
sorRank of s;, denoted as rank;, as follows:

Z rank; - pj.i

sjenei(i)

rank; =

where nei(i) is the witness set of node 1.

The computation of SensorRank can be viewed as a ran-
dom walk over the correlation network. Several iterations
is required to perform random walks until a steady state
is achieved (i.e., SensorRanks become stable). Specifically,
rankl(k) is the value of SensorRank at the k-th iterations.
At the beginning, the initial rcmkgo) is set to 1. Note that

Tan/cEO) can be set to any constant ¢, and the results will be
¢ times the value generated when the initial SensorRank is
set to 1. In the first round, each sensor node s; updates its
SensorRank as rank'gl) using the initial SensorRanks of its
neighbors. Now each sensor node has considered the first
level neighbors to calculate its SensorRank. In the second
round, each sensor node can indirectly obtain some informa-
tion from the second level neighbors through its first level
neighbors since its first level neighbors have explored their
first level neighbors as well. Therefore, after the kth round,
sensor node s; has explored the kth level neighbors and up-

dated SensorRank as rankl{k).

Algorithm 1 SensorRank

Input: a sensor s;, and a threshold §.
Output: rank; for s;.
1: rankl@) =
2: for k=1to 6 do
3: for all s; € nei(s;) do
. B i
4: Pij = ESkEnei“) corri k
5
6
7

kl(k_l) - pij to s;
k](-k_l) - pji from every s; € nei (i)

send ran

receive all ran
(k) _

rank; "’ =3

(k—1)
sj€Enei(i) Tankj *Pji

0.
0.440.140.7 —

Figure 2: An example of Sensor Rank.

Consider an example in Figure 2. In the first round, s3
has some similarity information from its first level neigh-
bors {s2, s4, S9, $10, $11 }. Similarly, both s2 and s4 could ex-
change some information with their neighbors. In the second
round, s3 can obtain similarity information from the second
level neighbors {s1, s5} since its first level neighbors s2 and
s4 have explored s1 and s5 during the first round. If k is
larger, SensorRanks will be more accurate since every sensor
can explore more neighbors. In sensor networks, the com-
putation cost will be larger when the number of iterations
is larger. Therefore, we can limit k& to a preset bound 6.

Given a correlation network in Figure 2, we now demon-
strate how to calculate SensorRank. Initially, sensor s; sets
its sensorRank rankgo) to 1. For sensor s;, s; calculates

the trust relations p; ; to the corresponding neighbor s; and
sends rank:l(o) - pi,j to s;. For example, s3 sends rankéo) .
psa = 1- 93 = 0.167 to s1, 0.033 to s2, %2 = 0.067 to
s4, and etc. At the same time, s3 receives SensorRanks
from its neighbors. For example, s3 receives rcmkéO) P23 =
1- m = 0.083 from s2. Upon receiving all the pro-
portion of SensorRank from the neighbors, s3 can update

its SensorRank to rank:él).

Z rankgo) “Pji
i€{1,2,4,9,10,11}
= 1-p13+1-p23+1-ps3+1-pog3
+1-pio3z+1-p11,3
05 01 02 07 08 0.7

= oatietiot1s a3t 14
= 1.74

rankél)

After the first round, {rank§1>|z‘ = 1,2,3,4} ={1.13, 0.59,

1.11, 1.33}. In the second round, sensors calculate the values

Arunanshu
Highlight

Arunanshu
Highlight

Arunanshu
Highlight

Arunanshu
Highlight

Arunanshu
Highlight

Arunanshu
Highlight

S1 S2 S3 S4 S5 S6 S7 S8 S9 510 S11
k=0]1 1 1 1 1 1 1 1 1 1 1
k=1]|113 059 | 1.74 | 1.11 | 1.33 [0.64 | 1.14 | 0.89 | 0.58 | 1.3 0.54
k=2]|117|0.68 | 1.43 | 1.05 | 1.24 | 0.77 | 0.91 | 1.05 | 0.86 | 1.04 | 0.8

Table 1: SensorRank values for sensors in Figure 2.

of SensorRank with the updated values of SensorRank in the

first round. For example, s1 now sends mnkgl) p1,3 = 1.13-

0.5

2.1

= 0.269 to s3. Similarly, when s3 receives all the values

from its neighbors, s3 can update its SensorRank to rankég).
Assume that § = 2, s; will stop updating its SensorRank,
and {rank§2)|i= 1,2,374} —{1.17, 0.68, 1.43, 1.05}. As
expected, s3 has the highest SensorRank 1.43, since s3 has
many similar neighbors. Since s; has fewer similar neighbors
than ss, s; has smaller SensorRank than s3. The values of
SensorRank after the third iteration are listed in Table 1.
From Table 1, s3 has the largest SensorRank since more
nearby sensors have similar reading behaviors with s3. This
meets the requirements we set for design of SensorRank as
mentioned earlier.

4.

TRUSTVOTING ALGORITHM

Here we describe our design of the TrustVoting algorithm,

which consists of two phases: a) self-diagnosis; and b) neigh-
bors diagnosis phase. In the self-diagnosis phase, each sensor
verifies whether the current reading of a sensor is unusual
or not. Once the reading of a sensor goes through the self-
diagnosis phase, this sensor can directly report the reading.
Otherwise, the sensor node consults with its neighbors to
further validate whether the current reading is faulty or not.
If a reading is determined as faulty, it will be filtered out.
The sensor nodes generating faulty readings will not partic-
ipate in voting since these sensors are likely to contaminate
the voting result. Note that TrustVoting is an in-network
algorithm which is executed in a distributed manner. The
execution order of algorithm TrustVoting has an impact on
faulty reading detection. We will discuss this issue later.

Algorithm 2 TrustVoting

Input: a sensor s;, SensorRank rank; and time interval ¢
Output: justify whether the reading is faulty or not (i.e.,

1:

©

10:
11:
12:

faulty = true or not)
set faulty = false
broadcast rank; to the neighbors
receive {rank;|s; € nei (i)} from the neighbors
/* set timer by the priority sorted by SensorRank */
sort SensorRank values received
x = rank;’s order in the sorted SensorRank values
n = neighbors of sensor s;
timer = x * (;47) /*t is the time interval given */
while time == timer do
faulty = Procedure Self-Diagnosis
if faulty == true then
faulty = Procedure Neighbor-Diagnosis
return faulty

4.1 Self-diagnosis Phase

When a set of sensor nodes is queried, each sensor in

the queried set performs a self-diagnosis procedure to verify

whether its current reading vector is faulty or not. Once the
reading vector of a sensor node is determined as normal, the
sensor node does not need to enter the neighbor-diagnosis
phase. To execute a self-diagnosis, each sensor s; only main-
tains two reading vectors: i) the current reading vector at
the current time ¢ (denoted as b; (t)); and ii) the last correct
reading vector at a previous time ¢, (expressed by b; (tp)).
b; (tp) records a series of readings occurred in the previous
time and is used for checking whether the current reading
behavior is faulty or not. If these two reading vectors are not
similar, b; (t) is viewed as an unusual reading vector. Once
a sensor node is detected an unusual reading vector, this
sensor node will enter the neighbor-diagnosis phase to fur-
ther decide whether the unusual reading behavior is faulty
or not. Note that when b; (t) is identified as a normal vector
through the neighbor-diagnosis, b; (¢p) is updated so as to
reflect the current monitoring state.

4.2 Neighbor-diagnosis Phase

If a sensor node s; sends b; (t) to a neighbor s;, s; will
compare b; (t) with its own current reading vector b; () and
then give its vote with respect to b; (t). From the votes
from neighbors, s; has to determine whether b; (¢) is faulty
or not. Notice that some votes are from sensors with high
SensorRank. A sensor node with high SensorRank has more
similar neighbors to consult with and thus is more trust-
worthy. Therefore, the votes from the neighbors with high
SensorRank are more authoritative, whereas the votes from
the neighbors with low SensorRank should cast less weights.

When sensor s; sends b; (t) to all its neighbors for the
neighbor-diagnosis, each neighbor should return its vote af-
ter determining whether b; (¢) is faulty or not. If a neighbor
s; considers b; (t) is not faulty by comparing the similarity of
the two reading vectors (i.e., corr; ; > o), s; will send a pos-
itive vote, denoted vote; (i), to s;. Otherwise, the vote will
be negative. In addition, the vote from s; will be weighted
by its SensorRank.

vote; (i) = {

rank;,
—rank;,

corri; > 0
otherwise.

After collecting all the votes from the neighbors, s; has
two classes of votes: one is positive class (b; (¢) is normal)
and the other is negative class (b; (¢) is faulty). If the weight
of the former is larger than the weight of the later, the most
neighbors will view b; (t) as normal. Note that the weight of
a vote represents how authoritative a vote is. It is possible
that a neighbor s; of s; with a large SensorRank has a small
correlation with s;. In this case, these two sensor nodes may
not provide good judgments for each other. Therefore, each
vote (i.e., vote; (7)) has to be multiplied by the correspond-
ing correlation, corr; ;. Thus, we use the following formula
to determine whether the reading is faulty or not.

Z corr; j - vote; (i)

s;j€nei(i)

dec; =

Procedure Neighbor-Diagnosis

Input: a sensor s;, its current reading behavior b; (t), and
a threshold o.
Output: the variable faulty.
set dec; =0
: broadcast b; (t) to the neighbors
: for all s; € nei (i) do
if sim (b; (t),b; (t)) > o then
vote; (i) = rank;
else
vote; (i) = —rank;
dec; = dec; + trij - vote; (i)
if dec; > 0 then
10: return false
11: else
12: return true

PN

©

Figure 3: An example query for TrustVoting.

If the weight of the positive votes are more than the weight
of the negative votes, dec; will be positive which means that
si’s reading is normal and the current reading can be re-
ported. Otherwise, dec; is negative, implying that the cur-
rent reading of s; is faulty. For example in Figure 3, a
region of sensors is queried (s1, $2, $3, s4 and s5) and four
faulty sensors (gray nodes) exist. SensorRanks of sensors
are shown in square brackets in nodes and the correlation
between sensors are shown on edges. To facilitate presenta-
tion of this example, the plus sign (minus sign) shows that
two sensor nodes have similar (dissimilar) current readings,
and they are going to give the positive (negative) votes to
each other when executing the neighbors’ diagnosis. Con-
sider sensor node ss as an example, where s5 will receive the
votes from its neighbors (i.e., s1, s4, s6, s7 and ss). It can
be obtained that decs = (—1.17) - 0.4+ 1.05-0.7 4+ (—=0.77) -
0.5+ (—=0.91) - 0.2 + (—1.05) - 0.4 = —0.72. Therefore, the
reading reported by sensor node s5 is a faulty reading.

4.3 Execution Order of TrustVoting

Since the TrustVoting algorithm is a distributed algo-
rithm, sensors being queried will perform the self-diagnosis
and neighbor-diagnosis procedures individually. Different
execution orders have produce different results for faulty
detection. For example, consider two execution orders {si,
S2, S3, Sa, S5}t and {ss, s1, S2, S3, sa} in Figure 3. Assume
that all the queried sensor nodes have to perform the neigh-
bors’ diagnosis. In the order of {s1, s2, s3, sS4, S5}, when
s1 executes TrustVoting, s2, s4 and ss give negative votes,
while s3 and ss claim positive votes. As such, dec; will
be 0.16 and s; will be identified as normal. For sz, since

Order Faulty | Not faulty
S1,52,53,54,55 | S5 S1, 52, 83, 54
S5,581,52,83,54 | 54,55 S1, 52,53

Table 2: Faulty detection under different orders.

decy = (—1.17)-0.4+4 (—1.43)-0.1+1.05-0.7 = 0.124, s2 is
identified as normal. Following the same operations, we find
that s4 is also identified as normal. However, in the order of
{s1, $2, $3, 54, S5}, the result is different. When s5 executes
TrustVoting, s5 is identified as faulty obviously because al-
most all neighbors give ss negative votes. Therefore, s5 do
not vote for other sensors. Without the vote from ss, s4 is
regarded as faulty since (—1.17)-0.34-0.68-0.74+(—1.43)-0.2 =
—0.161. Table 2 shows the results under two different exe-
cution orders. From Table2, not all faulty readings reported
by faulty sensors (i.e., s2, s4 and s5) are detected and differ-
ence executions orders have an impact on the faulty reading
detection.

As such, how to determine an appropriate order to per-
form self-diagnosis and neighbor-diagnosis in algorithm Trus-
tVoting will have an impact on the final result. Since algo-
rithm TrustVoting is executed in a distributed manner, we
could use a timer to control the execution order of proce-
dures self-diagnosis and neighbor-diagnosis. Those sensors
having smaller values in their timers will perform first. By
exploring SensorRank, we could allow those sensor nodes
with higher SensorRank to perform self-diagnosis and neighb-
or-diagnosis as soon as possible. As pointed out early, sen-
sor nodes with a high SensorRank are likely to have many
similar neighbors, thereby these sensors could be correctly
identified whether readings are faulty or not. Once sen-
sors reporting faulty readings are detected, these sensors do
not get involved in voting in other sensor nodes. Therefore,
the domination problem can be alleviated since those faulty
sensors with higher weights could be determined as early as
possible.

Clearly, we could determine the order of executing pro-
cedures of self-diagnosis and neighbor-diagnosis according
to SensorRank. However, some highly ranked sensor nodes
may get their ranks from their highly ranked neighbors while
having few neighbors. Therefore, the number of neighbors
should also be taken into consideration. In algorithm TrustV-
oting, timers are set for each sensor in accordance to both
of the SensorRank and the number of neighbors. Specifi-
cally, assume that a time interval will be given in algorithm
TrustVoting. In algorithm TrustVoting, each sensor should
first broadcast SensorRank to neighbors. Once receiving
SensorRank values from its neighbors, each sensor should
sort SensorRank values in a decreasing order. Then, each
sensor should determine the order of its SensorRank in such
sorted list. Furthermore, a sensor will have information re-
lated to the number of neighbors from SensorRank values
received. Therefore, we could set timer to be x- ﬁ, where
x is the order of this sensor in a sorted list, n is the number
of neighbors and ¢ is the time interval given. With a smaller
value of timer, procedures of self-diagnosis and neighbor-
diagnosis will executed first.

Consider an illustrative example in 3. The timer value for
sensor s3 should be 1 - % since sensor node s3 has 6 neigh-
bors and its SensorRank is the highest among SensorRank
values collected (i.e., 6 neighbors and sensor s3). Following

the same operation, we could have the timer values %, %t

’» 73
3,7‘2 and % for s1, s2, s4 and ss, respectively. Assume that
each sensor does not pass self-diagnosis and have to exe-
cute the neighbor-diagnosis procedure. According to the
timers derived, s3 will perform first and the reading of s3 is
identified as a normal reading by neighbor-diagnosis Then,
both s1 and s5 will execute neighbor-diagnosis at the same
time. The reading reported by s1 (respectively, s5) will be
determined as a normal reading (respectively, faulty). The
executions of sz and s4 are then performed. In particular,
since s5 is viewed as faulty, s5 could not participate in vot-
ing process of s4. As a result, through the execution order
derived, we could accurately detect faulty readings reported
by s2, s4 and ss.

5. PERFORMANCE EVALUATION
5.1 Simulation Model

We simulate a synthetic environment, where sensors are
deployed in a 500 by 500 to monitor temperatures. The tem-
perature reading range is [—25, 275]. Moreover, events with
unusual readings are randomly generated in the monitored
field. The model of generating events are the same as in
[5, 6]. The faulty sensor rate (abbreviated as faulty rate)
is the ratio of the number of faulty sensors and the total
number of sensors deployed. Each sensor will report noisy
readings according to the parameter noise_prob. A faulty
sensor always report faulty readings and thus noise_prob is
set to 1 for faulty sensors. On the other hand, a normal
sensor is still likely to report noise or faulty readings. Thus,
for normal sensors, we set the noise_prob to 0.1. A noise
reading (referred to as a faulty reading) is randomly biased
from the normal reading generated and the amount of bias
is within the range of [—50,50]. A query is submitted to
wireless sensor networks with its query region as a rectangle
and query region size varied from 80 by 80 up to 160 by 160.
To evaluate the simulation result, two performance metrics
are employed: faulty detection rate and false positive rate.
Specifically, a query is issued to a query region B to obtain
the current readings sensed by the sensors, where the set of
these current readings is denoted as Xp. Assume that Yz is
a set of faulty readings in Xp. After executing TrustVoting
algorithm, we can filter out a set of faulty readings denoted
as Yllg, and obtain a subset of current readings X5z C Xp
without faulty readings. The faulty detection rate is de-

v, nyy, ‘

B oy .

fined as |YB|B and the false positive rate is defined as
vpuyy)—(veny;

‘(£ B‘)XB(‘ £ B)). In other words, the faulty detection

rate is the percentage of faulty readings correctly identified,
and the false positive rate is the percentage of faulty readings
(respectively, normal readings) that are identified as normal
(respectively, faulty) readings. We implement the classical
majority voting (denoted as MajorVoting) and the distance
weighted voting (denoted as WeightVoting) for comparison.

5.2 Simulation Result

5.2.1 Performance of TrustVoting

First, we evaluate the performance of these three algo-
rithms. The length of reading vectors for a sensor node
is set to 5 and the similarity threshold is set to 0.5. For
TrustVoting, the number of iterations for calculating Sen-

sorRank is set to 3. Figure 4 shows the faulty detection rates
of these three algorithms with various faulty rates. It can be
seen that TrustVoting can detect almost 90% faulty readings
while MajorVoting and WeightVoting can only identify 40%
faulty readings. However, since faulty readings in our faulty
model are biased from normal readings, it is hard to identi-
fied faulty readings for MajorVoting and WeightVoting. By
exploring SensorRank, TrustVoting outperforms other two
voting algorithms. Figure 5 shows the false positive rate
of the three algorithms. As the faulty rate increases, false
positive rates of three algorithms tend to increase due to a
larger number of faulty sensors (i.e., it is hard to correctly
detect faulty sensors when the number is large).

8 1.0

® 09 f 09—+,

g 08

-‘,3 0.7

H

o Uo

T L 0l -~ - --

S 04 k- ﬁﬁﬁ Wﬁﬁﬁl

§ 03 —4— TrustVoting

& 02 ¢ -~ MajorVoting
| - -k - WeightVoting
00 L L L L 1 1 1 1

01 02 03 04 05 06 07 08 09

faulty sensor rate
Figure 4: Faulty detection rates of the three algo-
rithms.

0.6
| —&— TrustVoting

--<[}-- MajorVoting 2
04 T & - Weightvating pd
03 '

0.5

0.2

false positive rate

0.1

0.0
01 02 03 04 05 06 07 08 09

faulty sensor rate

Figure 5: False positive rates of the three algo-
rithms.

5.2.2 Impact of Iterations on SensorRank

As mentioned before, SensorRank is calculated iteratively.
We now examine the impact of the number of iterations (i.e.,
the parameter §) to TrustVoting. Specifically, faulty rates
are set to 0.4, 0.5 and 0.6. The length of reading behaviors is
set to 5 and the similarity threshold is set to 0.5. The exper-
imental results are shown in Figure 6 and Figure 7. It can

be seen in Figure 6, when § increases, the faulty detection
rate will increase. This is due to that with a larger number
of iterations, SensorRank is able to have more neighbor-
ing information. Therefore, TrustVoting is able to precisely
identify faulty readings. Furthermore, with the number of
iterations increases, the false positive rate declines. How-
ever, increasing the number of iterations for SensorRank
will incur message transmissions among sensors. In addi-
tion, from Figure 6 and Figure 7, it can be seen that after 3
iterations, the improvements in the faulty detection rate and
the false positive rate are not very significant. Therefore, in
the following experiments, we set to number of iterations
for SensorRank to be 3. Clearly, the number of iteration for
SensorRank will be dependent upon the sensing data and
can be empirically determined.

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20

—4— 0.4 faulty rate
-+ 0.5 faulty rate
0.10 -k 0.6 faulty rate
0.00 T

faulty detection rate

number of iterations
Figure 6: Faulty detection rates with the number of

iterations of SensorRank varied.

0.25
0 A
® \ —4— 0.4 faulty rate
P REA
o \ \ -3+ 0.5 faulty rate
2 \ \
=] L " - - - 0.6 faulty rate
-"Vi" 0.15 ‘A y
2
o 0101
()
& 005 |

0.00 1 1 1 1 1 1 1 1 1

number of iterations

Figure 7: Faulty positive rates with the number of
iterations of SensorRank varied.

5.2.3 Impact of Reading Behavior Length

As mentioned earlier, reading of sensors is viewed as a
series of sensing readings within a sliding window A¢. Then,
we conduct experiments to show the impact of At. Without

loss of generality, the number of iterations for SensorRank
is set to 3 and the similarity threshold is set to 0.5. The
experimental results are shown in Figure 8 and Figure 9.

1.00
090
0.80
070 1
0.60
0.50

040 —4—0.4 faulty rate
030 1

020 | ---f1-- 0.5 faulty rate
010 - - 0.6 faulty rate
0.00 e

1T 2 3 4 5 6 7 8 9 10

faulty detection rate

length

Figure 8: Faulty detection rates with At varied.

0.18
9 016 + —— 0.4 faulty rate
E 014 --f-- 0.5 faulty rate ’
.E 012 -4 -08faulty rate / -
0 010
8.0.08 - \ REIPE R & S //‘"“A
(] 006 | \‘\ B//‘\\ _ /
L v -k Kk~
8 004 |

0.02

0.00 T T T Y S

length

Figure 9: False positive rates with At varied.

As can be seen in Figure 8 and Figure 9, the selection of
At should judiciously be determined. In Figure 8, the faulty
detection rate tends to increase with the length of reading
behavior. However, the improvement is not significant with
larger values of the A¢. On the other hand, in Figure 9, the
false positive rate decreases when the length of the read-
ing vectors increases. However, when At is larger than 5,
the false positive rate is increased. Intuitively, when At is
small, there are not enough readings for modeling the simi-
larity among sensors, whereas with a larger value of At, the
reading vectors of sensors may have more noisy readings.
Therefore, the setting of At is also application dependent
and should judiciously selected from the experiments.

5.2.4 Impact of Neighbors

Since TrustVoting is a voting scheme, the number of neigh-
bors will have impact on the effectiveness of TrustVoting.

1.00
0.90
0.80 r
0.70 1
0.60 r
0.50 r
040 —4— 0.4 faulty rate
030 ~-EF-- 0.5 faulty rate

020 iy
010 F - - - 0.6 faulty rate

0.00 1 1 1 1
5.24 8.58 8.74 15.48 20.89

faulty detection rate

number of neighbors

Figure 10: Faulty detection rates with the number
of neighbors varied.

0.25
[}
b A ——0.4 faulty rate
= 020 | N
g N <[+ 0.5 faulty rate
% 015 t "n.‘\ -~ 0.6 faulty rate
g .~
o 010 |
0
& 005 |

0.00 1 1 1 1

5.24 8.58 8.74 15.48 20.89
number of neighbors

Figure 11: False positive rates with the number of
neighbors varied.

Hence, experiments of Trust Voting with the number of neigh-
bors varied are conducted. We set the number of iterations
for SensorRank to 3, the similarity threshold to 0.5 and the
length of reading vectors to 5. Figure 10 and Figure 11 show
the performance of TrustVoting. It can be seen that in Fig-
ure 10, the faulty detection rate increases with the number
of neighbors. Moreover, in Figure 11, the false positive rate
decreases as the number of neighbors increases. With larger
number of neighbors, both the faulty detection rate and the
false positive rate are greatly improved even for the case in
which the faulty rate is high (i.e., 0.6 in this experiment).
This agrees with our intuition that the more neighbors a
sensor has, the better performance a voting scheme is. The
above experiments show that when the faulty rate is high,
one should deploy a sufficient amount of sensors so as to
further improve the effectiveness of TrustVoting.

6. CONCLUSIONS
With the presence of faulty readings, the accuracy of query

results in wireless sensor networks may be greatly affected.
In this paper, we first formulated the correlation among
readings of sensors nodes. Given correlations among sensor
nodes, a correlation network is built to facilitate derivation
of SensorRank for sensor nodes in the network. In light of
SensorRank, an in-network algorithm TrustVoting is devel-
oped to determine faulty readings. Performance evaluation
shows that by exploiting SensorRank, algorithm TrustVot-
ing is able to efficiently identify faulty readings and out-
performs majority voting and distance weighted voting, two
state-of-the-art approaches for in-network faulty reading de-
tection.

Acknowledgement

Wen-Chih Peng was supported in part by the National Sci-
ence Council, Project No. NSC 95-2211-E-009-61-MY3 and
NSC 95-2221-E-009-026, Taiwan, Republic of China. Wang-
Chien Lee was supported in part by the National Science
Foundation under Grant no. IIS-0328881, 11S-0534343 and
CNS-0626709.

7. REFERENCES

[1] T. Clouqueur, K. K. Saluja, and P. Ramanathan. Fault
tolerance in collaborative sensor networks for target
detection. IEEE Transactions on Computers,
53(3):320-333, 2004.

[2] Min Ding, Dechang Chen, Kai Xian, and Xiuzhen
Cheng. Localized fault-tolerant event boundary
detection in sensor networks. In Proc. of IEEE
INFOCOM, March 2005.

[3] Eiman Elnahrawy and Badri Nath. Online data
cleaning in wireless sensor networks. In Proc. of
International Conference on Embedded Networked
Sensor Systems(SenSys), pages 294-295, 2003.

[4] Farinaz Koushanfar, Miodrag Potkonjak, and Alberto
Sangiovanni-Vincentelli. Fault tolerance in wireless
ad-hoc sensor networks. In Proc. of IEEE International
Conference on Sensors, June 2002.

[5] Mark D. Krasniewski, Padma Varadharajan, Bryan
Rabeler, Saurabh Bagchi, and Y. Charlie Hu. Tibfit:
Trust index based fault tolerance for arbitrary data
faults in sensor networks. In Proc. of International
Conference on Dependable Systems and Networks,
pages 672-681, 2005.

[6] B. Krishnamachari and S. Iyengar. Distributed
bayesian algorithms for fault-tolerant event region
detection in wireless sensor networks. IEEE
Transactions on Computers, 53(3):241-250, 2004.

[7] Alexander Strehl, Joydeep Ghosh, and Raymond J.
Mooney. Impact of similarity measures on web-page
clustering. In Proc. of AAAI Workshop on Al for Web
Search, pages 5864, July 2000.

[8] Sharmila Subramaniam, Themis Palpana, Dimitris
Papadopoulos, Vana Kalogeraki, and Dimitrios
Gunopulos. Online outlier detection in sensor data
using non-parametric models. In Proc. of International
Conference on Very Large Data Bases(VLDB), pages
187-198, 2006.

[9] Tony Sun, Ling-Jyh Chen, Chih-Chieh Han, and Mario
Gerla. Reliable sensor networks for planet exploration.
In Proc. of International Conference on Networking,
Sensing and Control, pages 816-821, 2005.

