
 

 

 

535.421 Intermediate Fluid Dynamics 14 

Discussion of the Pipe Problem 
This problem concerns the flow of oil through a pipe that is half buried in the ground. This pipe 
configuration results in uneven heating such that the temperature varies on the circumference of 
the pipe causing a steady temperature distribution (due to conduction) throughout the oil in the 
pipe. This variation in temperature, in turn, causes a variation in the viscosity of the oil 
throughout the pipe cross-section. Because the viscosity varies, the axial velocity distribution is 
no longer the simple Hagen-Poiseuille pipe flow distribution, but instead is substantially 
different. Finally, if the velocity distribution is different, how does this change the volumetric 
flow rate of oil in the pipe?  This is important to know accurately if you are delivering oil 
through this pipe to a customer; the financial return is based on how much oil is actually 
delivered. 

One way to estimate the volumetric flow rate using a back of the envelope calculation is to 
assume Hagen-Poiseuille pipe flow. For this simple pipe flow, the flow rate is available 
analytically. For the viscosity needed in this simple formula, one can use a viscosity for oil at a 
temperature averaged over the pipe cross-section. How good is this estimate? 

The more accurate way to determine the flow rate is to compute, using CFD, the temperature 
field, the viscosity field and then the velocity field in this flow. Once the velocity field has been 
determined, one can compute the flow rate numerically by integrating over the pipe cross-
section. This more accurate answer can then be compared to the simple estimate described 
above. This is the approach that will be taken for this part of the Course Project. You will answer 
the question posed above by comparing the answer given by the simple estimate to the more 
precise answer determined through the application of CFD techniques. Now, we turn to the 
construction of the grid. 

Grid Development 

The circular geometry of the pipe suggests the use of cylindrical coordinates. Because we are not 
varying any quantities along the axis of the pipe, our problem is a 2-D problem. As we consider 
constructing a grid, two issues become important. Is there any symmetry in the problem?  If the 
solution for the temperature and velocity fields is symmetric, then we do not have to compute the 
solution over the entire domain. Instead, we can save on computational resources and compute 
the solution for half of the domain. Then, it is a simple matter to take the computed solution and 
reflect it across the symmetry boundary to get the solution for the rest of the domain. As we 
consider the temperature and velocity fields below, we will see that the solution is symmetric 
about a vertical diameter of the pipe. 

Consideration of any symmetry that may exist in a problem can greatly reduce 
the computational resources that are required. 

The second issue concerns the implementation of the code that generates the grid. When 
approaching a problem for the first time, it is not clear how dense the grid should be, that is, the 
number of radial and azimuthal spacings that will be required. Therefore, one should develop 



 

 

 

Module 2: Computational Fluid Dynamics 15 
equations to create the grid that use the number of spacings as a variable. Then, this variable can 
be changed one place in the code and the grid will update accordingly. The equally-spaced polar 
grid that we will develop is shown in Fig. 2.7. 

Fig. 2.7 Grid for the pipe problem. 
Shown with 𝑵 = 𝟒 in r-direction and with 𝑵 = 𝟗 in the 𝜽-direction for convenience. 

As the figure shows we will compute the solution for half of the domain. Let the number of grid 
lines in the radial and azimuthal directions be given by 𝑁. Therefore, the number of intervals 
(spacings) in these two directions will be 𝑁 − 1. The radial and azimuthal spacings are then 
given by 

 ∆𝑟 = 𝑅
𝑁−1

  and  ∆𝜃 = 𝜋
𝑁−1

  . (2.27) 

The radial and azimuthal locations of the i,jth grid point are determined from 

 𝑟𝑖 = (𝑖 − 1)∆𝑟  and  𝜃𝑗 = − 𝜋
2

+ (𝑗 − 1)∆𝜃  . (2.28) 

for 𝑖, 𝑗 = 1, ⋯ , 𝑁. Note that we are using a grid that is equally spaced and with the same number 
of intervals in both directions, whereas, Fig. 2.7 displays a different number of intervals in each 
direction for ease of viewing. For implementation, it will be useful for 𝑁 − 1 to be a multiple of 
16 such as 64, 128, 256, 512, etc, which means that 𝑁 will have values such as 65, 129, 257, 
513, etc. (You are only required to use 𝑁 = 65, but variation of this quantity to see its effect is a 
simple matter). 

We will find it useful, for a given grid size, to be able to determine the value of j that 
corresponds to the ray: 𝜃 = 0. If we call this value 𝑗 = 𝑗𝑚𝑖𝑑, then it is given as 

 𝑗𝑚𝑖𝑑 = 𝑁−1
2

+ 1  . (2.29) 

As can be seen from Fig. 2.7, when 𝑁 = 9, then 𝑗𝑚𝑖𝑑 = 5. 

Boundary 
Condition 

Symmetry 
Condition 



 

 

 

535.421 Intermediate Fluid Dynamics 16 

We will also find it useful to be able to represent our polar grid as a square mesh. This is helpful 
when visualizing two-dimensional arrays of values. The square grid is shown in Fig. 2.8. Points 
a, b and c are provided in both figures as an aid to locating these points. Note that the center 
point of the polar grid is repeated multiple times in the square grid, as it will be in the 2-D array 
that stores the dependent variable. 

Next, we will consider the solution of the temperature field for this problem. 

Temperature Field 

The temperature boundary condition on the pipe wall from the project description is given as 

 𝑇𝑠 = 125°𝐹 + 50°𝐹 sin 𝜃  . (2.30) 

To develop intuition about this problem, ask yourself the following series of questions. Where is 
the temperature on the pipe wall the highest?  Where is it the lowest?  What is the temperature on 

Fig. 2.8 Rectangular grid representation for the pipe problem. 
𝑵 = 𝑵𝑹𝑪 in this figure. 

the pipe wall at 𝜃 = 0 and at  𝜃 = 𝜋?  Are they the same?  If there is symmetry about the vertical 
diameter, then what do you think the temperature might be at every point along the horizontal 
diameter?  Therefore, what would be the temperature at the center of the pipe?  If the 
temperatures are higher above the horizontal diameter and lower below the horizontal diameter, 
then what value could be used to represent the average temperature in the pipe? 

The project description gives the governing equation for the temperature field 𝑇(𝑟, 𝜃) as 

 𝜕2𝑇
𝜕𝑟2 + 1

𝑟
𝜕𝑇
𝜕𝑟

+ 1
𝑟2

𝜕2𝑇
𝜕𝜃2 = 0  . (2.31) 

Boundary Condition 

Symmetry Condition 

Symmetry Condition 

Center Pt Condition 



 

 

 

Module 2: Computational Fluid Dynamics 17 
This is the steady heat conduction equation written in cylindrical coordinates; it can also be 
written as 

 ∇2𝑇 = 0  , (2.32) 

because the ∇2 operator in cylindrical coordinates is  

 ∇2= 𝜕2

𝜕𝑟2 + 1
𝑟

𝜕
𝜕𝑟

+ 1
𝑟2

𝜕2

𝜕𝜃2 + 𝜕2

𝜕𝑧2 = 0  , (2.33) 

and we are not considering any variation in the axial direction. What kind of equation is 
Eq. 2.32? 

So, we proceed as we did for the first problem in the project. Discretize Eq. 2.31 by inserting 

second order accurate central differences for the derivatives  𝜕2𝑇
𝜕𝑟2, 𝜕𝑇

𝜕𝑟
 and 𝜕2𝑇

𝜕𝜃2. For example, 

 [𝑇𝑖+1,𝑗−2𝑇𝑖,𝑗+𝑇𝑖−1,𝑗

∆𝑟2 ] + 1
𝑟𝑖

[ ] + 1
𝑟𝑖

2 [ ] = 0  . (2.34) 

Then, solve the resulting equation for 𝑇𝑖,𝑗 in order to get an equation that can be iterated. Get an 
equation that looks like 

 𝑇𝑖,𝑗 = 𝐶𝑖[𝑇𝑒𝑟𝑚 1 + 𝑇𝑒𝑟𝑚 2 + 𝑇𝑒𝑟𝑚 3]  , (2.35) 

where 𝐶𝑖 is a collection of known values including 𝑟𝑖, which is the reason for the subscript. This 
is the equation that must be iterated over all interior points 𝑖, 𝑗 = 2, ⋯ , 𝑁 − 1. Now, let's 
consider the various boundaries in the problem. 

Along the 𝜃 = − 𝜋
2
 radius (𝑗 = 1), what is the symmetry condition?  The condition is that the 

azimuthal component of the heat flux vector is zero. Namely, 

 

𝑞 = −𝑘∇𝑇

𝑞𝜃 = − 𝑘
𝑟

𝜕𝑇
𝜕𝜃

= 0  𝜃-component
𝜕𝑇
𝜕𝜃

= 0

    . (2.36) 

The top equation indicates that the heat flux vector is given by the negative of the thermal 
conductivity times the gradient of temperature. In other words, heat flows down the temperature 
gradient. The middle equation is the azimuthal component of the top equation written in 
cylindrical coordinates. The middle equation reduces to the bottom equation. The reason that no 
heat flows across the symmetry boundary is that there is no temperature gradient across the 
boundary; this means that the temperature on one side of the symmetry boundary is the same as 
the temperature at the corresponding grid point on the other side of the boundary. To see this, 
insert a central difference for the derivative 𝜕𝑇

𝜕𝜃
 into the bottom equation of Eq. 2.36 and simplify 

the resulting algebraic equation. This will be the symmetry condition. 

Now, Eq. 2.35 will have terms containing 𝑇𝑖,𝑗−1. For interior points, these terms will always 
exist; however, along the symmetry boundary 𝑗 = 1, this means that we need grid points 𝑇𝑖,0, 



 

 

 

535.421 Intermediate Fluid Dynamics 18 

which do not exist. What do we do?  The answer is that we use the symmetry condition to 
replace terms containing 𝑇𝑖,𝑗−1 with terms that we can evaluate along 𝑗 = 1. Therefore, by 
invoking the symmetry condition, we will use a simplified form of Eq. 2.35, which can only be 
used to iterate points along the symmetry boundary 𝑗 = 1. So, just like interior points, symmetry 
points must also be iterated. 

Similarly, along the symmetry boundary 𝑗 = 𝑁, we will have a problem with terms containing 
𝑇𝑖,𝑗+1 that will be present in Eq. 2.35. So, we use the symmetry condition again to replace terms 
containing 𝑇𝑖,𝑗+1 with terms that we can evaluate along 𝑗 = 𝑁. Therefore, by invoking the 
symmetry condition, we will use a different simplified form of Eq. 2.35, which can only be used 
to iterate points along the symmetry boundary 𝑗 = 𝑁. 

What do we do on the boundary 𝑖 = 𝑁?  This corresponds to the wall of the pipe, and we have a 
boundary condition along this wall given by Eq. 2.30. We do not iterate boundary points. We 
simply set the value of the temperature at each boundary point, and maintain these values 
throughout the computation. Note that the boundary condition is not zero (as it was for the 
Laplace Equation in the first problem), and we will therefore have a nonzero temperature 
solution. 

This leaves one final boundary as can be seen in Fig. 2.8. What equation should be used to iterate 
the center point?  We know two facts about the center point. The first is 

 𝑇1,𝑗+1 = 𝑇1,𝑗−1 = 𝑇1,𝑗  , (2.37) 

for 𝑗 = 1, ⋯ , 𝑁. This simply states that all of the center points shown in Fig. 2.8 are the same 
point. The second fact is that along the ray 𝜃 = 0 corresponding to 𝑗 = 𝑗𝑚𝑖𝑑, we know that  

 𝑇𝑖+1,𝑗 = 𝑇𝑖−1,𝑗  , (2.38) 

for 𝑗 = 𝑗𝑚𝑖𝑑. Plug Eqs. 2.37 and 2.38 into Eq. 2.35 to get (after some algebra) a very simple 
equation. This equation can only be used to iterate the single point at 𝑖 = 1 and 𝑗 = 𝑗𝑚𝑖𝑑. After 
this point has been updated, then following Eq. 2.37, update all of the other center points to this 
new value. 

Of course, there is one other option for the center point. We know the temperature at the center 
point!  So, the other option is to treat the center point like a boundary condition and maintain it 
throughout the computation. 

This center point approach is much easier, but this is not the best option to take. Here's why. You 
will also need to solve for the center point velocity when we proceed to consider the velocity 
solution. We do not know the velocity at the center of the pipe. Therefore, we will not have the 
simple approach for the center point velocity. We will have to use the iterated approach. 
However, there will be no way to check that code in advance. If you iterate for the center point 
for the temperature solution, the center point temperature better be the expected center point 
temperature upon convergence. This will be a check that your code is correct, and you will be 
better prepared to compute the center point velocity. 



 

 

 

Module 2: Computational Fluid Dynamics 19 
What initial temperatures should be specified for all points that are not boundary points prior to 
iteration?  The most sensible choice is to set these points to the average temperature because we 
know during iteration that some temperatures will go higher and some lower. What iteration 
method should be used?  We will use Gauss-Seidel as opposed to Jacobi to ensure faster 
convergence. As before use the 𝐿2 norm and monitor for the condition ∆𝜀 ≤ 𝜀𝑚𝑖𝑛. Keep track of 
the iterations and the elapsed time. 

Summarizing, the following steps should be performed (in any order) during each iteration. 

1. Iterate the simplified equation on the symmetry boundary at 𝑗 = 1. 
2. Iterate the full equation, Eq. 2.35 on interior points. 
3. Iterate the other simplified equation on the symmetry boundary at 𝑗 = 𝑁. 
4. Iterate the very simple equation for the center point. 
5. Maintain boundary points at the boundary condition. 

For this part of the pipe problem, an exact solution is available for the temperature field!  
Although not required, the motivated student may wish to solve Eq. 2.31 by using the Separation 
of Variables technique. Once the exact solution has been obtained, one may code the analytical 
solution and compare the exact solution to the computed solution (after convergence) at each 
grid point as a check on the computation. An obvious check would be to save the differences in 
an array and report the maximum difference as a measure of the goodness of the computed 
solution. 

Viscosity Field 

After obtaining a converged temperature field, one has a 2-D array of temperatures 𝑇𝑖,𝑗 at the 
grid points. To obtain the viscosity field 𝜇(𝑟, 𝜃), no iteration is required. One simply computes a 
2-D array of viscosities at the grid points using 

 𝜇𝑖,𝑗 = 𝜇0 𝑒
𝑐

𝑇𝑖,𝑗+𝑑  , (2.39) 

where 𝜇0, c and d are constants that are provided. 

 

Velocity Field 

We now proceed to compute the velocity field for the axial velocity component 𝑢(𝑟, 𝜃) in the 
pipe. The governing equation is given as 

 𝑑𝑝
𝑑𝑧

= 1
𝑟

𝜕
𝜕𝑟

(𝜇 𝑟 𝜕𝑢
𝜕𝑟

) + 1
𝑟

𝜕
𝜕𝜃

(𝜇
𝑟

𝜕𝑢
𝜕𝜃

)  , (2.40) 

where 𝑑𝑝 𝑑𝑧⁄  is a constant that is provided. Note in Eq. 2.40 that 𝜇 is not constant. The 
differentiation of a product that appears in two terms of the equation means that when the 
differentiation is carried out, you will obtain derivatives of 𝜇 as well as derivatives of 𝑢. 
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Before proceeding to consider this equation further, ask yourself the following series of 
questions. What is the boundary condition for the velocity field on the pipe wall (answer this 
yourself)?  Do we have symmetry conditions as we did for the temperature field (yes)?  What is 
the velocity at the center point (unknown in advance)?  What velocity values should be given to 
interior points initially? 

To answer this last question, consider that, for a constant temperature distribution, the velocity 
field would be the Hagen-Poiseuille parabolic profile. Therefore, it makes sense to use this 
equation to define the initial velocities. Review pp. 274-280 in your text. Note that when the 
Navier-Stokes equation is given in Eq. 6.9, the viscosity (buried in the kinematic viscosity term 
𝜈 = 𝜇 𝜌⁄ ) is already considered as a constant and has been pulled outside of the derivative 
operations. This is what permits an analytic solution, and the equation for the axial velocity is 
given in Eq. 6.16. What value for 𝜇 should be used in this equation to define the initial 
velocities?  Use a value 𝜇𝑎𝑣𝑔 found by evaluating Eq. 2.39 at the average temperature in the 
pipe. Use the constant 𝑑𝑝 𝑑𝑧⁄  provided in the project description for the pressure gradient 
required in Eq. 6.16. Also note in your text that the average velocity for a Hagen-Poiseuille 
parabolic profile can be found in Eq. 6.25. The average velocity times pipe cross-sectional area 
gives the volumetric flow rate Q. This is the source of the flow rate estimate provided in the 
project handout as Eq. 6. 

We can now proceed to discretize Eq. 2.40. First, you must carry out all derivative operations 
implied in the equation. Then, introduce second order accurate central differences to estimate the 
derivatives that appear. For example, two of the derivatives that will exist are 

 𝜕𝜇
𝜕𝑟

= 𝜇𝑖+1,𝑗 − 𝜇𝑖−1,𝑗

2Δ𝑟
  and  𝜕𝑢

𝜕𝑟
= 𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗

2Δ𝑟
  . (2.41) 

There will be other derivative expressions as well; each will require a central difference. For the 
expressions containing 𝜇𝑖,𝑗, you already have these numbers!  You just plug in these values 
during the iteration. That is, 𝜇𝑖,𝑗 is not iterated, only the dependent variable 𝑢𝑖,𝑗 is iterated. After 
inserting the central difference expressions, solve the equation for 𝑢𝑖,𝑗 to get an equation that can 
be iterated. Get an equation that looks like 

 𝑢𝑖,𝑗 = 𝐶𝑖𝑗[𝑇𝑒𝑟𝑚 1 + 𝑇𝑒𝑟𝑚 2 + 𝑇𝑒𝑟𝑚 3 + 𝑇𝑒𝑟𝑚 4 + 𝑇𝑒𝑟𝑚 5]  , (2.42) 

where 𝐶𝑖𝑗 is a collection of known values including 𝑟𝑖 and 𝜇𝑖,𝑗, which is the reason for the 
subscripts. This is the equation that must be iterated over all interior points 𝑖, 𝑗 = 2, ⋯ , 𝑁 − 1. 

Then, as with the temperature equation, you will proceed to determine simplified forms of 
Eq. 2.42 to use on the two symmetry boundaries by substituting for any 𝑢𝑖,𝑗−1 expressions that 
may appear on the 𝑗 = 1 boundary using the symmetry condition, and by substituting for any 
𝑢𝑖,𝑗+1 expressions that may appear on the 𝑗 = 𝑁 boundary. The same center point conditions 
given in Eqs. 2.37 and 2.38 apply, using 𝑢 in place of 𝑇. Insert these conditions into Eq. 2.42 and 
simplify to get a very simple equation (but not the same equation as for the temperature field) 
that can be iterated at the center point. 
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We will again use Gauss-Seidel as the iteration method. As before use the 𝐿2 norm and monitor 
for the condition ∆𝜀 ≤ 𝜀𝑚𝑖𝑛. Keep track of the iterations and the elapsed time. 

Summarizing, the following steps should be performed (in any order) during each iteration. 

1. Iterate the simplified equation on the symmetry boundary at 𝑗 = 1. 
2. Iterate the full equation, Eq. 2.42 on interior points. 
3. Iterate the other simplified equation on the symmetry boundary at 𝑗 = 𝑁. 
4. Iterate the very simple equation for the center point. 
5. Maintain boundary points at the boundary condition. 

After obtaining a converged velocity field, one has a 2-D array of velocities at the grid points. 

Volumetric Flow Rate 

Now, we get to the main point of the problem. Precisely how much oil is flowing through this 
pipe?  From calculus, recall that the average velocity over a cross-sectional area is obtained from 
the following integral 

 𝑢 = 1
𝐴 ∫ 𝑢 ∙ 𝑑𝐴𝐴   . (2.43) 

The volumetric flow rate is this average velocity times the pipe cross-sectional area, namely 

 𝑄 = 𝑢𝐴 = ∫ 𝑢 ∙ 𝑑𝐴𝐴   . (2.44) 

For the circular pipe, the area integral is determined as 

 𝑄 = ∫ ∫ 𝑢 𝑟 𝑑𝑟𝑑𝜃𝑅
0

2𝜋
0   . (2.45) 

However, we only have velocities for half of the pipe, so we integrate over half of the pipe and 
multiply by two using the following form of the equation 

 𝑄 = 2 ∫ ∫ 𝑢 𝑟 𝑑𝑟𝑑𝜃𝑅
0

𝜋
2

−𝜋
2

  . (2.46) 

How do we perform the integration numerically?  There are a host of methods that are available 
for numerical integration. A simple method is the Trapezoidal Rule. The trapezoidal rule applied 
to a function 𝑓(𝑥) is 

 ∫ 𝑓(𝑥)𝑑𝑥𝑥𝑁
𝑥1

= ∆𝑥 [1
2

𝑓(𝑥1) + 𝑓(𝑥2) +  ⋯ + 𝑓(𝑥𝑁−1) + 1
2

𝑓(𝑥𝑁) ] + 𝑂(∆𝑥3)  , (2.47) 

where the coefficients are all one except for the first and last term. An implementation of this 
method for the double integral in Eq. 2.46 is given as follows. 

The inner integral can be found as 

 
𝑢𝑠𝑢𝑚𝑗 = ∑ 𝑟𝑖 𝑢𝑖,𝑗

𝑁−1
2

𝑢𝑖𝑛𝑡𝑗 = ∆𝑟 [1
2

𝑟1 𝑢1,𝑗 + 𝑢𝑠𝑢𝑚𝑗 + 1
2

𝑟𝑁 𝑢𝑁,𝑗]
  , (2.48) 
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where 𝑢𝑠𝑢𝑚 and 𝑢𝑖𝑛𝑡 are arbitrarily chosen array names. Then, the outer integral is 

 
𝑈𝑆𝑈𝑀 = ∑ 𝑢𝑖𝑛𝑡𝑗

𝑁−1
2

𝑄 = ∆𝜃 [1
2

𝑢𝑖𝑛𝑡1 + 𝑈𝑆𝑈𝑀 + 1
2

𝑢𝑖𝑛𝑡𝑁]
  . (2.49) 

Finally, we recall that we must double this answer to get the flow rate for the entire pipe 

 𝑄𝑎𝑐𝑡 = 2𝑄  . (2.50) 

This is the actual flow rate in the pipe accounting for the temperature variation, which causes the 
viscosity, and therefore the velocity, to vary. 

The final step is to determine the difference in percent between the actual flowrate 𝑄𝑎𝑐𝑡 and the 
estimated flowrate using the Hagen-Poiseuille profile 𝑄𝑒𝑠𝑡. This can be determined from 

 ∆𝑄% = |𝑄𝑎𝑐𝑡−𝑄𝑒𝑠𝑡
𝑄𝑎𝑐𝑡

| × 100  . (2.51) 

A numerical integration technique more accurate than the trapezoidal rule is Simpson's Rule. 
This is the technique used in my implementation; it is only marginally more complicated to 
program. The motivated student may wish to employ this technique instead. 

Pipe Project Products 

A report should be prepared discussing the temperature, viscosity and velocity solutions. Graphs 
of the temperature, viscosity and velocity solutions in the form of contour plots or 3-D surface 
plots should be provided. At the very least, one should provide the contour plots of the solution 
for half of the pipe in rectangular form using the grid in Fig. 2.8. These plots are, however, 
difficult to interpret. A better solution, if Matlab is used, is to generate polar contour plots. One 
should look up the appropriate commands in Matlab help. To create a polar contour plot for the 
entire pipe, one must create some code to copy the computed solution (for temperature, viscosity 
or velocity) to the other half of the domain. The resulting plots are quite appealing; examples for 
the temperature and velocity solutions are provided in Figs. 2.9 and 2.10. 
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Fig. 2.9 Temperature solution for the pipe problem with 𝑵 = 𝟔𝟓. 

Fig. 2.10 Velocity solution for the pipe problem with 𝑵 = 𝟔𝟓. 

Plots of the convergence history versus iterations or elapsed time should be provided for the 
temperature and velocity solutions. The calculation of ∆𝑄% should be provided, and you should 
provide your thoughts on the (surprising?) answer. Finally, a copy of your code should be 
attached. 

  


