
 

Course Project 

535.421: Intermediate Fluid Dynamics 

Overview 

A proper introduction to the art of Computational Fluid Dynamics (CFD) would require several 

semesters on this topic alone.  Clearly this cannot be accomplished in a first graduate course in fluid 

dynamics, where the semester is already filled with the necessary topics to understand the underlying 

principles of the subject.  On the other hand, the two primary approaches for describing fluid flows that 

cannot be obtained from analytical solution of the governing equations are: the use of experiments and 

the use of the computer to find numerical solutions.  We will speak of experimental techniques 

throughout the course in each module.  The use of computers in fluid dynamics is so pervasive that to 

ignore this topic completely until a later course is not prudent.  The compromise that has been adopted is 

to provide an introduction to CFD in Module 2 sufficient to allow the solution of two typical 

engineering problems contained in this course project.  Students will develop grids, write computer 

codes, produce converged solutions, assess the error, plot flow fields and compute derived engineering 

quantities from the results.  From this experience students will gain an appreciation for many of the 

primary features of CFD.  This project will be graded on the basis of 100 points, and the grade will 

represent 25% of the total course grade. 

A good introduction to CFD is gained by focusing attention on a subclass of fluid flow problems 

governed by elliptic partial differential equations that are steady in time and vary only in space.  

Examples of such equations are the Poisson and Laplace equations, which are the topic of the first part 

of the project.  The point of the first project problem is to allow the student to develop the needed code 

to complete a CFD solution of a simple problem.  After gaining experience with the first problem, 

portions of this code are reused, and the rest is expanded upon to tackle an engineering-oriented pipe 

flow problem which is the subject of the second part of the project.  Students are required to complete 

both parts of the project.  This document will concentrate on the assignment of the problems, submission 

details, required deliverables and a grading rubric.  Substantial background information and advice on 

the approach to these problems may be found in the Module 2 Lecture Notes.  Also, several of the 

discussion activities are designed to assist progress towards the solution. 

Objectives 

After completion of this project, you will be able to: 

 Discretize the governing equation for a fluid flow problem by using central difference 

estimates for the derivatives 

 Develop both rectangular and polar grids for the problems and assign boundary and 

symmetry conditions appropriately 

 Compute solutions using two iterative methods: Jacobi and Gauss-Seidel 

 Plot the convergence history as well as contour plots of the solution 

 Produce a series of solutions, where preceding computations are required to define the 

next 

 Compute derived quantities of engineering significance that permit appropriate business 

decisions to be made 



 

Project Assignment – Part 1 – Solution of Elliptic Partial Differential Equations 

Introduction 

The diffusion of a scalar quantity   in a two dimensional physical domain can be mathematically 

described by Poisson's equation 

 ),(2 yxf    , (1) 

where   is the gradient operator and ),( yxf  is a distribution of sources (or sinks) within the domain.  

A Poisson equation is an elliptic partial differential equation; by this it is meant that the behavior of the 

scalar quantity  , at any given point in the physical domain, is related to all other values of   within 

the domain, as well as to the boundary conditions and to the term ),( yxf .  When the right-hand side of 

this equation is zero, then the equation is called a Laplace equation. 

Part 1 Statement – Do the following two problems. 

I. Consider the two-dimensional Laplace equation 
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on the square domain 10,10  yx  with homogeneous boundary conditions 

 0)1,()0,(),1(),0(  xxyy    . (3) 

Discretize equation (2) on a square mesh with 641 yx .  Using random numbers distributed 

between 0 and 1 for the initial guess 0 , invert the system of algebraic equations resulting from the 

discretization of equation (2) using both the Jacobi method and then the Gauss-Seidel method. 

The 2L  norm of the error, defined as 
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can be used as a measure of convergence.  Choose a small number, 6

min 101  , say, and cease 

iterating when 
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Plot n  as a function of the number of iterations n and the elapsed time.  These plots show the 

convergence history of the solution.  Specifically, this will be two separate plots with two curves (one 

for each of the two iteration methods) on each plot.  Alternatively, one curve on each plot for a total of 

four plots is acceptable.  For each plot, the abscissa should be a linear axis, and the ordinate is best 

plotted on a logarithmic axis.  Produce a contour plot showing the converged solution for  .  Comment 

on your results. 

  



 

II. Repeat the basic problem for the two dimensional Poisson equation 
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on the square domain 10,10  yx  with boundary conditions 

 0)1,()0,(1),1(1),0(  xxyy    , (7) 

and with a source and a sink located at 

 Case a 1)5.0,75.0(1)5.0,25.0(  ff   , (8) 

 Case b 2500)5.0,75.0(2500)5.0,25.0(  ff   , (9) 

 Case c 15000)5.0,75.0(15000)5.0,25.0(  ff   . (10) 

For case (a) only, plot the two error plots as described above.  For cases (a) - (c), create contour plots 

showing the converged solution for  . 

Project Assignment – Part 2 – Pipe Flow Problem 

Fig. 1  Cross-sectional view of pipe flow problem 

Figure 1 shows a cross section of an oil pipeline that is half buried in relatively cool ground.  The top 

half of the pipe is exposed to the sun, and the surface temperature of the pipe may be approximated by 

 sinBATs    , (11) 

where A and B are constants given below.  Assuming that the thermal conductivity of the oil is constant 

and that heat transfer across the section is by conduction only, the local oil temperature ),( rTT   is 

the solution of the simplified heat conduction equation in cylindrical coordinates: 
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(a) Write a program that will perform a finite difference solution to find T as a function of r and  .  

An iterative technique, such as the Gauss-Seidel method is suggested.  Observe that symmetry makes it 

necessary to consider only the region 22   , at most.  The input data should include values 

for A, B, k (the number of radial spacings r ), l (the number of angular increments   between 

2   and 2  ), M (the upper limit on the number of iterations to be performed) and   (the 

tolerance used in testing for convergence).  Note that a grid that is equally spaced in both directions, 

where N refers to the number of grid lines in each direction is perhaps easiest.  Suggested values are: 

FA 125 , FB  50 , 641  lkN , 000,10M  and 510 .  You may wish to use smaller 

values initially when testing the code.  Increasing 1N to 128, 256, etc. will give a more precise answer 

at the expense of computation time.  This is encouraged after a working code has been obtained, but is 

not required.  The use of a data type with double precision is recommended. 

(b) Assuming steady flow along the pipe, show that the axial velocity ),( ruu   of the oil obeys 

the following PDE: 
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where dzdp  is the pressure gradient along the pipe, and   is the viscosity of the oil, which varies with 

temperature according to the empirical law 
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where 0 , c and d are constants given below. 

Write an extension to the program developed in part (a) that will use values for dzdp , 0 , c, d and R 

given below, and proceed to compute the distribution of velocity u over the cross section, based on the 

temperatures already computed in part (a).  The following values are suggested: 

 ftRFdFc
ft

slb

ft

lb

dz

dp ff

3

2
460800010505.0

2

9

03
    .  

(c) Finally, write an additional extension to the program that will estimate the actual flow rate of oil, 

sftQact

3  by numerically evaluating the integral 
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Compare actQ  with an estimated value estQ  that is obtained by assuming a Hagen-Poiseuille velocity 

profile at a constant viscosity evaluated at the mean temperature FA  : 
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Express the answer in the form: 
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Project Deliverables 

Prepare a report describing Parts 1 and 2 of the project.  Specific details regarding the format of the 

report are left to the discretion of the student; however, the following deliverables must be provided. 

For the Laplace solution in Part 1, provide the convergence history plots and a contour plot of the 

solution.  Comment on your results.  For the Poisson solutions in Part 1, provide the convergence 

histories for case a, and contour plots of the solution for all three cases a through c.  Comment on your 

results.  Attach a copy of all code used to produce the solutions. 

For Part 2 include the derivations of all discretized equations.  These can be hand computations that 

have been scanned; they need not be typed.  Provide convergence history plots for the temperature and 

velocity solutions.  Prepare (at the minimum) contour plots based on the rectangular grid (see Module 2 

for explanation) for the temperature, viscosity and velocity fields.  However, the student is encouraged 

to produce polar contour plots of these solutions as they will be more meaningful, but this is not 

required.  Comment on each of these solutions.  Compute (%)Q  and comment on the surprising result 

that is obtained.  Attach a copy of all code used to produce the solutions. 

Grouping 

Students are not placed in groups for the completion of this project.  Students may interact with other 

students as desired for advice and sharing of ideas; however, each student is expected to submit the 

project deliverables individually.  Group activities that help facilitate the completion of this project will 

take place via several of the Discussion Activities. 

Submission  

The course project will be due no later than midnight of Day 6 in Module 14.  Course Projects should be 

submitted in Blackboard as a Word or PDF document. 

Plagarism 

Plagiarism is defined as taking the words, ideas or thoughts of another and representing them as one's 

own. If you use the ideas of another, provide a complete citation in the source work; if you use the 

words of another, present the words in the correct quotation notation (indentation or enclosed in 

quotation marks, as appropriate) and include a complete citation to the source. 

Grading Rubric 

This rubric assumes the student shows all work for solving the project problems.  This is to include hand 

computations, computer code printouts of numerical computations, plots documenting results, 

computations of derived quantities, and a commentary analyzing the results.  Submissions not meeting 

this standard will have the grade adjusted downward, as appropriate.  The use of the word progress in 

the table below implies work that displays an understanding of the problem and not just the quantity of 

writing that the student provides. 

  



 

 

Results 

 Poor Good Exceptional 

Part 1 

(35 points) 

Minimal or no 
progress toward 

a solution. 

(0-19 points) 

Substantial 
progress toward 

a solution. 

(20-29 points) 

Student correctly 
solves the problem. 

(30-35 points) 
Part 2 

(35 points) 

 

Presentation 

 Poor Good Exceptional 

Graphs 

(15 points) 

Most graphs 
missing or 
incorrect 

(0-5 points) 

Some graphs 
missing or 
incomplete 
information 

(6-10 points) 

Followed directions 
and produced all 
required graphs 

(11-15 points) 

Analysis 

(15 points) 

Little or no 
explanation 
and/or little 
grasp of the 

results 

(0-5 points) 

Partially 
explains and/or 
shows a partial 

grasp of the 
results 

(6-10 points) 

Fully explains and 
demonstrates an 
understanding of 

the results 

(11-15 points) 

Grade for Computer Project 

The grade ranges listed below are typical and should be used for guidance.  However, additional 

consideration will be given to those students that produce more accurate computations or more 

meaningful plots beyond the minimum requirements. 

 100-90 pts: A 

 89-80 pts: B 

 79-0 pts: C – F, (Determined on a case-by-case basis) 
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