
1 Overview

5. ´

2 The Cat language (just a made up name given to
the project not a real language)

1

The aim of this practical work is to familiarize you with the Prolog language
while learning
stack-based languages.
As with the previous labs, the steps are as follows:
1. Improve your knowledge of Prolog.
2. Read and understand this data.
3. Read, find, and understand the code provided.
4. Complete the code provided.
5. Write a report. It should describe your experience during the points
previous: problems encountered, surprises, choices you had to make,
options that you have knowingly rejected, etc. The report should not
exceed 5 pages.

You are going to write a Prolog program which implements the static
semantics
(i.e. type inference) and dynamic semantics (i.e. an interpreter) of a
little flip language . Push -on languages ​​are languages ​​which have the
particularity
to use a value stack instead of local variables. E.g. Postscript
is a push-on language.
The basic principle is very simple: the code consists of a sequence
of operations that modify the stack. E.g. dup takes the item at the top of the
stack and adds a copy on top. add takes both elements at the top of the stack,
adds them up and replaces them with the result. The operation
push V adds the value V to the top of the stack; many stack languages
drop the push keyword to leave only V to add V to the top
of the battery. Thus a code such as [12 75 dup add add] amounts to add 162
to the top of the stack.

http://cbs.wondershare.com/go.php?pid=5261&m=db

dup

swap

pop ToSRemove the element from .

get(N)
get
Gets the Nth item on the stack and add a copy to the ToS.

(0) == dup

set(N)
[

Take the item from the ToS and then replace the N-th item
with this value. set(0)] == [swap pop]

Val Adds the valueVal to ToS.

add Replace the two elements in ToS by their sum.

if

cons
emptyp
car
cdr
apply
papply

Op :Type Explicit type annotation. Behaves like Op.

2

The Cat language that you need to implement knows the following Val values:
Num A number.(integer)
true The true boolean.
false The false boolean.
nil The empty list.
X^Xs List made up of element X and list Xs.
[Ops...] Anonymous function made up of Ops operations.

The Ops operations are as follows (I use ToS (Top of Stack) to refer
at the top of the stack):

Duplicates the ToS.

Change both to ToS elements.

Replaces the three elements at ToS by the second or the third
depending on whether the first is true or false.
Replace the two elements X and Xs in ToS with the list X ˆX s.
Replaces the list in ToS by the boolean which indicates if it is empty.
Replaces the ToS list with its head.
Replaces the ToS list with its tail.
Calls the function that is in ToS.
Partial application: takes the function F and the value V to the
ToS and replaces them with a new function (a closure) which,
when called, executes F after adding V to the ToS.

So [13 [add] papply] constructs a function which increments the ToS by 13.

The function [] which does not contain any operation corresponds to the
function identity.

So [7 [] papply] constructs a function which adds the number 7 to the top of

stack and [6 7 [] papply papply] constructs a function that adds 6 and 7 to the

stack.

http://cbs.wondershare.com/go.php?pid=5261&m=db

` Val : T Value Val a type T

` Num : int ` true : bool ` false : bool
T is a type

`nil: list(T)

` X : T ` Xs : list(T)

` XˆXs : list(T) ` [] : ST → ST

1 For all ≤ i ≤ n ` Opi : STi−1 ⇒ STi

` [Op1...Opn] : ST0 → STn

Fig 1: Rules for typing values.

` Op : ST1 ⇒ ST2 Op changes a stack of type ST1 into one of type ST2

` dup : TˆST ⇒ TˆTˆST ` swap : T1ˆT2ˆST ⇒ T2ˆT1ˆST

` pop : TˆST ⇒ ST ` get(N) : T0ˆ...ˆTNˆST ⇒ TNˆT0ˆ...ˆTNˆST

` set(N) : TˆT0ˆ...ˆTNˆST ⇒ T0ˆ...ˆTˆST

` val : T

` Val : ST ⇒ TˆST

` add : intˆintˆST ⇒ intˆST ` if : boolˆTˆTˆST ⇒ TˆST

` cons : Tˆlist(T)ˆST ⇒ list(T)ˆST

` emptyp : list(T)ˆST ⇒ boolˆST ` car : list(T)ˆST ⇒ TˆST

` cdr : list(T)ˆST ⇒ list(T)ˆST ` apply : (ST1 → ST2)ˆST1 ⇒ ST2

` papply : ((TˆST1)→ ST2)ˆTˆST3 ⇒ (ST1 → ST2)ˆST3

` Op : ST ⇒ TˆST

` Op :T : ST ⇒ TˆST

Fig 2: Rules for typing operation.

3

http://cbs.wondershare.com/go.php?pid=5261&m=db

3 The type system

nil Empty stack type

TˆST Stack top has type T and the rest has type ST.

int Type of numbers.
bool
list(T)

ST1 → ST2 Functions from an ST1 type stack to an ST2 type stack.

∀t.T

IOnly functions can be polymorphic. .e. only types
∀that are like t0...∀tn.ST1 → ST2 are allowed. Not ∀t.list(T) or

∀t.t nor of (∀t.ST1)→ ST2.

` Val : ∀t.T
` Val : T [T ′/t]

Tfor all ′ ` Fun : T [T ′/t]

` Fun : ∀t.T

4

The Cat language is typed similarly to Haskell , that is, types are generally
inferred , and it provides parametric polymorphism . The stack state is
described by an ST type which can have the following forms:

The possible types of values ​​are:

Type of booleans.
Element list of type T

Polymorphic type.

The typing rules are given in Figs . 1 and 2. These rules do not hold
polymorphism account . When mixing polymorphism and inference of types,
we easily obtain a non-decidable system, that is to say a system where it may
happen that the type inference does not end . We can also easily get an
inconsistent system where the inferred type is incorrect . To avoid these 2
problems, we will limit the polymorphism as follows:

The two typing rules that govern polymorphism are the elimination rule:

which says that if a value Val is polymorphic then we can eliminate the
polymorphism by specializing the type parameter t to a particular type T'. The
notation T [T'/t] signifies the substitution of the variable t by the term T' in the

term T.

 The rule for introducing polymorphism is:

Which says that if Fun has type T [T'/ t] whatever the term T' then it also has
the type polymorphic ∀t.T. Of course, we cannot try all types to verify

if this is true, but if T' is not instantiated Prolog variable then the result

is the same, since a term with such a variable represents the set of

terms that can be obtained by instantiating this variable.

http://cbs.wondershare.com/go.php?pid=5261&m=db

4 The code provided

5 What you should do

6 Notes

•You can, of course , define as many new function as you want , but you
should not change any function other than the ones mentioned . If,
however , you find it necessary to change them, write down and justify
the change in the report.

• Each line of code must be less than 80 characters. Any excess will be
considered an error.

5

The code provided shows the syntax of the terms you need to manipulate. This

syntax is described as declarations of Prolog predicates . These predicates may

not be useful to you in your code and therefore may be left unused , but feel

free to use them if it suits you. Their purpose is to tell you which representation

to use to encode the terms, values ​​and types of the Cat language in Prolog.
The two most important predicates (the entry points of the code) are eval

and typeof.

You have a few predicates to fill in including typeof val, which infers / checks
the type of a value, typeof op, which infers / checks the type of an operation ,
and eval which evaluates a Cat program. I also recommend that you start by
inferring types regardless of polymorphism and adding polymorphism only
after the rest of the type inference is working.
Unlike typing rules which are complete and formal , the description of the
behavior of each primitive (in section 2) is informal. If you have doubts about
certain details , the typing rules are usually good for eliminating ambiguities ,
but if you still have doubts , choose the behavior that seems to you . most
useful and / or natural and explain the problem and your choice in the report.

You must submit two files: cat.prolog and rapport.word

http://cbs.wondershare.com/go.php?pid=5261&m=db

