Problem #1 (5 points): Learn creating a library of reusable modules and defining classes

1. Close all your open projects by right click on a project > Close Project.

2. Create a Python project named FirstName-LastName-HW3 (e.g., Jane-Doe-HW3) with a src
folder. (How? See the HW1 instructions).

3. Add a new package named lib to the src folder. Note that a Python package must contain an
__init__.py module.

4. Add a module named geometry to the package lib.

a. Note 1: When you add a module that will contain one or more class definitions, you
might want to pick the Module: Class option from the list of module templates. But it is
not recommended the template follows the Python 2 style.

b. Note 2: In Python a module name should consist of only lowercase letters and
underscores. However, class names in a module should begin with a capital letter. You
may find that many built-in classes do not follow this convention. These are holdovers
from earlier stages of Python when there was a much bigger difference between user-
defined classes and built-in classes.

c. Define a class named Triangle in the geometry module as follows:

i. Define an instance constructor that initializes three instance variables, say, sidel,
side2, and side3.
ii. Define a method named isTriangular.

1. It returns True if the values of the instance variables that are taken as
arguments could be the sides of a triangle (i.e., none of them is greater
than or equal to the sum of the other two), and False otherwise. Note
that True and False are reserved keywords of Python. They are not
string values but are Boolean ones.

2. Your implementation of this method must include nested i f and return
statements only.

d. Test the class by adding a tester snippet to the module.

def main():
statements to create an instance,
call the method, and print the output

e. The output is shown below. Note that you need two instance of the class Triangle to
print this output. Note: When possible, use variable references to construct output.

The values of 5, 4, 3 could be the sides of a triangle.
The values of 2, 1, 3 could not be the sides of a triangle.

5. Add a module named algebra to the package lib.
a. Define a class named Max in the algebra module as follows:
i. Do not define a constructor.

Define a method named max3 that takes three int or float arguments and
returns the largest one.

Define a method named max5 that takes five int or £1oat arguments and
returns the largest one. This method must utilize the method max3.

b. Test the class by adding a tester snippet to the module.
c. The output is shown below. Note that you need just one instance of the class Max to
print this output. Note: When possible, use variable references to construct output.

The max of 9, 6, 7 is 9

The max of 5, 7, 3, 8, 1 is 8

The max of 9.5, 6.5, 7.5 is 9.5

The max of 5.5, 7.5, 3.5, 8.5, 1.5 is 8.5

6. Add a new package named hw3p1l to the src folder. Note that a Python package must contain
an __init__.py module.
a. Add a module named myapp to the package hw3p1l.

This module is going to reuse the modules in the lib package. Such a module is
known as a launcher or main module. When you add a launcher module like
myapp, you might want to pick the Module: Main option from the list of module
templates to auto-add the if __name == ' main__': that should be
included in every main module. Note that you need to code a complete tester
snippet by adding a main method to this myapp module. Recall that the name of
a main method can be any valid name.

b. Import the Triangle and Max classes from the lib package created above and call the
methods of the classes to print the combined output shown below. Your output must
match exactly, including a blank line between the output from each class.

The values of 5, 4, 3 could be the sides of a triangle.
The values of 2, 1, 3 could not be the sides of a triangle.

The max of 9, 6, 7 is 9

The max of 5, 7, 3, 8, 1 is 8

The max of 9.5, 6.5, 7.5 is 9.5

The max of 5.5, 7.5, 3.5, 8.5, 1.5 is 8.5

Problem #2 (5 points): Learn the built-in random module, random. randrange (), input (), int (),

whileloop, if..elif..else,and try: except ValueError:.Also learn importing a module

with the keyword import only.

1.
2.

Add a new module named gamemd to the package lib.

Write code right in the module (no functions or classes) so that, when it is run by a launcher or
main module, it prints output similar to the one shown below. Hints: Declare a variable ceiling
and use it to generate a random integer, such as secret = random.randrange(1, ceiling+1).

I am thinking of a secret number between 1 and 100
What is your guess? -1

Please enter a positive integer

What is your guess? e

Please enter an integer

What is your guess? 3

Too low

What is your guess? 5

Too low

What is your guess? 7

Too low

What is your guess? 23

Too high

What is your guess? 21

Too high

What is your guess? 19

You win!

3. Add a package named hw3p2 to the src folder and add a launcher module named myapp?2.
Import the gamemd to the myapp2 module from the lib package by using only the
keyword import (no from).

b. Run the imported module.

a.

Problem #3 (5 points): Learn how to wrap global code into a class by converting the module of the

Problem2 to a class. Also learn importing a module with the keywords import and from.

1. Add a new module named gamecs to the package lib.

2. Define a class named Game in the module with an instance constructor and a method.

The instance constructor __init__ is used to instantiate the Game class with a value for
the ceiling variable.

The method named play lets the user play the game. Don't forget to add a tester
snippet to test this class.

a.

I am thinking of a secret number between 1 and 100

What is your
Please enter
What is your
Please enter
What is your
Too low
What is your
Too low
What is your
Too low
What is your
Too low
What is your
Too high
What is your
Too low
What is your
Too low
What is your
Too high
What is your
You win!

guess? w
an integer
guess? -1
a positive integer
guess? 2
guess? 3
guess? 19
guess? 30
guess? 57
guess? 39
guess? 45

guess? 47

guess? 46

3. Add a package named hw3p3 to the src folder and add a launcher module named myapp3.
a. Import the gamecs module to the myapp3 module from the lib package by using only
the keywords import and from.
b. Add a tester snippet to myapp3 and write code to run the gamecs module. Try with 30,
50, and 100 for the ceiling.

Problem #4 (5 points): Learn creating a class, for and while loop, logical operator, and string
concatenation

1. Consider the code below. You are required to implement similar functionalities using a class.
Please try this code first before you implement a class.

import random

declare variables with explict types, here int variables.
The None keyword is indicate a null value.

A null value means not yet assigned or created or unknown.
None 1is not the same as 0, False, or an empty string.
stake = int(10) # same as stake = 10

goal = int(20) # same as goal = 20

trials = int(1000) # same as trials = 1000

run experiments 'trials' times that start with stake

and terminate on cash == @ or meeting the goal.
bets = 0
wins = @

range(n) function creates a sequence of numbers from © to n-1
for t in range(trials):
run one experiment.
cash = stake
while cash > © and cash < goal:
simulate one bet.
bets += 1
return a random integer between © and 1 (2 is excluded)
if random.randrange(9, 2) ==
cash += 1 # prefix increment; same as cash = cash + 1

else:
cash -= # prefix decrement; same as cash = cash - 1
if cash == goal:
wins += 1 # prefix increment; same as wins = wins + 1

print('Number of Loops: ' + str(t))
print('Win rate: ' + str(100 * wins//trials) + '%")
print('Avg number of bets: ' + str(bets//trials))

2. Add a new module named highroller to the package lib and define a class named HighRoller as
follows. You are supposed to write code based on the code above to replicate the output given
below. Note that the wager, number of loops, win rate, and average number of bets will vary
depending on the user input. The example output below shows the results of three runs.

3. Don't forget to add a tester snippet to test this class.

4.

Enter stake: 1000

Enter goal: 2000

Enter trials: 1600

Enter 1, 2, or 5: 1

Gone all in. wager: 1000

Number of loops: 99
Win rate: 48%
Avg number of bets: 1

Enter stake: 1000
Enter goal: 2000
Enter trials: 100
Enter 1, 2, or 5: 2
wager: 500

Number of loops: 99
Win rate: 54%
Avg number of bets: 3

Enter stake: 1000
Enter goal: 2000
Enter trials: 100
Enter 1, 2, or 5: 5
wager: 200

Number of loops: 99
Win rate: 59%
Avg number of bets: 26

Enter stake: 1000

Enter goal: 2000

Enter trials: 100

Enter 1, 2, or 5: 6

Invalid

Enter 1, 2, 3, 4, or 5: # continues until a valid choice

Add a package named hw3p4 to the src folder and add a launcher module named myapp4.
a. Import the highroller module to the myapp4 module from the lib package in your
preferred way.
b. Add a tester snippet to myapp4 and write code to run the highroller module.

How to turn in your homework?

PwnNPE

Start Eclipse

Open your project to export

Right click on the project name and select Export.... (See the image below)
Expand General and choose Archive File and then click Next

