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Simulating and Analyzing Dark Networks: 
Modeling and Measuring Using Network Tools

David C. (Chris) Arney, Jocelyn R. Bell, Kathryn A. Coronges, 
& Greg Merkl

The debate over the relevance of network science in effectively analyzing 
dark networks continues for two reasons: the method’s historical record 
is short in duration and the results are mixed (Alberts & Hayes, 2005; 
Xu & Chen, 2008; Jones, 2012). The few trusted data sets and formal 
assessments that do exist remain contentious. Clandestine organizations 
deliberately guard their structure and process so that attempts to objec-
tively categorize their members and their relationships invite criticism 
and scrutiny. Roberts and Everton (2011) conducted a deep analysis of 
Jemaah Islamiyah in an attempt to provide an accepted case study of the 
formation of a terrorist organization. Similarly, Krebs (2002a, 2002b) 
categorized al-Qaida following the September 11 attacks. Both works 
add meaningful data to the historical record, but neither paper comes 
without controversy as to the accuracy and completeness of its analysis.

The debate pitches the proponents of dark network analysis against 
skeptics who doubt the utility of simplifying the complexity of real-world 
clandestine relationships into formal representations of nodes, edges, pro-
cesses, and attributes of a network graph. Several case studies give merit 
to both sides of the debate (Arreguin-Toft, 2001; Philby, 2013). On the 
micro scale of dark network analysis, centrality metrics can offer mean-
ingful insights into the structure of subgroups and the power players 
within the organization (Borgatti, 2006; Borgatti, Carley, & Krackhardt, 
2006). However, on the macro scale, the changing nature of information 
available to analysts can cause confirmation biases. That is, traditional 
full-graph measures can be biased both by data availability and the ana-
lyst’s erroneous belief about what data is missing. Therefore, depending 
on data reliability, traditional centrality measures of the known elements 
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of a dark network may provide little help to understand the real unknown 
dark network.

The dramatic dynamics associated with some dark networks present 
an additional complication. Elements and agents can coalesce and metas-
tasize to produce unpredictable events, appear in unanticipated places, 
and create numerous paradigm shifts producing significant second- and 
third-order effects. These factors make dark network analysis a challeng-
ing venture that is much like Silver’s (2012) description of finding the 
signal through the noise. In this case, the signal consists of the real ele-
ments of the dark network, while the noise is all the secrecy, complexity, 
and dynamics that create a hidden shield around the dark organization.

Even though these challenges are significant, the reward of trust-
worthy data collection and sound network analysis can be substan-
tial. There are many military threats that involve dark networks, and 
by some measures, all enemy organizational networks are dark (Galula, 
2006; Gartenstein-Ross, 2011). A military force never wants its oppo-
nent to know about its organization or operations (Flynn, Pottinger, 
& Batchelor, 2010). The following military operational threats often 
involve network-based components or utilize network models within the 
intelligence-gathering operations:

•	 Irregular warfare  – Understand the employment of unconven-
tional, asymmetric methods to include terrorism, insurgency, and 
guerrilla warfare.

•	Regular warfare – Intelligence determination of enemy order of 
battle and critical enemy units such as special operations cells 
that work with the local populace.

•	Disruptive operations – Understand the network-enhanced tech-
nologies that reduce the U.S.  advantage in cyber operational 
domains such as identifying the cyber cell that is conducting 
offensive cyber operations.

Recent counterinsurgency operations have definitely featured the valu-
able role of network analysis in many levels of intelligence gathering 
(Bolz, Dudonis, & Schulz, 2002; Sageman, 2004). As described in the 
U.S. Army’s field manual on counterinsurgency operations, the military is 
using social network analysis in its intelligence strategy:

“Social network analysis (SNA) is a tool for understanding 
the organizational dynamics of an insurgency and how best to 
attack or exploit it. It allows analysts to identify and portray the 
details of a network structure. It shows how an insurgency’s net-
worked organization behaves and how that connectivity affects 
its behavior. SNA allows analysts to assess the network’s design, 
how its members may or may not act autonomously, where the 
leadership resides or how it is distributed among members, and 
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how hierarchical dynamics may mix or not mix with network 
dynamics.” (FM 3–24, p. B-10)

We need more realistic and accurate assumptions to inform models and 
analyses of dark networks. A viable set of assumptions could be:

•	Actors in a dark network sometimes act in irrational or 
chaotic ways.

•	Data and information for the nodes, links, and their attributes 
may be inaccurate, unknown, or missing.

•	Times-series situation is dated and could be inaccurate.
•	 Structure is variable and often evolves in unpredictable ways.
•	 Processes and procedures for dark networks are not consistent.
•	Layers and dimensions of connections are complex (as shown in 

Figure 8.3).

Despite these forceful assumptions, nonreductive network modeling 
is still the most powerful method we have for dark networks. As this 
volume indicates, tools and methods are being developed to meet these 
kinds of challenges in dark network modeling, analysis, and synthesis 
(Brandes et al., 2013). The techniques we show in this chapter contribute 
to advancing these developments.

Our framework for dark networks attempts to address the fundamen-
tal questions under study: How do dark networks operate? How are they 
structured? Where are they vulnerable? Our analytic approach embraces 
the complexity of systems, reveals and synthesizes their complex struc-
tures and processes, and provides usable metrics and models.

From a military perspective, the objective we assume is to effectively 
attack the network. Specifically, we seek to identify the most important 
and/or weakest agents, name the most powerful or vulnerable subgroups, 
and build a viable target and attack methodology. The following two 
examples exhibit the methodology and utility of these new tools.

I.  Bell’s Subgroup Technique: Identifying  
Hidden Targets

In certain situations, a dark network may be embedded in a light net-
work. In other scenarios, there may be certain individuals within a dark 
network who cannot be targeted for removal because of diplomatic 
concerns or other political consequences. In these cases, we must decide 
which of the targetable individuals should be removed to cause the most 
disruption. To do this, we need to know which individuals have the most 
influence over the targetable portion of the network.

Existing approaches to analyze this network would be to either: 1) con-
sider measures on the targeted-only network, or 2)  consider measures 
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on the combined network. Because some network connections are either 
ignored (as in case 1) or treated as the same type of connections (as in 
case 2), neither of these alternatives is accurate or meaningful in this situ-
ation. Completely ignoring the legitimate connections in a dark network 
may be ill advised, but these connections are different in purpose than the 
illegal connections within the targeted network. Thus, traditional central-
ity measures fall short of answering important questions about network 
structure. The subgroup measures of Bell (2014) take both micro- and 
macro-level settings into account by allowing for the division of the net-
work into local (targeted) and global (untargeted) influence. Bell’s sub-
group technique generates centrality rankings that differ substantially 
from the traditional approaches.

Bell (2014) presented a new framework where nodal centralities are 
calculated accounting for both local structure (within the subgroup) and 
global measures (the entire network outside the subgroup). Normalized 
measures take the size of the subgroup under investigation into account. 
A subgroup measure according to subgroup S is defined as:

a V the set of vertices∈ ( ),

C f a xS
x S

= ( )
∈

∑ ,

The sum is restricted to only those nodes in S, and f is the value of the 
relationship of its two nodal elements (a and x) to the centrality measure. 
We say a subset S of the set of vertices V is a subgroup of the network; 
note this is not the subgraph induced by S as it contains no edge infor-
mation. There are two special cases when a happens to be an element of 
S. The subgroup measure of a according to S is a local measure, which 
measures how central node a is inside the subgroup. The subgroup mea-
sure of a according to Sc (everything except the nodes in S) is a global 
measure, which measures the centrality of a with respect to nodes outside 
the subgroup. According to these definitions, the sum of a node’s local 
measure and its global measure equals the value of the original measure.

We demonstrate by means of an example how Bell’s subgroup tech-
nique is more effective in identifying and targeting key targetable nodes 
embedded within larger non-covert networks. To demonstrate the perfor-
mance of the subgroup-based centrality measures, we will use the classic 
dolphin relationship network presented by Lusseau and others (Lusseau 
et al., 2003). For the purpose of this demonstration, we will consider the 
targetable population of thirty-three individuals, an untargetable popula-
tion of twenty-five, and four individuals of unknown status. Figure 8.1 
depicts the entire network, whereas Figure 8.2 shows the network of tar-
getable individuals and ignores connections through the legal network.
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Figure 8.1.  Entwined network of targeted (squares), untargeted (disks), 
and undetermined (triangles) populations.
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Figure 8.2.  Targeted network only.
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We compare the traditional approach (calculating measures on the 
targetable network only) versus Bell’s subgroup-based measures using 
betweenness, a measure of centrality useful for determining key nodes in 
network information flow (Freeman, 1977). In Figure 8.3, betweenness 
has been calculated in the usual sense on the targetable network; agents 
are sized according to their betweenness, and the five most central indi-
viduals are represented by solid squares. Although SN96 and “Beak” are 
among the most central nodes, their removal will not prevent the result-
ing network fragments from communicating, as messages may still travel 
through the untargetable population. Figure 8.4, which depicts Bell’s local 
betweenness measure but otherwise follows the same visualization con-
ventions as the previous graphic, reveals a vastly different power ranking, 
suggesting that influencing Beescratch rather than SN96 will have the most 
impact on disrupting communication among the targetable population.

In other cases, we may wish to disrupt or influence the untargetable 
population, but are restricted to removing, disrupting, or influencing 
targetable agents only. Bell’s global version of these subgroup measures 
accomplishes this by quantifying the influence a particular node has out-
side their subgroup. Figures 8.5 and 8.6, which again size and color nodes 
based on centrality, compare Bell’s local and global closeness measures, 
indicating key positions in either the targetable population (Figure 8.5) 
or the untargetable population (Figure 8.6). To damage the untargetable 
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Figure 8.3.  Agents sized by traditional betweenness.
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Figure 8.4.  Agents sized by Bell’s subgroup betweenness.
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Figure 8.5.  Nodes sized according to Bell’s local closeness.
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population, Bell’s method suggests we remove Topless, while targeting 
Beescratch damages the targetable population.

A third use for Bell’s approach is to help determine which classifica-
tion the undetermined individuals should belong to. If an undetermined 
node has more local (targetable) influence than global (untargetable), it 
suggests that this individual should be classified as targetable. Unknown 
individuals are linked with the targetable population in Figure 8.7 and 
with the untargetable population in Figure 8.8. Ripplefluke and TR82 
probably do not belong in the untargeted group, as their only connec-
tions to the network are to targetable members.

Other individuals are not as clear cut. Consider TSN83. His global 
closeness rank (18th) is significantly higher than his local closeness rank 
(34th). We might conclude that TSN83 has more influence over the 
untargetable population and so place him in that category. Zap is an even 
tougher case; he is well connected to both groups. His power rankings in 
both local and global closeness are similar (10th and 9th, respectively). 
However, there is a significant rank difference for Zap in local between-
ness (21st) versus global betweenness (11th). This may persuade us to 
classify Zap as targetable.

Further discovery can be made from comparing the raw (un-normalized) 
global centrality score to the raw internal score. While this does not 
enable ranking individuals, it does indicate to which subgroup the indi-
vidual is more strongly attached. E-I (External-Internal) index measure 
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Figure 8.6.  Nodes sized according to Bell’s global closeness.
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(Everett & Borgatti, 2012) can be calculated where E = un-normalized 
global score and I = un-normalized local score.

E I Index− = − +( ) / ( )E I E I

A positive E-I index indicates a stronger tie to the untargetable portion of 
the network than the targetable. The E-I indexes for the unknown indi-
viduals appear in Table 8.1.

The E-I indices largely support Bell’s subgroup analysis approach; 
Ripplefluke and TR82 are more likely to belong to the targetable group, 
while TSN83 appears to belong to the untargetable group. However, 
there is an even split for Zap, so here the E-I index combined with Bell’s 
method may be the best approach.

While Bell’s approach offers means to infer group membership, this 
method cannot account for network errors stemming from one of the 
most challenging aspects of data collection in dark networks:  link dis-
covery. Consequently, the next section turns its attention toward Merkl’s 
sampling technique, which realistically simulates the data discovery pro-
cess undertaken by human analysts. Given that clandestine organizations 
attempt to obscure their membership, making it impossible to know the 
true size of a dark network, his approach offers one means to determine 
the fidelity of analytic conclusions when analysts lack basic demographic 
information about the networks under study.

II.  Merkl’s Dark Sampling Technique: 
A Bayesian Methodology to Simulate 
Network Evolution

In this example, we synthesize a dark network based on probabilistic 
elements within the uncovered network. The underlying assumptions are 
that clandestine organizations tend to have similar structure, and that 
analysts tend to discover elements of dark networks via well-defined, but 

Table 8.1.  Global-local (E-I) indexes using Bell’s subgroup-based 
centrality measures

Degree E-I 
Index

Closeness E-I 
Index

Eigenvector E-I 
Index

Betweenness E-I 
index

Ripplefluke −1 −0.05674 −1 −0.16667
TR82 −1 −0.09924 −1 0
TSN83   0 −0.32766 0.570905 0.633588
Zap   0.2 −0.24719 −0.11684 0.434212
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inherently probabilistic processes (Flynn et  al., 2010; Hung, Kolitz, & 
Ozdaglen, 2011). Our targeting algorithm simulates the workflow ana-
lysts typically undertake as they probe the boundaries and membership 
of an illicit organization; the simulation uncovers clandestine networks 
using a Bayesian approach and changes strategy as more information is 
acquired. The combination of these two conditions yields a dark network 
discovery method to uncover the edges of a dark network that, like Bell’s 
work, affirms the validity of traditional centrality measures on the micro 
(subgroup) level while simultaneously questioning their relevance at the 
macro level.

The simulation assumes that analysts start with an equal probability 
of discovering all edges. Then, after receiving information about the con-
nected vertices and the changing security environment, analysts have a 
greater propensity to discover vertices connected to previously discov-
ered vertices. Thus, the simulation iteratively updates nodal and link 
assumptions based on previously known information.

Analysts seeking to discover the actors within a dark network must 
make economic decisions about how to dedicate limited intelligence 
resources. As a general rule, once analysts have uncovered an actor 
within a network, they have a greater propensity to discover the actor’s 
close associates than distant members of the network. This pattern results 
in a loose version of snowball sampling (Goodman, 1961). However, we 
utilize this snowball sampling procedure as it pertains specifically to 
dark networks by formalizing the probabilistic method of discovery. We 
describe the three steps and corresponding assumptions in what we call 
dark sampling.

•	Uncover the edges – Analysts seek to uncover the edges (links) 
between vertices (actors) within a dark network. Often, the 
actors lead double lives that are transparent in one setting, but 
that disappear into the shadows of secrecy in another. Consider 
the September 11 bombers; they had legitimate paperwork, con-
ducted economic activities under their true identities, and lived 
among the community. They were clearly visible to the U.S. gov-
ernment. Their connections to al-Qaida, however, remained 
carefully guarded (Kean & Hamilton, 2004). Consequently, our 
simulation focuses on uncovering the edges of the network in 
order to reveal the nodes within the organization.

•	Take advantage of non-secret edges and vertices – Analysts strug-
gle to discover actors within the network because they maintain 
some level of secrecy. However, a lack of operational security 
among any one member of the network will unilaterally degrade 
the security of his neighbors. This condition frequently occurs 
in real-world situations, and for this reason some of America’s 
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greatest missions against al-Qaida have started by tracking a 
courier to the location of a commander (Bowden, 2012). To 
represent this mathematically, we assume that each node in 
the network has a level of secrecy that ranges between 0 and 
1. For instance, assume that Alice and Bob have joined al-Qaida 
and Alice maintains fierce vigilance with a high secrecy level of 
0.99. Bob, however, tends to suffer from loose lips as he talks to 
others on his way home from the office. His secrecy level is 0.25. 
Assuming independence of the probabilities, the chance that ana-
lysts will fail to discover the link between Alice and Bob is (0.99)
(0.25) = 0.2475. To account for the cyclic nature of targeting, we 
assume that these probabilities are based on some time unit. For 
instance, for a given week, our simulation has a 75.25 percent 
chance of discovering the connection between Alice and Bob.

•	 Illuminate hidden regions of the network – Once analysts dis-
cover a node, its secrecy suffers. Real-world targeting strate-
gies tend to use these kinds of Bayesian methodologies. Once 
analysts locate Alice and Bob as members of the dark network, 
their friends and neighbors have a higher propensity to share 
affiliations with the same network. Our simulation consequently 
diverts resources toward Alice and Bob, thereby reducing their 
ability to maintain hidden relationships and lowering their secu-
rity level in our algorithm.

Figure 8.9 depicts a simulation of the dark network discovery process 
described earlier. The network under study is sparse and wide in diam-
eter, highlighting the potential for the simulation to discover multiple 
components of a connected graph. The figure’s left-hand panel shows the 
actual complete network – perfect information that analysts are unlikely 
to ever entirely discover. The figure’s right-hand panel depicts a partial 
sampling of the edges after discovering approximately 25 percent of the 
edges using our methodology. In both panels, the most central actors are 
represented by darkly shaded nodes; thus, readers can intuitively see dif-
ferences between the actual network and the “Targeter View” uncovered 
by analysts by noting that the dark clusters are located in different sec-
tions of the respective graphs.

More scientific performance estimates are available from the graph 
across the bottom of the figure, which depicts eigenvector centrality error 
as a function of the simulated analysts’ knowledge of the network. The 
thick, volatile line depicts Spearman’s Rho rank-order error (Spearman, 
1904), while the thinner line hugging the origin of the graph shows the 
relative change in the centrality measure as the simulation obtains each 
piece of information about the network. The straight diagonal line shows 
a linear convergence rate between information and error; analysts seek 
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to stay below the line, where the error rate is lower than the available 
information.

For this simulation, the hypothetical analysts made several radi-
cal changes in their centrality calculations while discovering the first 
5 percent of the network. Initially, the new information aided analysts 
in correctly rank ordering the importance of the actors according to 
eigenvector centrality. However, shortly after obtaining 5 percent of the 
possible information, the analysts’ new information led them to draw 
increasingly bad conclusions regarding the composition of the network’s 
core.  As the amount of discovered information increases from 5 percent 
to 25 percent, the simulated analysts’ error for rank ordering the central 
actors remains about 75 percent. This example demonstrates that simply 
discovering more information about a dark network does not always 
improve analytic conclusions; when a large percentage of the information 
about a dark network remains unknown, adding new data can degrade 
analytic accuracy.

Figure 8.9 shows another important aspect of dark sampling. While 
the information tends to spiral out from known actors, the probability 
of discovering actors not connected to the known network is nonzero. 
Therefore, analysts may initially discover the network as separate com-
ponents. In Figure 8.9’s right-hand panel, the simulated analysts see two 
separated components of the network. Information will tend to snowball 
from these two components, but as greater intelligence about the net-
work becomes available, it could develop even more separated compo-
nents. The potential for the discovery of multiple components constitutes 
a primary distinction between dark sampling and snowball sampling.
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Figure 8.9.  Simulating the discovery of 25 percent of links in a dark 
network.
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Figure 8.10 revisits the same network, albeit after discovering a total of 
50 percent of the links in the network. Because this graphic follows the 
same interpretive and visual conventions as Figure 8.9, it demonstrates 
the effects of confirmation bias. The simulated analysts have uncovered 
enough information to join the two components they knew at the earlier 
discovery point, and are now more certain that the darkly colored nodes 
in the lower-right quadrant of the right-hand panel represent central 
actors in the dark network. However, comparison with the true network 
depicted in the left-hand panel shows that the analysts are mistaken. The 
Spearman’s Rho information in the graph at the bottom of the figure 
confirms the analysts’ error; values have strayed above the convergence 
line, indicating that the amount of error in the network is greater than the 
available information. With 50 percent of the total information, analysts 
have nearly 70 percent error in rank ordering the actors according to 
eigenvector centrality. Increased intelligence has ironically led to a cor-
responding increase in error.

Fortunately, this pattern is not durable and reverses with the addition 
of another 20  percent of information. Figure  8.11, which depicts the 
discovery of 70 percent of all ties, shows an increasingly correct intelli-
gence estimate of the network based on eigenvector centrality. The error 
rate for the “Targeter View” is now just 30 percent, indicating that the 
simulated analysts have achieved linear convergence. Their conclusions 
are as accurate as we would expect given the amount of information 
at their disposal, and a quick visual assessment of the darkly colored 
core nodes suggests that analysts are beginning to correctly identify the 
network’s core.
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Figure 8.10.  Simulating the discovery of 50 percent of links in a dark 
network.
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However, analysts’ success proves ephemeral. Figure  8.12, which 
shows the test network after discovering an additional 10  percent of 
information, depicts substantial analytic error. With a total of 80 percent 
of the links discovered, analysts have incorrectly identified the cluster at 
the lower left of the “Targeter View” as the central core of the network. 
The error graph at the bottom of the figure accordingly shows a worrying 
spike above the convergence line; error rates have returned to approxi-
mately 75 percent. The simulated analysts are again performing worse 
with more information.
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Figure 8.11.  Simulating the discovery of 70 percent of links in a dark 
network.
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Figure 8.12.  Simulating the discovery of 80 percent of links in a dark 
network.
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Figure 8.13 depicts a final end-state, in which analysts have discov-
ered all possible links in the dark network. The graphic confirms that the 
volatility in accuracy seen at lower levels of link discovery persist until 
a surprisingly high percentage of the network is known. Although error 
rates plummeted as the rate of data discovery entered the mid-eighties, 
error rates spiked twice in the upper eighties, before finally reaching a 
steady convergence with the rate of available information once approxi-
mately 90 percent of ties were discovered. Thus, these results suggest that 
analytic conclusions derived from network science remain exceptionally 
sensitive to relatively small amounts of missing information. Considering 
that analysts are unlikely to ever discover all ties within a dark network, 
these simulations suggest that the potential for confirmation bias with the 
emergence of new information remains high.

These conclusions differ from the findings of studies that utilized other 
sampling methods. For example, Costenbade and Valente (2003) found 
that random sampling techniques, such as bootstrapping, produced cen-
trality measurements that tended to converge quickly. The next section, 
therefore, compares our snowball-like approach to data discovery to a 
random approach.

III.  Dark Sampling Implications for 
Subgroup Centrality

As a test case, we examined the same dolphin network used to illustrate 
Bell’s approach to centrality. Because we seek to characterize the typical 
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Figure 8.13.  Simulating the discovery of 100 percent of links in a dark 
network.
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performance of eigenvector centrality (the most stable of the canoni-
cal measurements of node-level influence and importance), we assessed 
aggregate performance of 1,000 discovery permutations. Figure 8.14 dis-
plays the results.

These results suggest that, on average, eigenvector centrality con-
verges at a better-than-linear rate. However, note that the deviation in the 
error measure actually increases as the amount of available information 
increases from 10 percent to about 45 percent. This trend illustrates the 
confirmation bias. If analysts focus their attention on the core of the net-
work early in the discovery process, eigenvector centrality measures will 
correctly rank order the actors. Conversely, if analysts wait until infor-
mation on the periphery of the network is uncovered, the error in rank 
ordering will tend to increase with time, as the confirmation bias leads 
them away from the truth – until the real core is finally discovered.

The question remains:  How does this pattern compare to random 
sampling approaches? We investigated this question by comparing per-
mutations of our approach to data discovery with an equal number of 
random samples. Figure 8.15 displays the results and shows that the two 
approaches perform similarly, in terms of both convergence and vari-
ance. However, neither our approach nor random sampling produce 
particularly satisfying results; analysts would prefer to see decreasing 
variance with increasing information, a pattern that would indicate that 
network-based conclusions became more certain with the addition of 
new relational data.

Given the similar performance of these two approaches to sampling, it 
is not immediately evident that our approach offers any additional insight 
into “good” metrics given a partial information set. However, when we 
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Figure 8.14.  Eigenvector centrality convergence for dolphin network.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316212639.009
Downloaded from https://www.cambridge.org/core. UZH Hauptbibliothek / Zentralbibliothek Zürich, on 15 Nov 2020 at 10:14:42, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316212639.009
https://www.cambridge.org/core


140	 Arney et al.

look at the change in measurement error as the targeter develops informa-
tion, we see that dark sampling reduces error by an order of magnitude 
compared to random sampling. Figure 8.16 displays results for the same 
tests described in the preceding graphic and indicates that our snowball-like 
approach performs better on average. We believe that this advantage stems 
from the potential to discover the core early in the data-sampling process. 
When our approach finds a member of the core early in the data-discovery 
process, other members of the core will also be uncovered rapidly, and ana-
lytic conclusions about the most central actors in the network will remain 
relatively stable and largely accurate. However, when a random approach 
finds a member of the core early in the data discovery process, other mem-
bers of the core are no more likely than peripheral nodes to be discovered 
next. Nothing ensures that the sample will latch onto the core and stay 
there, causing analytic accuracy to suffer accordingly.

IV.  Conclusions

Our research suggests that while snowball-like approaches to data discov-
ery are more advantageous to analysts than random approaches to data 
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Figure 8.15.  Convergence and deviation of eigenvector centrality using 
two sampling approaches.
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discovery, caution is always merited when assessing incomplete informa-
tion. Until analysts have discovered upward of 90 percent of the avail-
able links in a network, centrality rankings can fluctuate wildly, even for 
the most stable measure of node-level importance and influence. Analysts 
should expect that local centrality measures perform more accurately 
than global measures that seek to quantify the relative importance of 
every actor in the network. Consequently, analysts should consider using 
alternate measurements of centrality. Because Bell’s approach to central-
ity can serve to contrast local importance with global importance, this 
method may provide one means for analysts to determine if the apparent 
centrality of an individual in the discovered network stems from his or 
her location in a small clique-like subgroup, or from true global impor-
tance to the network.

More broadly, this work indicates that complexity in its many forms, 
including nonlinearity, chaos, and randomness, permeates dark net-
works, rendering both traditional statistical regression and standard net-
work metrics of limited utility (West & Grigolini, 2011).  More powerful 
and sophisticated tools are necessary to understand the complexities of 
dark networks, and future research should investigate questions such 
as: How do new subgroup-based network measures change as legitimate 
nodes become part of the dark network and vice versa? How stable are 
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Figure  8.16.  Changes in eigenvector centrality using two sampling 
approaches.
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these measures as new members and connections are discovered? Do 
technology-based networks, such as those formed and mobilized through 
social media, operate and reveal themselves in similar fashion as face-to-
face networks? How can complex multilayered network models further 
help targeting and intelligence processing in military and criminal opera-
tions (Thomas, Kiser, & Casebeer, 2005; Hampson, 2012; Singer, 2012; 
Kivela et al., 2014)? In the end, our research raises as many questions 
about dark network analysis as it answers.
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