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The debate over the relevance of network science in effectively analyzing
dark networks continues for two reasons: the method’s historical record
is short in duration and the results are mixed (Alberts & Hayes, 20035;
Xu & Chen, 2008; Jones, 2012). The few trusted data sets and formal
assessments that do exist remain contentious. Clandestine organizations
deliberately guard their structure and process so that attempts to objec-
tively categorize their members and their relationships invite criticism
and scrutiny. Roberts and Everton (2011) conducted a deep analysis of
Jemaah Islamiyah in an attempt to provide an accepted case study of the
formation of a terrorist organization. Similarly, Krebs (2002a, 2002b)
categorized al-Qaida following the September 11 attacks. Both works
add meaningful data to the historical record, but neither paper comes
without controversy as to the accuracy and completeness of its analysis.

The debate pitches the proponents of dark network analysis against
skeptics who doubt the utility of simplifying the complexity of real-world
clandestine relationships into formal representations of nodes, edges, pro-
cesses, and attributes of a network graph. Several case studies give merit
to both sides of the debate (Arreguin-Toft, 2001; Philby, 2013). On the
micro scale of dark network analysis, centrality metrics can offer mean-
ingful insights into the structure of subgroups and the power players
within the organization (Borgatti, 2006; Borgatti, Carley, & Krackhardt,
2006). However, on the macro scale, the changing nature of information
available to analysts can cause confirmation biases. That is, traditional
full-graph measures can be biased both by data availability and the ana-
lyst’s erroneous belief about what data is missing. Therefore, depending
on data reliability, traditional centrality measures of the known elements
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of a dark network may provide little help to understand the real unknown
dark network.

The dramatic dynamics associated with some dark networks present
an additional complication. Elements and agents can coalesce and metas-
tasize to produce unpredictable events, appear in unanticipated places,
and create numerous paradigm shifts producing significant second- and
third-order effects. These factors make dark network analysis a challeng-
ing venture that is much like Silver’s (2012) description of finding the
signal through the noise. In this case, the signal consists of the real ele-
ments of the dark network, while the noise is all the secrecy, complexity,
and dynamics that create a hidden shield around the dark organization.

Even though these challenges are significant, the reward of trust-
worthy data collection and sound network analysis can be substan-
tial. There are many military threats that involve dark networks, and
by some measures, all enemy organizational networks are dark (Galula,
2006; Gartenstein-Ross, 2011). A military force never wants its oppo-
nent to know about its organization or operations (Flynn, Pottinger,
& Batchelor, 2010). The following military operational threats often
involve network-based components or utilize network models within the
intelligence-gathering operations:

e [rregular warfare — Understand the employment of unconven-
tional, asymmetric methods to include terrorism, insurgency, and
guerrilla warfare.

® Regular warfare — Intelligence determination of enemy order of
battle and critical enemy units such as special operations cells
that work with the local populace.

e Disruptive operations — Understand the network-enhanced tech-
nologies that reduce the U.S. advantage in cyber operational
domains such as identifying the cyber cell that is conducting
offensive cyber operations.

Recent counterinsurgency operations have definitely featured the valu-
able role of network analysis in many levels of intelligence gathering
(Bolz, Dudonis, & Schulz, 2002; Sageman, 2004). As described in the
U.S. Army’s field manual on counterinsurgency operations, the military is
using social network analysis in its intelligence strategy:

“Social network analysis (SNA) is a tool for understanding
the organizational dynamics of an insurgency and how best to
attack or exploit it. It allows analysts to identify and portray the
details of a network structure. It shows how an insurgency’s net-
worked organization behaves and how that connectivity affects
its behavior. SNA allows analysts to assess the network’s design,
how its members may or may not act autonomously, where the
leadership resides or how it is distributed among members, and
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how hierarchical dynamics may mix or not mix with network
dynamics.” (FM 3-24, p. B-10)

We need more realistic and accurate assumptions to inform models and
analyses of dark networks. A viable set of assumptions could be:

e Actors in a dark network sometimes act in irrational or
chaotic ways.

e Data and information for the nodes, links, and their attributes
may be inaccurate, unknown, or missing.

e Times-series situation is dated and could be inaccurate.

e Structure is variable and often evolves in unpredictable ways.

e Processes and procedures for dark networks are not consistent.

e Layers and dimensions of connections are complex (as shown in
Figure 8.3).

Despite these forceful assumptions, nonreductive network modeling
is still the most powerful method we have for dark networks. As this
volume indicates, tools and methods are being developed to meet these
kinds of challenges in dark network modeling, analysis, and synthesis
(Brandes et al., 2013). The techniques we show in this chapter contribute
to advancing these developments.

Our framework for dark networks attempts to address the fundamen-
tal questions under study: How do dark networks operate? How are they
structured? Where are they vulnerable? Our analytic approach embraces
the complexity of systems, reveals and synthesizes their complex struc-
tures and processes, and provides usable metrics and models.

From a military perspective, the objective we assume is to effectively
attack the network. Specifically, we seek to identify the most important
and/or weakest agents, name the most powerful or vulnerable subgroups,
and build a viable target and attack methodology. The following two
examples exhibit the methodology and utility of these new tools.

I. Bell’s Subgroup Technique: Identifying
Hidden Targets

In certain situations, a dark network may be embedded in a light net-
work. In other scenarios, there may be certain individuals within a dark
network who cannot be targeted for removal because of diplomatic
concerns or other political consequences. In these cases, we must decide
which of the targetable individuals should be removed to cause the most
disruption. To do this, we need to know which individuals have the most
influence over the targetable portion of the network.

Existing approaches to analyze this network would be to either: 1) con-
sider measures on the targeted-only network, or 2) consider measures
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on the combined network. Because some network connections are either
ignored (as in case 1) or treated as the same type of connections (as in
case 2), neither of these alternatives is accurate or meaningful in this situ-
ation. Completely ignoring the legitimate connections in a dark network
may be ill advised, but these connections are different in purpose than the
illegal connections within the targeted network. Thus, traditional central-
ity measures fall short of answering important questions about network
structure. The subgroup measures of Bell (2014) take both micro- and
macro-level settings into account by allowing for the division of the net-
work into local (targeted) and global (untargeted) influence. Bell’s sub-
group technique generates centrality rankings that differ substantially
from the traditional approaches.

Bell (2014) presented a new framework where nodal centralities are
calculated accounting for both local structure (within the subgroup) and
global measures (the entire network outside the subgroup). Normalized
measures take the size of the subgroup under investigation into account.
A subgroup measure according to subgroup S is defined as:

a eV (the set of vertices),

Cs = Y f(a,x)

xe§

The sum is restricted to only those nodes in S, and f is the value of the
relationship of its two nodal elements (2 and x) to the centrality measure.
We say a subset S of the set of vertices V is a subgroup of the network;
note this is not the subgraph induced by S as it contains no edge infor-
mation. There are two special cases when a happens to be an element of
S. The subgroup measure of a according to S is a local measure, which
measures how central node a is inside the subgroup. The subgroup mea-
sure of a according to S¢ (everything except the nodes in S) is a global
measure, which measures the centrality of a with respect to nodes outside
the subgroup. According to these definitions, the sum of a node’s local
measure and its global measure equals the value of the original measure.

We demonstrate by means of an example how Bell’s subgroup tech-
nique is more effective in identifying and targeting key targetable nodes
embedded within larger non-covert networks. To demonstrate the perfor-
mance of the subgroup-based centrality measures, we will use the classic
dolphin relationship network presented by Lusseau and others (Lusseau
et al., 2003). For the purpose of this demonstration, we will consider the
targetable population of thirty-three individuals, an untargetable popula-
tion of twenty-five, and four individuals of unknown status. Figure 8.1
depicts the entire network, whereas Figure 8.2 shows the network of tar-
getable individuals and ignores connections through the legal network.
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Figure 8.1. Entwined network of targeted (squares), untargeted (disks),
and undetermined (triangles) populations.

Beak

[ |
MN105 Patchback ThUmper: zipfel
SMNS Fork

Figure 8.2. Targeted network only.
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Figure 8.3. Agents sized by traditional betweenness.

We compare the traditional approach (calculating measures on the
targetable network only) versus Bell’s subgroup-based measures using
betweenness, a measure of centrality useful for determining key nodes in
network information flow (Freeman, 1977). In Figure 8.3, betweenness
has been calculated in the usual sense on the targetable network; agents
are sized according to their betweenness, and the five most central indi-
viduals are represented by solid squares. Although SN96 and “Beak” are
among the most central nodes, their removal will not prevent the result-
ing network fragments from communicating, as messages may still travel
through the untargetable population. Figure 8.4, which depicts Bell’s local
betweenness measure but otherwise follows the same visualization con-
ventions as the previous graphic, reveals a vastly different power ranking,
suggesting that influencing Beescratch rather than SN96 will have the most
impact on disrupting communication among the targetable population.

In other cases, we may wish to disrupt or influence the untargetable
population, but are restricted to removing, disrupting, or influencing
targetable agents only. Bell’s global version of these subgroup measures
accomplishes this by quantifying the influence a particular node has out-
side their subgroup. Figures 8.5 and 8.6, which again size and color nodes
based on centrality, compare Bell’s local and global closeness measures,
indicating key positions in either the targetable population (Figure 8.5)
or the untargetable population (Figure 8.6). To damage the untargetable
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Figure 8.5. Nodes sized according to Bell’s local closeness.
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Figure 8.6. Nodes sized according to Bell’s global closeness.

population, Bell’s method suggests we remove Topless, while targeting
Beescratch damages the targetable population.

A third use for Bell’s approach is to help determine which classifica-
tion the undetermined individuals should belong to. If an undetermined
node has more local (targetable) influence than global (untargetable), it
suggests that this individual should be classified as targetable. Unknown
individuals are linked with the targetable population in Figure 8.7 and
with the untargetable population in Figure 8.8. Ripplefluke and TR82
probably do not belong in the untargeted group, as their only connec-
tions to the network are to targetable members.

Other individuals are not as clear cut. Consider TSN83. His global
closeness rank (18th) is significantly higher than his local closeness rank
(34th). We might conclude that TSN83 has more influence over the
untargetable population and so place him in that category. Zap is an even
tougher case; he is well connected to both groups. His power rankings in
both local and global closeness are similar (10th and 9th, respectively).
However, there is a significant rank difference for Zap in local between-
ness (21st) versus global betweenness (11th). This may persuade us to
classify Zap as targetable.

Further discovery can be made from comparing the raw (un-normalized)
global centrality score to the raw internal score. While this does not
enable ranking individuals, it does indicate to which subgroup the indi-
vidual is more strongly attached. E-I (External-Internal) index measure
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Figure 8.7. Unknown individuals (triangles) and targetable population
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Figure 8.8. Unknown individuals (triangles) and untargetable popula-
tion (circles).
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Table 8.1. Global-local (E-1) indexes using Bell’s subgroup-based
centrality measures

Degree E-I Closeness E-1 Eigenvector E-I Betweenness E-I
Index Index Index index
Ripplefluke -1 -0.05674 -1 -0.16667
TRS82 -1 -0.09924 -1 0
TSN83 0 -0.32766 0.570905 0.633588
Zap 0.2 -0.24719 -0.11684 0.434212

(Everett & Borgatti, 2012) can be calculated where E = un-normalized
global score and I = un-normalized local score.

E-IIndex= (E-I)/(E+]I)

A positive E-T index indicates a stronger tie to the untargetable portion of
the network than the targetable. The E-I indexes for the unknown indi-
viduals appear in Table 8.1.

The E-T indices largely support Bell’s subgroup analysis approach;
Ripplefluke and TR82 are more likely to belong to the targetable group,
while TSN83 appears to belong to the untargetable group. However,
there is an even split for Zap, so here the E-I index combined with Bell’s
method may be the best approach.

While Bell’s approach offers means to infer group membership, this
method cannot account for network errors stemming from one of the
most challenging aspects of data collection in dark networks: link dis-
covery. Consequently, the next section turns its attention toward Merk!’s
sampling technique, which realistically simulates the data discovery pro-
cess undertaken by human analysts. Given that clandestine organizations
attempt to obscure their membership, making it impossible to know the
true size of a dark network, his approach offers one means to determine
the fidelity of analytic conclusions when analysts lack basic demographic
information about the networks under study.

II. Merkl’s Dark Sampling Technique:
A Bayesian Methodology to Simulate
Network Evolution

In this example, we synthesize a dark network based on probabilistic
elements within the uncovered network. The underlying assumptions are
that clandestine organizations tend to have similar structure, and that
analysts tend to discover elements of dark networks via well-defined, but
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inherently probabilistic processes (Flynn et al., 2010; Hung, Kolitz, &
Ozdaglen, 2011). Our targeting algorithm simulates the workflow ana-
lysts typically undertake as they probe the boundaries and membership
of an illicit organization; the simulation uncovers clandestine networks
using a Bayesian approach and changes strategy as more information is
acquired. The combination of these two conditions yields a dark network
discovery method to uncover the edges of a dark network that, like Bell’s
work, affirms the validity of traditional centrality measures on the micro
(subgroup) level while simultaneously questioning their relevance at the
macro level.

The simulation assumes that analysts start with an equal probability
of discovering all edges. Then, after receiving information about the con-
nected vertices and the changing security environment, analysts have a
greater propensity to discover vertices connected to previously discov-
ered vertices. Thus, the simulation iteratively updates nodal and link
assumptions based on previously known information.

Analysts seeking to discover the actors within a dark network must
make economic decisions about how to dedicate limited intelligence
resources. As a general rule, once analysts have uncovered an actor
within a network, they have a greater propensity to discover the actor’s
close associates than distant members of the network. This pattern results
in a loose version of snowball sampling (Goodman, 1961). However, we
utilize this snowball sampling procedure as it pertains specifically to
dark networks by formalizing the probabilistic method of discovery. We
describe the three steps and corresponding assumptions in what we call
dark sampling.

e Uncover the edges — Analysts seek to uncover the edges (links)
between vertices (actors) within a dark network. Often, the
actors lead double lives that are transparent in one setting, but
that disappear into the shadows of secrecy in another. Consider
the September 11 bombers; they had legitimate paperwork, con-
ducted economic activities under their true identities, and lived
among the community. They were clearly visible to the U.S. gov-
ernment. Their connections to al-Qaida, however, remained
carefully guarded (Kean & Hamilton, 2004). Consequently, our
simulation focuses on uncovering the edges of the network in
order to reveal the nodes within the organization.

o Take advantage of non-secret edges and vertices — Analysts strug-
gle to discover actors within the network because they maintain
some level of secrecy. However, a lack of operational security
among any one member of the network will unilaterally degrade
the security of his neighbors. This condition frequently occurs
in real-world situations, and for this reason some of America’s
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greatest missions against al-Qaida have started by tracking a
courier to the location of a commander (Bowden, 2012). To
represent this mathematically, we assume that each node in
the network has a level of secrecy that ranges between 0 and
1. For instance, assume that Alice and Bob have joined al-Qaida
and Alice maintains fierce vigilance with a high secrecy level of
0.99. Bob, however, tends to suffer from loose lips as he talks to
others on his way home from the office. His secrecy level is 0.25.
Assuming independence of the probabilities, the chance that ana-
lysts will fail to discover the link between Alice and Bob is (0.99)
(0.25)=0.2475.To account for the cyclic nature of targeting, we
assume that these probabilities are based on some time unit. For
instance, for a given week, our simulation has a 75.25 percent
chance of discovering the connection between Alice and Bob.

e [lluminate hidden regions of the network — Once analysts dis-
cover a node, its secrecy suffers. Real-world targeting strate-
gies tend to use these kinds of Bayesian methodologies. Once
analysts locate Alice and Bob as members of the dark network,
their friends and neighbors have a higher propensity to share
affiliations with the same network. Our simulation consequently
diverts resources toward Alice and Bob, thereby reducing their
ability to maintain hidden relationships and lowering their secu-
rity level in our algorithm.

Figure 8.9 depicts a simulation of the dark network discovery process
described earlier. The network under study is sparse and wide in diam-
eter, highlighting the potential for the simulation to discover multiple
components of a connected graph. The figure’s left-hand panel shows the
actual complete network — perfect information that analysts are unlikely
to ever entirely discover. The figure’s right-hand panel depicts a partial
sampling of the edges after discovering approximately 25 percent of the
edges using our methodology. In both panels, the most central actors are
represented by darkly shaded nodes; thus, readers can intuitively see dif-
ferences between the actual network and the “Targeter View” uncovered
by analysts by noting that the dark clusters are located in different sec-
tions of the respective graphs.

More scientific performance estimates are available from the graph
across the bottom of the figure, which depicts eigenvector centrality error
as a function of the simulated analysts’ knowledge of the network. The
thick, volatile line depicts Spearman’s Rho rank-order error (Spearman,
1904), while the thinner line hugging the origin of the graph shows the
relative change in the centrality measure as the simulation obtains each
piece of information about the network. The straight diagonal line shows
a linear convergence rate between information and error; analysts seek
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Figure 8.9. Simulating the discovery of 25 percent of links in a dark

network.

to stay below the line, where the error rate is lower than the available
information.

For this simulation, the hypothetical analysts made several radi-
cal changes in their centrality calculations while discovering the first
5 percent of the network. Initially, the new information aided analysts
in correctly rank ordering the importance of the actors according to
eigenvector centrality. However, shortly after obtaining 5 percent of the
possible information, the analysts’ new information led them to draw
increasingly bad conclusions regarding the composition of the network’s
core. As the amount of discovered information increases from 5 percent
to 25 percent, the simulated analysts’ error for rank ordering the central
actors remains about 75 percent. This example demonstrates that simply
discovering more information about a dark network does not always
improve analytic conclusions; when a large percentage of the information
about a dark network remains unknown, adding new data can degrade
analytic accuracy.

Figure 8.9 shows another important aspect of dark sampling. While
the information tends to spiral out from known actors, the probability
of discovering actors not connected to the known network is nonzero.
Therefore, analysts may initially discover the network as separate com-
ponents. In Figure 8.9 right-hand panel, the simulated analysts see two
separated components of the network. Information will tend to snowball
from these two components, but as greater intelligence about the net-
work becomes available, it could develop even more separated compo-
nents. The potential for the discovery of multiple components constitutes
a primary distinction between dark sampling and snowball sampling.

Downloaded from https://www.cambridge.org/core. UZH Hauptbibliothek / Zentralbibliothek Zirich, on 15 Nov 2020 at 10:14:42, subject to the
Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316212639.009


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316212639.009
https://www.cambridge.org/core

136  Arney et al.

8 —
6 Actual network High Targeter view
4+
2 =
0 =
-2+
4+ g,
-6 : Low
-8+ Targeter error in eigenvector centrality — Eaenvecor shande.
1 —— Linear convergence
o —
0.25
—12 + Error -
Information 0.1 0.2 03 0.4 05 0.6 0.7 08 0.9 1
_14 | 1 1 | | | | 1 |
—20 -15 -10 -5 0 5 10 15 20
Figure 8.10. Simulating the discovery of 50 percent of links in a dark
network.

Figure 8.10 revisits the same network, albeit after discovering a total of
50 percent of the links in the network. Because this graphic follows the
same interpretive and visual conventions as Figure 8.9, it demonstrates
the effects of confirmation bias. The simulated analysts have uncovered
enough information to join the two components they knew at the earlier
discovery point, and are now more certain that the darkly colored nodes
in the lower-right quadrant of the right-hand panel represent central
actors in the dark network. However, comparison with the true network
depicted in the left-hand panel shows that the analysts are mistaken. The
Spearman’s Rho information in the graph at the bottom of the figure
confirms the analysts’ error; values have strayed above the convergence
line, indicating that the amount of error in the network is greater than the
available information. With 50 percent of the total information, analysts
have nearly 70 percent error in rank ordering the actors according to
eigenvector centrality. Increased intelligence has ironically led to a cor-
responding increase in error.

Fortunately, this pattern is not durable and reverses with the addition
of another 20 percent of information. Figure 8.11, which depicts the
discovery of 70 percent of all ties, shows an increasingly correct intelli-
gence estimate of the network based on eigenvector centrality. The error
rate for the “Targeter View” is now just 30 percent, indicating that the
simulated analysts have achieved linear convergence. Their conclusions
are as accurate as we would expect given the amount of information
at their disposal, and a quick visual assessment of the darkly colored
core nodes suggests that analysts are beginning to correctly identify the
network’s core.

Downloaded from https://www.cambridge.org/core. UZH Hauptbibliothek / Zentralbibliothek Zirich, on 15 Nov 2020 at 10:14:42, subject to the
Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316212639.009


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316212639.009
https://www.cambridge.org/core

Simulating and Analyzing Dark Networks 137

8 . )
6 Actual network High Targeter view
4l d
2+
o+
2L
—4 [ 7 3
8L Low
-8 Targeter error in eigenvector centrality E%ee‘"?\rvngﬁ?omﬁﬁgg '
1 — Linear convergence
10+ 075“%
0.5
0.25 _
—12 |- Error
Information 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
_14 1 1 1 1 1 1 1 1 1
-20 -15 -10 -5 0 5 10 15 20
Figure 8.11. Simulating the discovery of 70 percent of links in a dark
network.
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Figure 8.12. Simulating the discovery of 80 percent of links in a dark
network.

However, analysts’ success proves ephemeral. Figure 8.12, which
shows the test network after discovering an additional 10 percent of
information, depicts substantial analytic error. With a total of 80 percent
of the links discovered, analysts have incorrectly identified the cluster at
the lower left of the “Targeter View” as the central core of the network.
The error graph at the bottom of the figure accordingly shows a worrying
spike above the convergence line; error rates have returned to approxi-
mately 75 percent. The simulated analysts are again performing worse
with more information.

Downloaded from https://www.cambridge.org/core. UZH Hauptbibliothek / Zentralbibliothek Zirich, on 15 Nov 2020 at 10:14:42, subject to the
Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316212639.009


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316212639.009
https://www.cambridge.org/core

138 Arney et al.

8 .
Actual network High Targeter view
6r o
4 L
2 ke
O =
_2 L
41
-6 o Low
-8 Targeter error in eigenvector centrality  Eoenector shange.
1 T ————— Linear convergence
ool °J§E‘M\M’M
0.25
—12 - Error
Information 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
_1 4 1 1 1 1 1 I 1 1 1
-20 -15 -10 -5 0 5 10 15 20
Figure 8.13. Simulating the discovery of 100 percent of links in a dark
network.

Figure 8.13 depicts a final end-state, in which analysts have discov-
ered all possible links in the dark network. The graphic confirms that the
volatility in accuracy seen at lower levels of link discovery persist until
a surprisingly high percentage of the network is known. Although error
rates plummeted as the rate of data discovery entered the mid-eighties,
error rates spiked twice in the upper eighties, before finally reaching a
steady convergence with the rate of available information once approxi-
mately 90 percent of ties were discovered. Thus, these results suggest that
analytic conclusions derived from network science remain exceptionally
sensitive to relatively small amounts of missing information. Considering
that analysts are unlikely to ever discover all ties within a dark network,
these simulations suggest that the potential for confirmation bias with the
emergence of new information remains high.

These conclusions differ from the findings of studies that utilized other
sampling methods. For example, Costenbade and Valente (2003) found
that random sampling techniques, such as bootstrapping, produced cen-
trality measurements that tended to converge quickly. The next section,
therefore, compares our snowball-like approach to data discovery to a
random approach.

II. Dark Sampling Implications for
Subgroup Centrality

As a test case, we examined the same dolphin network used to illustrate
Bell’s approach to centrality. Because we seek to characterize the typical
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Figure 8.14. Eigenvector centrality convergence for dolphin network.

performance of eigenvector centrality (the most stable of the canoni-
cal measurements of node-level influence and importance), we assessed
aggregate performance of 1,000 discovery permutations. Figure 8.14 dis-
plays the results.

These results suggest that, on average, eigenvector centrality con-
verges at a better-than-linear rate. However, note that the deviation in the
error measure actually increases as the amount of available information
increases from 10 percent to about 45 percent. This trend illustrates the
confirmation bias. If analysts focus their attention on the core of the net-
work early in the discovery process, eigenvector centrality measures will
correctly rank order the actors. Conversely, if analysts wait until infor-
mation on the periphery of the network is uncovered, the error in rank
ordering will tend to increase with time, as the confirmation bias leads
them away from the truth — until the real core is finally discovered.

The question remains: How does this pattern compare to random
sampling approaches? We investigated this question by comparing per-
mutations of our approach to data discovery with an equal number of
random samples. Figure 8.15 displays the results and shows that the two
approaches perform similarly, in terms of both convergence and vari-
ance. However, neither our approach nor random sampling produce
particularly satisfying results; analysts would prefer to see decreasing
variance with increasing information, a pattern that would indicate that
network-based conclusions became more certain with the addition of
new relational data.

Given the similar performance of these two approaches to sampling, it
is not immediately evident that our approach offers any additional insight
into “good” metrics given a partial information set. However, when we
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Figure 8.15. Convergence and deviation of eigenvector centrality using
two sampling approaches.

look at the change in measurement error as the targeter develops informa-
tion, we see that dark sampling reduces error by an order of magnitude
compared to random sampling. Figure 8.16 displays results for the same
tests described in the preceding graphic and indicates that our snowball-like
approach performs better on average. We believe that this advantage stems
from the potential to discover the core early in the data-sampling process.
When our approach finds a member of the core early in the data-discovery
process, other members of the core will also be uncovered rapidly, and ana-
lytic conclusions about the most central actors in the network will remain
relatively stable and largely accurate. However, when a random approach
finds a member of the core early in the data discovery process, other mem-
bers of the core are no more likely than peripheral nodes to be discovered
next. Nothing ensures that the sample will latch onto the core and stay
there, causing analytic accuracy to suffer accordingly.

IV. Conclusions

Our research suggests that while snowball-like approaches to data discov-
ery are more advantageous to analysts than random approaches to data
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Figure 8.16. Changes in eigenvector centrality using two sampling
approaches.

discovery, caution is always merited when assessing incomplete informa-
tion. Until analysts have discovered upward of 90 percent of the avail-
able links in a network, centrality rankings can fluctuate wildly, even for
the most stable measure of node-level importance and influence. Analysts
should expect that local centrality measures perform more accurately
than global measures that seek to quantify the relative importance of
every actor in the network. Consequently, analysts should consider using
alternate measurements of centrality. Because Bell’s approach to central-
ity can serve to contrast local importance with global importance, this
method may provide one means for analysts to determine if the apparent
centrality of an individual in the discovered network stems from his or
her location in a small clique-like subgroup, or from true global impor-
tance to the network.

More broadly, this work indicates that complexity in its many forms,
including nonlinearity, chaos, and randomness, permeates dark net-
works, rendering both traditional statistical regression and standard net-
work metrics of limited utility (West & Grigolini, 2011). More powerful
and sophisticated tools are necessary to understand the complexities of
dark networks, and future research should investigate questions such
as: How do new subgroup-based network measures change as legitimate
nodes become part of the dark network and vice versa? How stable are
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these measures as new members and connections are discovered? Do
technology-based networks, such as those formed and mobilized through
social media, operate and reveal themselves in similar fashion as face-to-
face networks? How can complex multilayered network models further
help targeting and intelligence processing in military and criminal opera-
tions (Thomas, Kiser, & Casebeer, 2005; Hampson, 2012; Singer, 2012;
Kivela et al., 2014)? In the end, our research raises as many questions
about dark network analysis as it answers.
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