
BIFX 502 Programming Assignment Coding Guidelines

Coding Guidelines – Part 0

These guidelines apply to all programming assignments.

All assignments must be submitted through the assignment link on Blackboard. In general,

 Assignments must be submitted though Blackboard. Assignments submitted via email,

hard copy, or other formats will not be accepted.

 Assignments must be submitted on time. Note that Blackboard does let you submit late
submissions, but they are labeled as overdue. Late work will not be accepted (unless
you have spoken to me and received prior approval to do so).

 Program file names should include your name and the assignment identifier with a

hyphen or underscore separating them:
yourlastname_assignmentidentifier.py

For example, if I submitted assignment 37, the file name would be jim_pa37.py

 Do not use spaces in file names.

 Programs should ONLY use Python that we have covered in class (and the textbook) at
the time the assignment is given. Do not go out and copy solutions online or get an
expert to write the program for you. The purpose is for you to work out the problem.
Programs that use code that we have not covered will be assumed to be copied rather
than created by you, and may be assigned a grade of zero. I may ask you to explain the
features that you used.

 For full credit, programs must have valid syntax, correct computations, and correct
output format

 Specific requirements will be provided for each assignment.

Coding Guidelines – Part 1, Code Basics
These requirements apply to all programming assignments.

 Comments

Always include file comments.

Place a descriptive comment heading at the top of every .py file in your project with your
name, the course number, a description of that file's purpose, and a citation of any sources you
used to help write your program. Assume that the reader of your comments is an intelligent
programmer but not someone who has seen this program or assignment before. The header
should describe behavior but should not go into great detail about how each piece is
implemented. For example,

"""
Program: jim_pa1.py August 24, 2020
Name: Carol Jim
Course: BIFX 502
Assignment: Programming Assignment 1
Description: Computes the average of three input values.
"""

 Use inline comments to describe complex sections of code
Avoid unnecessary and trivial comments

BAD

avg = (score1 + score2 + score3)/3 # add scores and divide by 3

ALMOST AS BAD - because well designed variable names should make the comment unnecessary

avg = (score1 + score2 + score3)/3 # calculate average

Whitespace and indentation:

 Use correct, consistent indentation.

o All blocks of code within a given function or control flow structure must be distinguished

from the preceding code by one indentation level.

o Use 4 spaces per indentation level. IDLE will automatically indent 4 spaces when you hit

the tab key.

 Always place a line break after a colon (:)

 Avoid long lines.

o Avoid lines longer than 80 characters, including indentation. Make sure to maintain

correct indentation when breaking long lines into shorter ones.

Variables

 Make smart variable type decisions and utilize type conversions

Store data using the appropriate data types (making sure to use the appropriate literals as well),

and make sure to use the type conversion functions (str(), int(), float()) when
necessary. Remember, for example, that if you ask the user to input the temperature outside
and you want to use that value in a calculation, you will have to convert their input to a float
before you can use it.

 Follow variable naming conventions

Name variables using underscore (AKA snake case) like_this. Use concise, descriptive names
for variables that precisely describe what information they're storing.

 Create one variable per line of code

Never initialize more than one variable in a single statement.

bad # good

a, b, c = 7, -43, 19 a = 7

b = -43

c = 19

 Use named constants when appropriate

If a particular constant value is used frequently in your code, identify it as a constant, and always
refer to the constant in the rest of your code rather than referring to the corresponding literal
value. Name constants in uppercase with underscores between words LIKE_THIS.

DAYS_IN_WEEK = 7

DAYS_IN_YEAR = 365

HOURS_IN_DAY = 24

Part 2 – Conditionals and Loops
These requirements apply to Chapters 3 & 4 and later assignments

Control Statements

 Avoid empty if or else branches

o When using if/else statements, you should not have `if` or `else` branches that are blank.

Rephrase your condition to avoid this.

 Avoid unnecessary control flow checks

When using if/else statements, properly choose between various if and else patterns

depending on whether the conditions are related to each other. Avoid redundant or

unnecessary if tests. Ask yourself if all of the conditions always need to be checked.

bad

if points >= 90:

print('You got Gold!')

if points >= 70 and points <

90:

print('You got Silver!')

if points >= 50 and points <

70:

print('You got Bronze!')

...

good

if (points >= 90):

print('You got Gold!')}

elif points >= 70:

print('You got Silver!')

elif points >= 50:

print('You got Bronze!')

...

 Beware of infinite loops

Avoid writing loops that never stop. An infinite loop will cause your program to never

stop executing. Replace infinite loops with loops that terminate.

 Choose the right loop

Consider when it would be more appropriate to use a while loop or for item in

list loop or for item in range loop.

Part 3 – Functions

These requirements apply to Chapter 5 and subsequent assignments

 Use descriptive names for functions

Give functions descriptive names, such as discount(price, rate) or make_a_star().

Avoid one-letter names and non-descriptive names, like x() or go() or function1().

Function names should be all lowercase, with words separated by underscores to improve

readability.

 Keep your main program a concise summary

As much as possible, avoid having too much of your program's functionality directly in

your main() code. When writing your programs, try to break the problem down into

smaller sub-problems. Create functions for these individual sub-problems. This makes

your program easy to read and forms a concise summary of the overall behavior of the

program.

 Minimize redundant code

If you repeat the same code block two or more times, find a way to remove the redundant

code so that it appears only once. For example, you can place it into a function that is

called from both places.

 Avoid long functions

Each function should perform a single, clear, coherent task. If you have a single function

that is very long or that is doing too much of the overall work, break it into smaller sub-

functions. If you try to describe the function's purpose and find yourself using the word

"and" a lot, that probably means the function is doing too many things and should be split

into sub-functions.

 Consider short functions for common tasks

It can be useful to have a short function if it wraps another function with some additional

control flow or if it contributes to an easier to understand name.

bad

def square_root(x):

return math.sqrt(x)

good

def discount(price, rate):

discount = price – rate*price

return discount

 Write an overall header comment for every function - use the IPO notation described in

Module 05, Part 3

 Eliminate redundancy by introducing functions with parameters

If you repeat the same code two or more times that is nearly but not entirely the same, try

making a helper function that accepts a parameter to represent the differing part.

bad

x = foo(10)

y = x - 1

print(x * y)

...

x = foo(15)

y = x - 1

print(x * y)

good

print(helper(10))

print(helper(15))

...

def helper(p):

x = foo(p)

y = x - 1

return x * yx

