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Notation and Terminology

1. Numbers
2. Sets
3. Functions

union over empty index

sum over empty index

if f, T f then {f, >c} 1 {f >c}

expand sets for measurable functions

convergence, Cauchy

0.1. Show that (X +Y)” < X +Y .(X+Y)" < XT4+YT. IfX <Y,
then Xt <Yt and X~ >Y".

0.1. EXAMPLE. A monotone function has at most countable discontinu-

ity.






CHAPTER 1

Measurable Sets

At any given time point, we are interested in knowing what the future
will be at a later time point. But the future is full of uncertainties: tomorrow
it may rain or may not rain; the lottery ticket you are buying now may win
or may not win. Just like flipping a coin, we will not know which scenario
would eventually become true, until the coin has been flipped. Thus, in the
presence of uncertainties, instead of asking what the future will be, we shall
ask what are the possible scenarios and what are their chances to become
true in the future. This leads us to the realm of Probability Theory. Modern
Probability Theory is built over a triple (2, F, P), where 2 is the collection
of all possible scenarios for the future, F collects all the events that are
of interest, and P tells the probability of each event in F. We start with
exploring F in this chapter.

1. Definition and basic properties

Suppose that we are going to conduct an experiment of flipping a coin
three times. We use H and T to denote head and tail, respectively. Then we
are facing eight possible outcomes in the future: HHH, HHT, HTH HTT,
THH,THT, TTH,TTT. We collect them together and denote it by a set

(1.1) Q:={HHH,HHT,HTH HTT,THH,THT,TTH,TTT}.

Consider the event that the first flip is H. It means precisely that if we
have conducted the experiment, then our final outcome would be one of the
following four: HHH, HHT, HTH,HTT. We may thus use the set

Fy:={HHH HHT,HTH HTT}

to denote the event that the first flip is H. Other events can be similarly
identified as subsets of 2 as well. For example, we identify the event that
the second flip is H with the set Sy := {HHT,HHH,THH,THT}.

Given that we use subsets of € to denote events, how do we formulate
the occurrence of an event mathematically? Say, we have conducted the
experiment of flipping the coin three times, and the final outcome is w

3



4 1. MEASURABLE SETS

(which of course is an element in ). The event that the first flip is H has
occurred means precisely that the realized outcome w is one of the four:
HHH, HHT, HTH,HTT. Thus the event Fy occurs at a realization w iff

w € Fy.

Let’s now consider the collection of all interesting events. Say, suppose
that, for some reasons, we care about only the first two flips. Take any event
E in the collection of interesting events. At an arbitrary realization w, E
occurs iff w € F iff w ¢ E° iff E° does not occur. That is, E° is the contrary
of E. Intuitively, we shall care about the contrary of an interesting event.
Thus E° should also be included in our collection of interesting events. For
example, if £ = Sy, then its complement Sy := {HTH,HTT,TTH,TTT}
is the event that the second flip is T, which is of course interesting. We may
also look at multiple interesting events together. Let’s take two interesting
events F and F'. At an arbitrary realization w, the intersection £NF occurs
fwe ENFiff we F and w € F iff both £ and F' occur. Intuitively,
we shall care about the simultaneous occurrence of two interesting events.
Thus E N F should lie in our collection of interesting events as well. For
example, for the event F that the first flip is T and the event St that the
second flip is T, the intersection Fg NSy = {HTH, HTT} is precisely the
event that the first flip is H and the second flip is T, which is again obviously
interesting to us as we care about the first two flips.

The above discussions motivate us to conclude that our collection of
interesting events should be closed under taking complementation and in-

tersection. This leads us to the following notion.

1.1. DEFINITION. Let €} be a non-empty set. Let F be a collection of
subsets of Q. We say that F is a o-algebra over Q) if it satisfies the following

conditions:

(a) F has at least one member;
(b) if E € F, then E° € F
(¢) if (En)nen is a sequence in F, then (2, E, € F.

Members in F are also called F-measurable sets, or simply, mea-
surable sets if there is no ambiguity about the o-algebra in question. In
probabilistic terms, €2 is usually called the sample space and members in
F are called events.
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Condition means that if we are interested in any given countably in-
finite many events, then we are interested in their simultaneous occurrence.

A quick observation regarding this condition is the following.

1.2. PROPOSITION. Assuming Conditions and@ in Deﬁm’tz’on
Condition is equivalent to the following:

(c”) if (En)nen is a sequence in F, then | o2 E,, € F.

PRrROOF. Assume that Conditions @ and @ are satisfied by F. The
proof is a simple application of De Morgan’s Laws.

Suppose first that is satisfied by F. Take any sequence (Ej)pen in
F. Then E¢ € F for each n € N by Condition Thus (2, ES € F by
It follows from Condition @ again that

0 Py C

UE::“]m)eﬁ

n=1 n=1
This proves that = The reverse implication = |(c)| can be
proved similarly by noticing (.-, E, = (U,—; ES)°. O

Some other basic properties of o-algebras are listed below.

1.3. PROPOSITION. Let F be a o-algebra over Q). The following hold.

IfEy,...,E, € F, then \'_, Ex € F;
IfEy,...,E, € F, then \J'_, Ex € F;

PrOOF. @ By Definition F has at least one member, say, F.
Then by Definition @, E¢ € F. Consider the sequence E°, E E, ...
in F. Clearly, the intersection is () and lies in F by Definition the
union is 2 and lies in F by Proposition [I.2]

@ Suppose Eq,...,E, € F. Put £, = Q for each £k > n + 1. Then
Mi—1 Ex = Np=; Ex € F by Definition can be proved similarly
by setting Ej, = () for each k > n + 1 and using Proposition

@ Suppose E,F € F. Then F° € F by Definition and thus
E\F=ENF°ecFby @ that we have just proved. O

1.1. EXAMPLE. Let Q be given in (1.1). Then {0,Q, Fy, Fr} is a o-
algebra over (2.

1.2. EXAMPLE. Let Q be any non-empty set. Its power set P(Q2) is a
o-algebra over 2.
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2. Generated o-algebras

Sometimes we start with a collection of interesting events that is not a
o-algebra yet. In this case, we find the “smallest” o-algebra enveloping it.

1.3. EXAMPLE. Let ) be given in . Consider the collection C =
{Fp,Sr}. Suppose F is a o-algebra and C C F.

The events in C involves only the first two flips.

By Definition @ clearly Fp, S € F. Thus all the possible events
resulting from the first flip, Fiy and Fr, lie in F, and also all the possible
events resulting from the second flip, Si and St, lie in F. Using them, we
conclude that all the “building-blocks” events from the first two flips all lie
in F:

(a) FunN Sy ={HHH, HHTY}; the first two flips are both H;

(b) Fg NSy ={HTH,HTT}; the first flip is H and the second flip is
T

(¢c) FrnSy ={THH,THTY}; the first flip is T and the second flip is
H;

(d) Prn Sy ={TTH, TTT}; the first two flips are both 7.

We can now produce all other events that must lie in F by taking unions
of these “building blocks”. Precisely,

(a) taking union of no building blocks yields (;

(b) taking union of exactly one building block yields the four building
blocks;

(c) taking union of exactly two building blocks yield
(FH N SH) U (FH N ST) = Fy,
(FT N SH) U (FT N ST) = I,

(Fir 1 Su) U (Fr N Sk) = Su,
(FH N ST) U (FT N ST) = ST,
(Fg NSy) U (FrnSy),
(FH N ST) U (FrNSk);

(d) taking union of exactly three building blocks yield
(FgNSy)U(FgnNSy)U (FrNSy),
(FgNSy)U(FgnNSr)u (FrnSr),

(Fg N Sy)U(FrNSy)U (FrnSy),
(FH N ST) U (FT N SH) U (FT N ST);

(e) taking union of exactly four building blocks yield

Q.



2. GENERATED o-ALGEBRAS 7

Denote by ¢(C) the collection of all the sixteen events above. One sees
that it is a o-algebra containing C as a subset. On the other hand, ¢(C) is
the smallest g-algebra containing C as a subset, in the sense that if F is any
other o-algebra containing C as a subset, then o(C) C F.

In general, for any non-empty collection C of subsets of (2, we can find
the smallest o-algebra enveloping it. Recall first that there is at least one
o-algebra containing C as a subset: P(f2).

1.4. PROPOSITION. Let C be a non-empty collection of subsets of ). Let
{Fa}rea be the collection of all o-algebras over Q containing C as a subset.
Put

o(C) = ﬂ Fa.
AEA
Then o(C) is a o-algebra over § containing C as a subset. Moreover, if F

is any o-algebra over  containing C as a subset, then o(C) C F.

PROOF. By Proposition ) € Fy for each A\ € A, so that 0 €
Maea Fa = (C). Thus Condition [(a)] in Definition [I.1]is verified.

Take any set E € 0(C). Then for any A € A, E € Fy, and since F) is a o-
algebra, E° € F) as well. It follows that E° € ﬂ)\EA Fx. Thus Conditionl@
in Definition [[.1] is verified.

Let (En)nen be a sequence in o(C) = () cp Fa- Then for each n € N
and A € A, E,, € Fy. Since F) is a o-algebra, (2, E, € F) for each A € A.
Thus (),~; En € (yea Fa, and Condition |(c)|in Definition [1.1is verified.

Finally, if F is any o-algebra containing C as a subset, then F = F), for
some A\g € A. Thus 0(C) = [ycp Fr C Fro = F. O

From now on, we call o(C) the o-algebra generated by C. The mem-

bers of C are called generators of o(C).

1.5. REMARK. The last assertion in Proposition shall be read as
follows: in order for a o-algebra F to contain a generated o-algebra G as a
subset, it is enough to ensure that F contains all the generators of G.

We are ready to introduce special o-algebras over RY.
1.4. EXAMPLE. The following hold.
o({(a,b] : a,b € R,a < b})
=o({(—00,a] :a €R})
=o({[a,b] : a,b € R,a < b}).
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Let’s denote the o-algebras by JFi, Fa, F3, respectively. For any a,b € R
with a < b,
(CL,b] = (—OO,b]\(—OO,CL] € Fa.
Thus F» contains all the generators of Fi, and by Remark
Fo D Fi.

Similarly, for any a € R,

(—o0,a] = U [a —n,a] € Fs,

neN

so that F3 contains all the generators of F3, and
F3 D Fo.

For any a,b € R with a < b,
1
[a’ub] = ﬂ (a_ﬁabj| E.T"l,
neN

so that F; contains all the generators of F3, and
F1 D Fs.
Combining the above, we get the desired equalities.

1.6. DEFINITION. We denote the o-algebra in the preceding example by
B and call it the (one-dimensional) Borel algebra. FEvery element in B is
called a Borel set.

See Exercise for more equivalent characterizations of B.

1.5. EXAMPLE. The following hold.
(a) {a} € B for any a € R. Indeed, {a} =,y (e — %,a] € B.
(b) If Ais a finite or countably infinite subset of R, then A € B. Indeed,

A can be expressed as a finite union or a countably infinite union
of singletons; apply Propositions and

The higher-dimensional Borel algebras can be defined similarly.

1.7. DEFINITION. Let d € N. We denote by B® the o-algebra generated
by the collection of all bounded, left-open, right closed cubes szl(ak,bk],
where ap,br, € R and ap, < by, k = 1,...,d, and call it the d-dimensional

Borel algebra. Elements in B are also called Borel sets.
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1.6. EXAMPLE. The following hold.

dea({ ﬁ(—oo,ak] cap € R k= 1,...,d}).

k=1

We can argue similarly as in Example the reader may take d = 2
and draw graphs to see the arguments below visually. Denote the o-algebra
in the right hand side by F. Let ax € R, £k = 1,...,d, be arbitrary. Note
that

f[(—oo,ak] = U <ﬁ (ar —n, ak> e B
k=1

neN k=1

Thus by Remark again,

B F.

For the reverse inclusion, we work coordinate by coordinate. Let ag, by €
R with ap < b, k =1,...,d, be arbitrary. Then

(a1,b1] x f[ —00, by = (ﬁ )\< (—o0,a1] X ﬁ(—oo,bd) e F.
k=2

k=1 k=2
Thus

2 d

[T (an. k] x T] (=00, bl

k=1 k=3
d d

:((al,bl] X H(—oo,bk])\<(a1,b1] X (—00.as] X H(—oo,bk]) e F.

k=2 k=3

Repeating this process, one gets that

d
11 (akbi) €
k=1
Therefore, by Remark
BYc F.
Combining the above, we get the desired equality.

See Exercise for more equivalent characterizations of B.
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3. Monotone class theorem

It is generally extremely difficult to figure out all the elements in a
generated o-algebra. A general approach to get around this difficulty is to
study another collection of subsets of {2 that contains the generators of the
o-algebra in question but satisfies some other properties and then compare
this collection with the generated o-algebra. We present a monotone class
theorem in this spirit. It will be used later a few times.

To this end, we introduce two new notions.

1.8. DEFINITION. A mon-empty collection P of subsets of ) is called a
w-system over Q) if ENF € P whenever E, F € P.

m-systems usually have relatively simpler structures.

1.7. EXAMPLE. The following collections of generators for the Borel al-
gebra B¢ are both 7-systems.

d
P1 :{Q}U{H(ak,bk] tap, b €ER,ap < b, k= 1,...,d},
k=1
d
Po :{H(—oo,ak] cay € R,kzl,...,d}.

k=1
1.9. DEFINITION. A collection D of subsets of € is called a \-system
or Dynkin system over Q) if it satisfies the following conditions:
(a) 0 € D;
(b) E° € D whenever E € D;
(€) Unen En € D whenever (Ep)nen is a disjoint sequence in D.

The definition of A-systems only “slightly” differs from that of o-algebras
in the third condition. A o-algebra is obviously a A-system but a A-system
need not be a o-algebra (Exercise .

The monotone class theorem is stated as follows.

1.10. THEOREM. Let P be a w-system over €} and D be a \-system over
Q such that P C D. Then o(P) C D.

For the proof, we need to exploit the notion of generated A-systems.

1.1. LEMMA. Let C be a non-empty collection of subsets of ). Let
{Dyr}xen be the collection of all A-systems over Q containing C as a sub-
set. Then

D(C) = () Da

AEA
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is a A-system over ) containing C as a subset. Moreover, if D is any -
system over Q containing C as a subset, then D(C) C D.

Its proof is straightforward verification and is similar to that of Propo-
sition We leave it to the reader (Exercise [1.9)).

Proor oF THEOREM [1.10l We begin with a few deductions to simpler
assertions. First, by the minimality of generated A-systems, D(P) C D.
Thus it suffices to prove that

o(P) C D(P).

Second, since P C D(P), by the minimality of generated o-algebras it is
enough to show that D(P) is a o-algebra. Finally, note that a A\-system
that is also a m-system is a o-algebra (Exercise [1.7)). Thus it only remains
to be shown that the generated A-system D(P) is also a m-system.

Consider the collection of all sets whose intersections with every member
in D(P) remain in D(P):

Dy :={ECQ:END e D(P) for every D € D(P)}.

Then D(P) being a m-system is clearly equivalent to D(P) C D;. Using the
minimality of generated A-systems again, we only need to show the following
two assertions:

(a) P C Dl;

(b) Dj is a A-system.
We start with verifying the second assertion. By Definition @, 0NnD =
) € D(P) for any D € D(P). Thus O € Dy. Next, take any F € D; and
any D € D(P). Then EN D € D(P) by Definition of D, and D¢ € D(P)
by Definition [L.9[(b)} Consider the disjoint sequence E N D, D¢, (,0,... in
D(P). By Definition their union, which is (END)U D¢, lies in D(P).
Thus by Definition @ again,

E°ND = ((END)uUD)" e D(P).

It follows that E° € D;. Finally, let (E,),en be a disjoint sequence in Dj.
Then for any D € D(P), (E, N D)pen is a disjoint sequence in D(P). By

Definition
(G En) ND = D(Ean) € D(P).

n=1 n=1

It follows that | ;7 ; Ey, € Dy, completing the proof of the second assertion.
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The first assertion cannot be verified directly. Instead, consider the
following collection:

Dy :={ECQ:ENPeD(P) for every P € P}.

Since P is a w-system, it is easy to see that P C D,. Along the same lines
as for Dy, one also sees that Dy is a A-system. Therefore, D(P) C Ds. That
is, for any D € D(P), DN P € D(P) for every P € P. This can be restated
as: for any P € P, PN D € D(P) for every D € D(P). Hence, if P € P,
then P € D;. The proves the first assertion and hence the theorem. [l

This theorem is also called Dynkin’s 7-A Theorem.

Exercises

1.1. Let F be a o-algebra over a set €2 and F be a non-empty set in F.
Then

Flp:={F:FeF,FCE}
is a o-algebra over E. Note that the universal set for F|g is E, not (2.

1.2. Let Q be as in (1.1). Let Ty be the event that the third flip is H.
Show that P(Q2) = U({FH, S, TH})

1.3. Let Q be a non-empty set. Let {A,},en be a given partition of €,
ie., @ =UpenAyn and A; N Ay = 0 for any distinct j, & in N. Show that

U<{An}n€N) = { U Aj :J C N}.
jeJ
1.4. Show that

B=c({(a,):a€cR})=0c({[a,):aecR})
=0({(—00,a) :a € R}) =c({[a,b) : a,b € R,a < b}).
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1.5. Show that

B? :O'({ ﬁ(—oo,ak) cap € R k= 1,...,d}>

:a({ ﬁ(ak,oo) Cap €R k= 1,...,d})
:a({ ﬁ(ak,bk) ap, by € R, ap < by, k = 1,...,d}>

:a({ ﬁ(ak,bk) tag, by €R,ap < by, k= 1,...,d}).

1.6. Let C be a collection of subsets of € such that Q2 € C. Show that C
is a A-system over  iff both of the following hold:

(a) if E,F €Cand E C F, then F'\ E € C;
(b) if (Ey,)nen is an increasing sequence in C, then lim, E,, € C.

1.7. Show that if a collection C of subsets of €2 is both a 7-system and
a A-system, then it is a o-algebra.

1.8. Let D be a A-system. Show that if (E,),en iS a monotone sequence
in D then lim, F, € D.

1.9. Prove Lemma [I.1]
1.10. Show that in the proof of Theorem D; =D(P).
1.11. Let P be a m-system over 2. Show that o(P) = D(P).

1.12. Construct a A-system that is not a o-algebra.






CHAPTER 2

Measures

In the previous chapter, we study the collections of interesting events.
In this chapter, we study the probability of their occurrence.

1. Definitions and examples

We begin with the definition of measures. In order to gather intuition

¢

for them, one may interpret it as “length”, “area”, or “weight” of objects.

2.1. DEFINITION. Let F be a o-algebra over Q. A mapping u : F —
[0,00] is a measure on (Q, F) if it satisfies the following two conditions:

(a) pu(0) =0;
(b) for any disjoint sequence (Ep)nen in F,

p(U En) = imm

neN

We will call the triple (Q, F, 1) a measure space. We may also simply
say that p is a measure on § if there is no doubt about F in the context.

Conditionl@]is referred to as countable additivity of p. Intuitively, it
can be interpreted as that the total area of countably infinite non-overlapping
regions equals the sum of the areas of all the sub-regions.

We first look at several illustrative but elementary examples; most im-

portant ones will be constructed in Chapter

2.1. EXAMPLE. Let Q ={HH,HT,TH,TT} and F = P(£2). Set

W({(HHY) = p({HT}) = p({TH}) = u({TT}) = 1.
For an arbitrary set £ C €, set
w(E) =3 ufw)).
wekl
For example, u({HH, HT,TH}) = p({HH}) + n({HT}) + n({TH}) = 3.
One can verify that p is a measure over (£, F).

15



16 2. MEASURES

This example can be extended to much more general cases.

2.2. EXAMPLE. Let Q be an arbitrary non-empty set, and F = P().
Suppose that for each w € €2, there corresponds a real number p,, > 0, called
the weight at w. For each set £ C 2, put
(2.1) w(E) =3 po.

wes
Then p(F) is the “total weight” of the elements in F. Again, it is easy to
see that u is a measure on (2, F).

If p, =1 for any w € €1, then p is called the counting measure on (),
as it simply counts the number of elements in a set. In this spirit, we may
term the general measure p in (2.1) as the weighted counting measure

on Q with weights (py,)wea-

2.3. EXAMPLE. Let € be a non-empty set, and fix any wg € €2. Choose
the weights by p,, = 1 and p, = 0 for any w # wp. Then the weighted
counting measure satisfies the following

1, ifwpe B

u(E) = :
0, if wo ¢ E

In particular, p({wo}) =1 and pu(2\ {wo}) = 0. Thus u concentrates all its
mass, which is of size 1, at the single point wy. We give it a special notation
dw, and call it the Dirac measure at wy.

We now introduce probability spaces.

2.2. DEFINITION. Let p1 be a measure on (2, F).

(a) It is called a probability measure if () = 1. In this case,
the triple (Q, F,u) is called a probability space. From now on,
probability measures will be denoted by P or Q, with or without
subscripts.

(b) It is said to be finite if u(Q) < co.

(c) It is said to be o-finite if there exists a sequence (Ep)nen in F
such that Q = J, ey En and p(Ey,) < oo for each n € N.

2.4. EXAMPLE. Let ) be an uncountable set. Then the counting measure
on () is not o-finite. Indeed, otherwise, £} can be expressed as a countable
union of sets, each of which is finite. This would imply that  is countable.

2.5. EXAMPLE. Let Q = N, and let u be any weighted counting measure
on N. Then p is o-finite. Indeed, simply note that N = | J,,cn{n}-
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2.6. ExaMPLE. Let 2 = N, and let u be the weighted counting measure
for given weights (pg)ren. Then p is finite iff Y77, pp < oo, and p is a
probability measure iff Y7 ; pr = 1. Indeed, simply note that

p(N) =D pr.
k=1

In particular, Dirac measures are probability measures.

The following example says that taking convex combinations of proba-
bility measures still results in a probability measure.

2.7. EXAMPLE. Let F be a o-algebra over Q, (P)ren be a sequence of
probability measures on (€2, F), and (cx)ken be a sequence of non-negative
real numbers such that Y p-; ¢ = 1. Put

P(E) = chPk(E) for every E € F.
k=1

Clearly, P(0) =Y 321 ¢t-0=0,and P(Q) = > 72 cx -1 = 1. Let (E,) be a
disjoint sequence in F. Then

P( D E,) :ickpk( § E,) = i%(ipk@n))
n=1 k n=1 k=1 n=1
:i <§:Ckpk(En)) = i (ickpk(En)>
1 n=1 n=1 k=1

= Z P(En),

n=

—_

where the second equality follows from countable additivity of Pp and the
fourth one is due to changing order of summation, which is always true
for double sums with non-negative terms. It follows that P is a probability
measure on (€, F). We usually rewrite P as Y 7~ | cxPk.

A special case of the preceding example is as follows.

2.8. EXAMPLE. Let (zj)ren be a sequence of distinct real numbers and
(ck)ken be a sequence of positive real numbers such that Y oo ; ¢ = 1. Then
P =317 ckds, is a probability measure on (R, P(R)). Clearly,

P({zr}) = ¢ for each k € N

and
PR\ {zr: ke N})=0.



18 2. MEASURES

That is, P has a mass of ¢, at each zj. Such probability measures are
important as they are precisely the probability distributions of so-called
discrete random variables. We will revisit them in Chapters [3] and

(Of course, P is just the weighted counting measure on R with weights

¢k at each xy and 0 elsewhere.)

From now on, we will state results only in the framework of probability
spaces. However, nearly all interesting results in Chapters [{{7 hold for o-
finite measure spaces. Chapters will only deal with probability spaces.

2. Basic properties

We fix an arbitrary probability space (€2, F, P) for this section.
Note first that P also has finite additivity and is increasing.

2.3. PROPOSITION. (a) Let En, ..., E, be disjoint sets in F. Then
P(UZ:1 Ey) = ZZ=1 P(Ek).

(b) Let E,F € F be such that E C F. Then P(F'\ E) = P(F)—P(E).
In particular, P(E) < P(F).

PrOOF. ForKE]7 put £, = () for k > n+1 and apply countable additivity
of P. For @ note that £ and F'\ F are disjoint. Thus by @,

P(E)+P(F\E)=P(EU(F\E)) =P(F),
from which the desired results follow immediately. O

2.4. PROPOSITION. Let (E,)nen be a sequence of sets in F and E € F.
If B, 1 B, then P(Ey,) 1 P(E).

PROOF. The increasingness of P(E,,)’s is due to Proposition

For the convergence, we cut E,’s into disjoint sets as follows. Put F} =
E,. For n > 2, put F,, = E,, \ E,_1. See Figure [l| below for illustration.
Clearly, (F},) is a disjoint sequence of sets in F, |Jj_, F, = E,, for any n € N,
and |J;7 | F,, = U, ; En. Thus by the countable (and finite) additivity of
P, it follows that

P(E) :P(p1 En> - P<n[j1 Fn> - nil P(E,) = nllngogp(Fk)

n

— lim P( U Fk) — lim P(E,).

n—00 n—00
k=1
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Es

E;
D "

Ficure 1. Cutting an increasing sequence of sets into a dis-
joint sequence

The property in this proposition is called continuity from below. It
is an equivalent form of countable additivity (Exercise and, as will be
seen (e.g., in the proof of Theorem , is the very property of measures
that guarantees the nice convergence properties of Lebesgue integrals and
expectations. We now include some of its elementary corollaries below.

The following property is called countable sub-additivity.

2.5. COROLLARY. Let (Ep)nen be a sequence of sets in F. Then
(2:2) P B <Y PE).
n=1 n=1

ProOOF. For any two sets F, Fb € F, note that
P(Fl @] Fg) :P(F1 @] <F2 \ Fl)) = P(Fl) + P(F2 \ F1>
(2.3) <P(F\) + P(F).

This observation, together with induction, implies (see Exercise [2.6) that P
has finite sub-additivity:

(2.4) P( O Ek> < Zn: P(E}).
k=1

k=1
In view of Up_; Ex Tn Uz Ek, letting n — oo completes the proof. [

An immediate consequence of the countable sub-additivity is that union
of countable negligible sets remains negligible.

2.6. DEFINITION. A set E € F is said to be negligible if P(E) = 0.

2.7. COROLLARY. Let (Ep)nen be a sequence of negligible sets. Then
US| Ey, is also negligible.

n=1
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2.8. COROLLARY. Let (Ep)nen be a sequence of sets in F. Then
P(liminf £,) < liminf P(E,).
n n

PROOF. Set F,, = (i, Bk for n € N. Recall that F,, 1 liminf, E,.
Thus
P(liminf E,) = lim P(F,,) = sup P(F},).
n n

n>1
Furthermore, for any k > n, since F,, C Ej, P(F,) < P(E)). Thus

P(Fn) < 1?212 P(Ek)
Combining the above, we have

P(liminf E,,) < sup inf P(E}) = liminf P(E,,).

n>1k2n

3. Uniqueness

Probability measures, though defined on o-algebras, are in fact deter-

mined by their values on smaller collections of sets.

2.9. THEOREM. Let P and Q be probability measures over (£, F), where

F is generated by a w-system P. If P and Q agree on P, then they agree on
F.

The proof uses a general approach of handling generated c-algebras:
collect all the sets satisfying the desired property and then manage to apply
the monotone class theorem [1.10)

PROOF. Put
D={EcF:P(E)=Q(E)}.
Then P C D. If D were a A-system, then by Theorem F=0(P)CD,

we are done. We now verify that D is a A-system. First, since P()) =0 =
Q(M), 0 € D. Second, take any E € D. Then by Proposition [2.3|[(b)]

P(E®) =1-P(E) =1-Q(E) = Q(E*),

so that E¢ € D. Third, let (E,)nen be any disjoint sequence in D. Then by
the countable additivity,

(U 22) = 3Pt = >t =o( U ).

Thus (J,2; En € D. This proves that D is a A-system. O
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2.10. COROLLARY. Let P and Q be probability measures over (R?, BY).
Then P = Q if they agree either on the collection of all cubes of the form.:
d
H(ak,bk], where a, by, € R,a, < bp, k=1,....,d,
k=1
or on the collection of all cubes of the form:
d
H(—oo,ak], where a, € R, k=1,...,d.
k=1
PROOF. The second collection is a m-system generating B?. The first
collection is not a m-system, but its union with the singleton {0} is a 7-
system generating B¢, on which P and Q still agree. O

We close this chapter with the following remark.

2.11. REMARK. (a) All the results in Section [2[ hold for a general
measure space, except that P(F'\ E) = P(F) — P(E) in Proposi-
tion @ which is still valid as long as oo — oo does not occur.
See Exercise

(b) Theorem may fail for a general o-finite measure space. How-
ever, under a mild additional assumption, it still holds. See Exer-

cises 2.14] and .15
Exercises
Let (2, F,P) be a probability space.
2.1. Let E be a set in F such that P(E) > 0. For every F' € F, put
P(F N E)
P(E)
Show that Q is a probability measure on F. (It is called the conditional

Q(F) =

probability given E and is usually written as P(:|E). In contrast, P is
sometimes called the unconditional probability.)

2.2. Let (2, F, 1) be a measure space. Let E be a set in F. Put v(F) =
w(F N E) for every F' € F. Show that v is a measure on F.

2.3. Let (2, F, 1) be a measure space and ¢ > 0 is a real number. Put
v(F) = cu(F) for every F' € F. Show that v is a measure on F.

2.4. Let (un)nen be a sequence of measures on (2, F). For every E € F,
put v(E) =Y | i (E). Show that v is a measure on F.



22 2. MEASURES
The measures v in Exercise [2.3| and are usually denoted as cu and
> 02| Hn, respectively.

2.5. Let F be a o-algebra over Q. Let u : F — [0,00] be a mapping
such that p(0) = 0 and p(Up_; Ex) = > p—q #(Ex) for any n € N and any
disjoint sets E1,...,E, in F. Show that p is a measure iff it is continuous
from below, i.e., if E,, T E, then u(E,) 1 u(E).

2.6. Deduce (2.4) from ({2.3)).
2.7. Suppose that P(E,) = 1 for any n € N. Show that P((">2, E,) = 1.

2.8. Let (En)nen be a sequence of sets in F and E € F be such that
E, | E. Show that P(E,) | P(E).

2.9. Give a counterexample to show that the conclusion in Exercise [2.8
may fail for a general measure . Show that it still holds if pu(FE1) < oo.

2.10. Let (Ey,)nen be a sequence of sets in F. Show that
limsup P(E,) < P(limsup E,).
n n

2.11. Give a counterexample to show that the conclusion in Exercise[2.10
may fail for a general measure p. Show that it still holds if p(|J,~, En) < co.

2.12. Let E,E,, n € N, be sets in F such that F, — FE. Show that
P(E,) — P(E).

2.13. Observe that the conclusions in Proposition[2.4 and Corollaries[2.5]
and 2.8 hold for a general measure. The same arguments work.

2.14. Let p be the counting measure on N and v = 2. Let
P={{keN:k>n}:neN}.
Show that P is a m-system, o(P) = P(N), u = v on P, but p # v on P(N).

2.15. Let p and v be o-finite measures over (2, F), where F is generated
by a m-system P. If 4 and v agree on P and are finite on an increasing
sequence (P,)pen in P whose union is €2, then they agree on F.



CHAPTER 3

Lebesgue-Stieltjes Measures

We have not seen any non-trivial measures other than the weighted
counting measures. It is because constructing non-trivial measures, even in

the case of R, is generally very difficult.

1. An extension theorem

Say, we want to construct a measure m on (R,F) that measures the
“length” of one-dimensional objects in R. Here F is a o-algebra over R,
conceptually consisting of “measurable” objects (we reasonably expect that
some objects may be too complex for us to measure their length). We start
with the simplest objects, intervals. It should be in common agreement that

we know how to measure their length: simply specify that
m((a,b]) =b—a.

Once we agree on this, we should agree that we can also measure the length
of a bit more complex objects, finite unions of intervals, e.g.,

But the assumption that all the intervals are “measurable” and belong
to F already forces that F contains all the Borel sets (Example . A
general Borel set B could have a very complicated structure, and directly
specifying the value m(B) could be extremely difficult.

Luckily, we have a theorem that guarantees that if it is known how to
measure the length of simple objects, such as intervals or finite unions of
intervals, then there is an automatic way to extend our measurement to

much more complex objects, such as Borel sets.

23



24 3. LEBESGUE-STIELTJES MEASURES

To introduce the theorem, we need the notions of algebras and pre-
measures, which are weakened versions of o-algebras and measures, respec-

tively.

3.1. DEFINITION. A collection A of subsets of Q is called an algebra
over ) if it satisfies the following conditions:
(a) D e A;
(b) A® € A whenever A € A;
(¢) AN B € A whenever A,B € A.

By using induction and De Morgan’s Laws, it is easy to see that A is
closed under taking finite intersections and unions (Proposition holds
for A). The definition of algebras differ from that of o-algebras in that the
latter allows to take unions of countably infinite objects.

3.2. DEFINITION. Let A be an algebra over Q2. A mapping p : A — [0, 0]
is a pre-measure on (0, A) if it satisfies the following two conditions:

(a) p(0)=0;
(b) for any disjoint sequence (Ay)nen in A, if (Jo7 | Ay € A, then

u(U4n) = iu(z‘ln)-

neN

One can easily see that p has finite additivity and is increasing (cf. Propo-
sition . The weakness of i is that it is defined only on an algebra, and
thus in Condition of Definition if (Ep)nen is a disjoint sequence in
A such that | J77 | E,, ¢ A, then we have no control of | ;2 | E,.

We are ready to present the Carathéodory extension theorem.

3.3. THEOREM. Let u be a pre-measure on an algebra A over Q2. Then
there exists a measure p on o(A) such that

(3.1) pu(A) = pu(A)  for every A € A.

Furthermore, if there exists an increasing sequence (Ap)nen in A such that
Q = UpZi Ay and p(A,) < oo for every n € N, then there is a unique
measure on o(A) satisfying (3.1)).

PRroOF. For the existence part, the “automatic” way that we alluded
earlier is as follows. For every F € o(A), put

(3.2)  w(E) = inf { iH(An) : Ap € Aforeachn € N, E C G An}.
n=1

n=1
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Basically, one measures E € o(A) by covering it with countably infinite
elements from A, whose objects we already how to measure: use . Though
the formula is easy to state, verifying that u defined this way is a measure
on o(A) satisfying is quite technical. As we will not use the techniques
in the proof for the rest of the book, we put the proof to Appendix [A]l

For the uniquness part, let 11 and po are two measures on o (A) satisfying
(3.1). Then they agree on .A. Observe that an algebra is a m-system. Thus
they agree on o(.A), by Theorem (Exercise to be accurate). O

2. Lebesgue-Stieltjes measures

We now employ the Carathéodory extension theorem to construct im-
portant, non-trivial measures on (R, B). Of course, the theorem reduces our
work to construct pre-measures on algebras.

We start with the algebra that we will build the pre-measures on. Con-
sider intervals that are left open and right closed, namely, intervals of one
of the following forms:

(—o0,al, (b,c], (d,o0), a,b,c,d e Rb < c.

Let A be the collection of () and all unions of finitely many, disjoint such
intervals. Members in A have quite simple structure. For example,

(—o0,—2] U (0,1] U (2,3] € A.

R=(—00,1]U(1,0) € A.

Note that a member in 4 may be written in more than one form. For
example,

3.1. LEMMA. A is an algebra on R.

The proof is very simple; the reader may draw a graph to illustrate it.

Proor. Condition @ in Deﬁnition is clear. For Condition @ take
any A e A If A =0, clearly A° =R € A. Otherwise, write A = (J;_; I,
where [Ij’s are disjoint intervals and each has the designated form. For each
k, let ag, by be the left and right endpoints of I, respectively. Without loss
of generality, assume that —oo < a; < by < a2 < by <--- < a, < b, < .
Thus

A¢ = (—o0,a1] U (by,ag] U---U (by, 00);
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if a; = —o0, or by, = ag41 for some k, or b, = oo, remove the corresponding
intervals from the expression. It follows clearly that A® € A.

For Condition take any A = Ji_, Iy and B = |J;2, J; in A, where
I’s and J;’s all are intervals of the designated form, and I’s as well as J;’s

are disjoint. Then

n m
ANB= U U(Ikal).
k=11=1
One sees that Iy N J;’s are disjoint and all have the designated form, if

non-empty. Remove the empty ones. It follows that AN B € A.
Combining the above proves that A is an algebra. O

To build very general pre-measures, fix a function F' : R — R that is

increasing and right continuous. For convenience, put
F(—o0) = lim F(z) € [-o0,00),
T—>—00
F(o0) = lim F(z) € (—o0,00].

T—00
Put pu(P) = 0. For any interval I of the designated form with endpoints a
and b with —oo < a < b < 00, put

u(l) = F(b) — F(a).

(Here it explains why we want F to be increasing: to ensure that p takes
only non-negative values.) For a general A € A, say, A = |J._, I, where
I;.’s are disjoint and each I has the designated form, put

w(A) = p(ly) + p(lz) + -+ p(ly).

For example,

p((—00,2]U (3,4]) =F(2) — F(—o0) + F(4) — F(3).
Note, however, that since A € A may have multiple expressions, we also have
multiple ways to specify p(A). But all different forms give the same value.
For example, let’s write (1,7] in two forms (1,7] and (1,3] U (3,5] U (5, 7].
Then clearly,

F(71)-—FQ)=F(7)—F(5)+ F()—F3)+ F(3)— F(1).
Finally, note that
B(R) =g (=00, 1] U (1,00)) = F(o0) — F(1) + F(1) = F(=oc)
=F(o0) — F(—00).

3.2. LEMMA. p is a pre-measure on A.
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PRrROOF. We split the proof into a few steps.
Step I. The first quick observation is that if A, B € A are disjoint then

AU B) = pu(A) + u(B).

Indeed, write A = (J,_, I and B = [J;2, J; in A, where I}’s and J;’s all
have the designated form, and [I;’s as well as J;’s are disjoint. Then I;’s
and J;’s put together are still disjoint and their union is A U B. Thus by
definition of p,

By induction, it follows that if A;,..., A, € A are disjoint then

3
3

Step II. For any A, B € A with A C B, since A and B\ A are disjoint
in A, we have by Step I,

w(B) = pu(AU(B\ A)) = u(A) + p(B\ A) = u(A).

Step III. Let (An)nen be a disjoint sequence in A such that A
Un—1 An € A. Then by Step II and then Step I, for any n € N, u(A)
w(Unzi Ak) = > r_q u(Ayg). Letting n — oo, we obtain

Y

() >3 p(Ay).
n=1

The rest of the proof is devoted to the reverse of this inequality.

Step IV. Let A, Ay,..., A, be in A such that A C J;_; Ax. Put By =
ANA;. Fork=2,...,n,put By = (AN A) \Uf;ll(Aj N A). Then By’s lie
in A and are disjoint such that (J;_; Br = Uj_;(Ax N A) = A. By Steps I

and II,
p(A) =3 p(Bi) < p(Ay).
k=1 k=1

Step V. Take any I = (a,b], where a,b € R and a < b. Let I,, = (an, by],
n € N, be any disjoint sequence of intervals such that I = J;7, I,. Then

(3.3) () =" ulla).
n=1
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Indeed, take any 0 < 0 < b — a and any € > 0. Since F' is right-continuous,
for each k, we can find 05 > 0 such that
€

F(bk+5k) — F(b) < ok

Note that [a + §,b] C Up—;(ak, by + 0). The Heine-Borel theorem asserts
that we can find finitely many (ag, by + dx)’s to cover [a + §,b]. Thus, we
can find N € N such that [a + 6,b] € U, (ag, b, + 6;). Thus

N
(a+ 6,0 € | (ar, bi + 6.
k=1

By Step 1V,
F(b) — F(a+6) =p((a+6,0])

pa k=1
<> (F(bk + 6k) — F(%)) <> (F(bk) tor— F(ak))
k=1 k=1
=y (F<bk) _F(ak)> +22€7
k=1 k=1
= ZH(L&) +e
k=1

Letting ¢ — 0 and then § — 0, using right continuity of F' at a, we obtain

9]
< ZH(IH
n=1

In view of Step III, this proves the desired equality.
Step VI. Take any I = (—o0,a] or (a,00), where a € R. Let (I,,) be any
disjoint sequence of intervals of the designated form such that I = (J;~; In.

Then (3.3) holds. Let’s prove the case I = (a,00); the other case can be
proved similarly. For any £ € N with k£ > a, we have

(a, k] =1IN(a,k]= U N (a, k).

If I, N (a, k] = 0, remove it from the union; the final terms in the union may
be finite or countably infinite. Thus in view u(()) = 0, we have, by Step I

or Step V, F(k) — F(a) = p((a,k]) = Y00, p(In N (a,k]) < 302 p(Iy).
Letting k£ — oo and applying Step III, we obtain the desired equality.
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Step VII. Let I be any interval of the designated form. Let (A;,)nen be
any disjoint sequence in A such that I = J;2; A,. Then

= ZH(ATL)
n=1

Indeed, for each n € N, write A, = Uiv;ll I, 1, where I, ;’s are disjoint
intervals of the designed form. Putting I,,z, n € N, 1 < k < N, together
yields a new countably infinite collection of disjoint intervals whose union is
clearly I. Thus by Step V, it follows that

oo Np 0o
=N uTag) =D p(An)
n=1 k=1 n=1

Final Step. Let A € A and (A, )nen be a disjoint sequence in A such
that A = (J;2, A,. Write A = |J;“, Ir, where I};’s are disjoint intervals of
the designated form. For each k, we have I, = ANI; = U2, (A, N Ii).
Thus by Step VII, u(I}) = >0 u(A, N I;). Consequently,

e}

:Zﬁ(zk ZZMA N 1) :ZZ (An mIk>=Zg(An>

k=1n=1 n=1k
where the last equality follows from Step I and A,, = (J,— (An N Ix). O

To sum up, we formulate it as a theorem.

3.4. THEOREM. Let F' : R — R be an increasing and right-continuous

function. Then there ezists a unique measure p on (R, B) such that

(3.4) u((a,b)) = F(b) ~ F(a),

for any a,b € R with a < b.

ProOOF. By Lemmas[3.T]and we get a pre-measure y on A satisfying
. Let 41 be any measure on (R, B) obtained for u by Theorem It
clearly satisfies as well since it coincides with p on A.

Moreover, let 4/ be any measure on (R, B) satisfying (3.4). Then it
coincides with p on all intervals of the form (a,b], where a,b € R and a < b,
and thus on all intervals of the form (—o0, a] or (a,o0), where a € R, as well
(Exercise . It follows that i’ coincides with p on A. Since (—n,n] TR
and p((—n,n]) = F(n) — F(—n) < oo for each n, 1/ must coincide with p
on B, by the uniqueness part in Theorem O

We call u the Lebesgue-Stieltjes measure associated with F'. We may
write it as pp if it is necessary to emphasize F'.
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3.5. REMARK. Lemma [3.2] shows the sufficiency of assuming right con-
tinuity of F' to make p a pre-measure. The necessity can be demonstrated

easily. Consider (0,1] = (J;2, (n%rl, %] If we want p to be pre-measure,

then we must have

S5 () () - (D) k)
= Jim (F(l)_F(niJ)
=F(1) — F(0+).

Therefore, F'(0) = F(0+), i.e., F' is right continuous at 0. Right continuity
at other points can be proved similarly.
3. Some properties and examples

3.6. PROPOSITION. Let F': R — R be increasing and right continuous.
Let p be the Lebesgue-Stieltjes measure associated with F'. Then

p({a}) = F(a) — F(a—),
for any a € R. In particular, u({a}) = 0 iff F' is continuous at a.

PROOF. The second assertion is immediate by the first one. The first

assertion follows from direct computation:

u({a}) = lim M((a—%jaD = lim (F(a) —F(a—l>>

n— 00 n—o0 n
=F(a) — F(a—),
where for the first equality we need to use Exercise O

3.7. COROLLARY. Let F' : R — R be increasing and continuous. Let p
be the Lebesgue-Stieltjes measure associated with F'. Then u(A) = 0 for any
finite or countably infinite set A, and

1((a,b)) = p((a,b]) = u(la, b)) = pu(la, b])

for any a,b € R such that a < b.

PROOF. For the first assertion, note that such a set can be expressed as
a union of finitely many or countably infinitely many singletons, all of which
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have measure 0 by the preceding proposition. Now apply finite or countable
additivity of u.

For the second assertion, note that the four intervals differ from each
other by a set of one or two points, which have measure 0 by the first
assertion. Thus the desired equalities follow. ([l

We now introduce the famous Lebesgue measure.

3.1. EXAMPLE. Let F(x) = x for any x € R. We write the measure as-
socited with it as m and call it the Lebesgue measure on R. The Lebesgue
measure of an interval equals its “natural” length: for any a,b € R with
a < b,

m((a,b)) = m((a,b]) = m([a,b)) =m([a,b]) =b—a.

In this spirit, we may say that a general Lebesgue-Stieltjes measure gives
twisted length of intervals, using a twisted ruler F'.

Below is an example that illustrates why we need rigorous mathematics—
when things get complex, intuition just doesn’t work!

3.2. EXAMPLE. Let (7,)nen be an enumeration of all rational numbers.

Consider the set
1 1
FE = I(Tn—Qin,Tn+27n>

Clearly, F € B. Since the rational numbers are dense in R and at every
rational number, we circle an interval, one may suspect that £ = R. But
E # R! In fact, far from that:

m(F) < im((rn - 2%,7'”%— 2%)) = i;ﬂ =2
n=1

Finally , let’s look at the probability case.

3.8. PROPOSITION. Let F': R — R be increasing and right continuous.
Let 1 be the Lebesgque-Stieltjes measure associated with F. Then u is a
probability measure iff F(oc0) — F(—o0) = 1.

It is obvious because p(R) = F(o0) — F(—o00). Note that if we replace
F with F + ¢ for some constant ¢ € R, the measures constructed will be the
same. Thus in this case, by replacing F' with F' — F(—00), we may assume
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3.9. DEFINITION. A function F : R — R that is increasing, right con-
tinuous and satisfies F(—oo) = 0 and F(co) = 1 is called a distribution

function.

3.3. EXAMPLE. Let a € R be fixed. Suppose F(z) = 0 if x < a and
F(z) =1if x > a. Let u be the Lebesgue-Stieltjes measure associated with
F. Then p(R) = 1. Moreover, by Proposition u({a}) = F(a)—F(a—) =
1—-0=1. It follows that u(R\ {a}) = u(R) — u({a}) =1 -1 =0. Thus p
is just the Diract measure at a.

Exercises

3.1. Show that Proposition [1.3] holds for an algebra A.

3.2. Show that a pre-measure is finitely additive and increasing.

3.3. Show that u constructed in (3.2) satisfies (3.1)) and the countable
sub-additivity.

3.4. Let A be as in Section Show that if two measures on B satisfy
(3.4) then they agree on A.

3.5. Show that every Lebesgue-Stieltjes measure is o-finite.

3.6. Let p be a measure on (R, B) such that every bounded interval has
finite measure. Show that there exists a function F' : R — R that is increasing
and right continuous such that pu is the Lebesgue-Stieltjes measure associated
with F'. Any two such functions differ by a constant.
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3.7. Let p be the pre-measure for F'. Show that for any E € B,

o0

inf{ZH(An):AneAfor eachn e N, E C [jAn}
n=1

:inf{
:inf{

i
I

o
(A,) : (Ap)nen is a disjoint sequence in A, E C U An}

n=1

WE

S
Il
—

M8

p(I,) : each I, is an interval of the designated form,

3
Il
i

o0
EC U In}
n=1

M8

:inf{

wu(I,) : (In) is a disjoint sequence of intervals of the designated form,
1

3
Il

o
ECLJQ}
n=1
3.8. Let

0 if z < —4,
02 if —4<z<—1,
06 if —1<z<3,
1 if x > 3.

Express the associated Lebesgue-Stieltjes as a convex combination of Dirac

F(z) =

measures.






CHAPTER 4

Random Variables

Suppose that the stock price of a company at noon is $50 per share,
and let X be the price tomorrow noon. X should be viewed as a function
defined on €2, where €2 is the set of all scenarios that are possible at tomorrow
noon. For example, if w; is the scenario that the company announces a
technological innovation by tomorrow noon and ws is the scenario that an
opponent company announces a technological innovation by tomorrow noon,
then X clearly takes different values at them. Intuitively, X represents the
numerical consequences of the uncertainties of the company’s future. The
sets on which X takes certain values usually have practical meaning and are
of central importance. For example, {w € Q: X(w) < 40} is the event that
the stock price goes down at least $10 per share, or in another word, an
investor holding the stock has a loss of at least $10 per share.

To avoid repetitions, throughout this chapter, € stands for an arbitrary
non-empty set 2 and F stands for an arbitrary o-algebra over it.

1. Definition and characterizations

If a function X defined on 2 stands for numerical consequences of a
random phenomenon that one is studying, then as is alluded earlier, sets of
the form {X < ¢} are events that have important practical meaning. They

thus should belong to F, the collection of all the events that are under care.

4.1. DEFINITION. A function X : Q — R is said to be F-measurable,
or simply measurable, if {X < ¢} € F for every ¢ € R. In probabilistic
terms, we also call a measurable function a random variable.

The simplest example of random variables is indicator functions.

4.1. EXAMPLE. Let E be a subset of €). Define the indicator function
of £, 1 : Q2 — R, by

1 fwekF,

lp(w) =
=) 0 ifwégkFE.

35
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If 15 is a measurable function, then E¢ = {1 <0} € F, so that F € F.
Conversely, suppose E € F. Then

0 ife<O,
{le<c}=qF if0<c<l,
Q ife>1.

Thus {1g < ¢} € F for any ¢ € R, and 1f is measurable.
This example can be made general.

4.2. EXAMPLE. Let X be a function on {2 that assumes only finitely
many distinct values, say, ¢y < ca < ---<¢,. For k=1,...,n, put

Ey :={X = ¢},

the set where X takes the value ¢;. Then (Ej)i<k<y, is a partition of QH
Moreover, one easily verifies that

(41) X = CllEl +021E2 + .- +Cn1En~
If X is measurable, then F} = {X < ¢} € F, and for k =2,...,n,
Ek:{chk}\{chk—l} e F.

On the other hand, for any ¢ € R, {X < ¢} collects all the w where X takes
a value at most c. Thus

Therefore, if E}’s are all measurable then X is measurable.

Note that in , if some ¢y, is zero, one may write off the term c;1g,
from the expression; e.g., insteading of writing 01gc + 115, we simply write
1p. See Exercise [4.1] for an extension of the example to the countably-
infinitely-many-valued case. Such functions will be of critical importance

for future developments, so we give them a name.

4.2. DEFINITION. A measurable function that takes only finitely many
distinct values is called a simple function. In probabilistic terms, a random
variable that takes only finitely many or countably infinitely many distinct

values is called a discrete random wvariable.

The following proposition provides equivalent forms of measurability.

IThat is, Ex’s are disjoint and their union is €.
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4.3. PROPOSITION. Let X : 0 — R be a function. The following state-

ments are equivalent:

(a) X is measurable;

(b) {X > c} € F for every c € R;
(c) {X >c} € F for every c € R;
(d) {X < c} € F for every c € R;
(e) {X € B} € F for every B € B.

PROOF. Suppose holds. Then for any ¢ € R, {X < ¢} € F. Thus
since F is a o-algebra, it follows that

{X>c}={X<c}eF.
This proves @ == @ Similarly, @ = follows from

{XZC}:ﬁ{X>C—1}.

n
n=1

= [(d)] follows from {X < ¢} = {X > c}°. [(e)] = [(a)] follows from
(—o0,c] € B and
(X<} ={X€e(-o0,d} € F.
Finally, suppose @ holds. Let G be the collection of all subsets of R
whose pre-image under X belongs to F. Namely,
G:={ACR:{X € A} e F}.
For every c € R, we have
{X € (—00,0)} ={X <c} e F.

Thus (—o0,c¢) € G for every ¢ € R. Recall that these intervals generate the
Borel algebra B. Thus if we can show that G is a o-algebra, then B C G
(Remark , and @ follows. Let’s verify that G is a o-algebra. Clearly,
{X € R} =Q € F, implying that R € G. Take any A € G. Then

{X e A =Q\{X eAd}eF.

Consequently, A° € G. Finally, let (Ay)nen be any sequence in G. Then

{Xe ﬂAn}: ﬂ{XeAn}e]-“.
n=1 n=1
It follows that (),~, A, € G. This proves that G is a o-algebra. O

4.4. REMARK. One may regard any of the other statements in Proposi-
tion [£.3] as definition of measurability.
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The following example provides further intuition for measurability.

4.3. EXAMPLE. Let {A, B, C'} be a partition of 2, and F = o({A, B,C}).
Suppose that X : @ — R is F-measurable. We claim that X must be
constant on each of A, B,C. Suppose otherwise that X takes at least two
different values, say, on A. Then there exists wi,ws € A such that X (w;) <
X(w2). We can now tear up A into two parts: AN {X < X(w;)} and
AN{X > X(w1)}. They are disjoint, non-empty, and both belong to F
by measurability of F. This is impossible, since every member in F is the
union of some of A, B, C (cf. Exercise .

The notion of measurability can be extended to multiple dimension.
Recall first the following notation:

{Xi1 <ca,Xe<co,....,Xqg<cq}

é{w cQ: Xl(w) < Cl,Xg(w) < co,... ,Xd(CU) < Cd}
d d

:ﬂ {weQ: Xp(w) <} = ﬂ{XkSCk}-
k=1 k=1

4.5. DEFINITION. Let d € N. Let (X1, Xo,...,Xy) : Q — R? be a func-
tion. It is said to be measurable if {X1 < c1,Xo < ca,...,Xq <cq} € F for
any ci,...,cq € R. In probabilistic terms, we may call it a (d-dimensional)

random vector.

4.6. PROPOSITION. For a function (X1, Xs,...,Xq) : @ — R, the fol-

lowing are equivalent:
(a) (X1, X2,...,Xq) is measurable;

(b) Each Xk, 1 <k <d, is measurable;
(c) {(X1,X2,...,Xq) € B} € F for every B € B?

PRrROOF. One may prove in the following order: @ == = @ —
@ For example, suppose holds. For any ¢ € R, since (—o0, ] x R¥1 €
B4,

{X1 <} ={(X1,Xs,...,Xg) € (—00,( x Rl e F.

Thus X; is measurable. Similar arguments work for other X}’s. Hence,
:@ We leave the proof of other implications to the reader. O



2. ELEMENTARY PROPERTIES 39

2. Elementary properties

When considering functions on RY, we usually endow R? with B?, and
call a B%measurable function h : R — R a Borel measurable function, or
simply measurable if no ambiguities could possibly arise.

4.7. PROPOSITION. Let (X1,Xo,...,Xq) : Q@ = R and h : R = R be
measurable. Then h(X1, Xa,...,Xq) : Q@ = R is also measurable.

PrOOF. Take any B € B. By Proposition h~Y(B) = {h € B} € B
Thus by Proposition

{h(Xl,XQ, Xy e B} - {(Xl,Xg,...,Xd) e h*l(B)} e F.
By Proposition again, h(X1, Xs,..., Xy) is measurable. O

In applications of this proposition, it happens often that h is continuous.
We thus need the following result.

4.8. PROPOSITION. Continuous functions are Borel-measurable.

This result looks quite expected but its proof is very non-trivial and uses
the notion of open sets. We put the proof in Appendix [B]

4.4. EXAMPLE. Let X : Q — R be measurable. Then |X|, X*, X, ¥
are measurable. Indeed, take h(t) = [¢| for every ¢t € R. Then h is continuous
on R and is thus Borel-measurable by Propositions Thus, | X| = h(X)
is measurable by Proposition [£.7] One similarly proves measurability of
the other functions. We can also establish measurability of these functions
without using Proposition [£.7} For example, one verifies that

0 if ¢ <0,

(Xt <¢} =
{X <c¢} ife>0.

The following result demonstrates more power of Proposition [£.7]

4.9. COROLLARY. Let XY : Q@ — R be measurable and a,b € R. Then
aX 4+ bY and XY are measurable.

PROOF. Define h : R2 — R by h(t,s) = at + bs and simply note that
aX +bY = h(X,Y). For the product, define h(t,s) = ts. O

4.10. REMARK. Even if X, Y are extended-valued, measurability of a X +
bY is still valid as long as a X +bY is well-defined (i.e., (—o0)+00, co+(—00),
(—o0) — (—o0) and 0o — oo do not appear). But we need to put a bit extra
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care. Let’s show the case where a > 0 but b < 0. Let X7 = X1 x<o0)
and Y1 = Y1 y<s). Basically, X; knocks X down to 0 when it is oo
or —oo. It is thus easy to see that

{X <\ {X =-0} ife<0,

{X1<c}= _
{X <c}U{X = o0} if ¢>0.

Thus X; is measurable. Similarly, so is Y7. Thus a X1 +bY7 is measurable by
Corollary [4.9] Take any ¢ € R. For w € Q, if X (w) # £o0 and Y (w) # o0,
then X (w) = X;(w) and Y (w) = Y7 (w), and thus a X (w)+bY (w) = aX;(w)+
bY1(w). It follows that
{aX +bY <c}N{X # +00,Y # +oo}

={aX +bY < ¢, X # £00,Y # oo}

={aX1 +bY1 < ¢, X # +00,Y # too}

={aX; +bY1 <c} N{X # +oo} N{Y # £oo} € F.
Moreover, if aX 4+ bY < ¢, and if X = +00 or Y = t+o00, then X = —o0 or
Y = oo. Thus

{aX +bY <} \{X # £00,Y # too}
={aX +bY < c} N ({X = +oo} U{Y # +oo})
={X = -0} U{Y =0} € F.

Since {aX + bY < c¢} is the union of the first terms in the two equations
above, it is in F as well. Thus aX + bY is measurable.

4.5. ExamMpPLE. Corollary can be proved directly using definition of
measurability as well. Let’s demonstrate it for XY when XY > 0. If ¢ <0,
then {XY < ¢} = 0 € F. Now take any ¢ > 0. Take any w € {XY < c}.
If X(w) = 0, no problem. If X(w) > 0, then Y (w) < X(o)- Take a rational
number r > 0 such that

Y(w)<r< ﬁ

ie., Y(w) <rand X(w) < £. From these arguments, one sees that

(XY <ey={x=0u |/ ({Y<r}ﬂ{X<§}).

r>0 rational

FEach of the sets in the right hand side lies in F, and since there are countable

positive rational numbers, the last union is a countable union. Consequently,
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{XY < ¢} € F. This proves that XY is measurable as desired. We leave
the proofs of other cases to the reader as exercises.

A third approach to Corollary is to apply the following result on
measurability of the limit of a sequence of measurable functions and Theo-

rem [£.12} see Exercise [4.11]

4.11. PROPOSITION. Let X, : Q — R be measurable for each n € N.
Then sup,en Xn, infpen Xy, limsup, . Xy, and liminf, . X, are all

measurable.

Proor. For every ¢ € R, since sup,,cy Xn < c iff X, < ¢ for every
n € N, it follows that
{suangc}: ﬂ{Xngc}E}'.

neN neN

Thus sup,,cn X7, is measurable. The case of inf,en X, is left to the reader.

Set Y, = sup,,>,, Xm for n € N. Then every Y, is measurable by the
sup case we just proved. Thus limsup,,_,., X, = inf,en Y, is measurable.
The case of liminf,,_,, X,, is also left to the reader. O

3. Approximation by simple functions

The following result is of central importance in many developments in
what follows. As will be seen soon, it is often used to reduce arguments

from general measurable functions to simple functions.

4.12. THEOREM. Let X be a non-negative measurable function on €.
Then there exists a sequence (¢n)02 1 of simple functions such that 0 < ¢y, T
X on Q.

Proor. To illustrate the idea, we first prove the theorem under the
assumption that 0 < X < 1 on Q. Fix n € N. We cut [0,1) into 2" small

intervals:
k—1 k
[—,—), k=12, 2"
AL
and thus cut Q into 2" subsets:

Now define
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On the set {k_nl <X< 2%}, the value of X is floored by k’Q_nl and capped

by %—total room of oscillation of X is smaller than 2% — %
thermore, on this set, ¢, takes the floor value of % Thus one sees that if

wE {k2_n1 < X< %}, then

= 2% Fur-

0 < X(w) = dn(w) < 2%

Since every w € 2 belongs to such a set, 0 < X — ¢, < 2% everywhere on
Q. It follows that 0 < ¢, < X and lim,, ¢,, = X everywhere on €.

We verify that ¢, < ¢,y1 everywhere on 2. Pick any w € . Say,

w € {k_nl < X < 2%} for some k = 1,...,2". Then ¢,(w) = k2_nl. Note

that when defining ¢,,41, we cut [0, 1) into intervals of the form [;;—4}1, 2nl+1 )

Thus, since 21 = 3’2112 and 2% = 2,21%, the set {k—;l <X < 2%} is split

2n
into two sets in the (n + 1)-th level when defining ¢,,1:
2k — 2 2k —1 2k —1 2k
{ on+l X< on+1 } { on+1 X< 2n+1}'

If w lies in the first set, then

2k —2
bn1(w) = onl T Pn(w);

if w lies in the second set, then

2k —1
Pnt1(w) = ST > on(w).
Since w is arbitrary, this proves that ¢, < ¢,41 everywhere on (2.
Now we prove the theorem in the general case. We cut [0, c0), the range
of X, according to the following scheme:
1
ony

L
2TL7

e [0,1): cut it into 2" small intervals of equal length
e [1,2): cut it into 2" small intervals of equal length
° -
e [n— 1,n): cut it into 2" small intervals of equal length 2%,
e [n,00).

Then in total, we have a big interval [n, c0) and n2™ small intervals of length

k—1 k
P

n2m
0- U {kz—nl
k=1

and set the value of ¢, on each set as the floor value there. Namely,

2%, which are precisely [ ), k=1,...,n2" Now cut 2 accordingly

k

n2m

k—1
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Take an arbitrary w € €. Pick any n € N. We consider two cases:

Case 1. X(w) < n.
In this case, X(w) € [%,2%) for some k = 1,...,n2". Hence,
w e {k—*nl < X < £} and ¢n(w) = EL. One sces as before that
Oni1(w) = 25F or 251, implying that ¢ (w) < gpy1(w).

Case 2. X(w) > n.
In this case, X (w) € [n,00), or w € {X > n}. Clearly, ¢p(w) = n,
the floor of [n,00). When defining ¢p41, we deal with {X > n}
more deliberately by splitting it as {n <X <n+ 1} U {X >n+ 1}
and then cutting the first set further and letting ¢,,41 take the floor

values on each set. One sees that all these floor values are at least

n. Thus no matter where w lies, ¢p+1(w) > n = ¢p(w).

Combining the above two cases, one sees that ¢, < ¢,41 everywhere.
Pick any w € . For every n > X (w), when defining ¢, w falls into a
set appearing in the summation part of (4.2)). Thus as before, one sees that

1
0 < X(w) = dn(w) < on
Letting n — oo, it follows again that lim,, ¢, (w) = X (w). O

Exercises

4.1. Let X : © — R be a function that assumes countably infinitely
many distinct values. Show that there exist a sequence (ci)ren of distinct
real numbers and a disjoint sequence (Ej)ren of subsets of € such that
X =572, cklg,. Show that X is measurable iff each Ej, is measurable.

4.2. Complete the proof of Proposition [4.6

4.3. Let A,’s and F be as in Exercise Show that a function X :

Q) — R is measurable iff X is constant on each A4,,.
4.4. Complete the proofs in Example [£.4] using Proposition [£.7]
4.5. Complete the proofs in Example without using Proposition 4.7

4.6. Let X,Y : Q — R be measurable and a,b € R. Directly use defini-
tion of measurability to show that aX and X —Y are measurable. Conclude
that a X + bY is measurable.

4.7. Let X,Y : Q2 — R be measurable. Show that XY is measurable.
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4.8. Let f : Q — R be measurable and f is nonzero everywhere. Use
definition of measurability to show that % is measurable. Conclude that %

is measurable for any measurable function g : Q2 — R.
4.9. Complete the proof of Proposition

4.10. Let X : Q — R be measurable. Find a sequence (¢, )nen of simple
functions such that ¢, — X and |¢,| < |X]| for every n € N on .

4.11. Prove Exercises [£.6] and [£.7] by showing them for simple functions
first and then applying Exercise [4.10] and Proposition .11

4.12. Show that an increasing function X : R — R is measurable.

4.13. Let X, X,,,n € N be measurable functions on ). Show that the
set {w € Q' (Xp(w)), converges to X (w)} is measurable.

4.14. Let (A, )nen be a disjoint sequence of measurable sets. Show that
(14,) converges to 0 on €.



CHAPTER 5

Expectations 1

Suppose that we are in a gambling game. Let X denote the gain if one
plays the game once. Suppose that with a probability of %, we win $15,
i.e., X = 15; with a probability of 2, X = 10, and with a probability of %,
X = —6. What we “expect” about our future if we decide to play the game
once? Intuitively, our expectation should be the possible gains averaged
by their chances of occurrence, namely, (15)% + (—10)% + (—6)% =—1. In
this chapter, we extend this naive definition of expectations from simple
functions to general random variables.

Throughout this chapter, (2, F,P) stands for a fixed but arbitrary prob-
ability space. Moreover, for the rest of the book, all sets and functions in-

volved are assumed to be measurable, unless specified otherwise.

1. Expectations of simple functions

Imitating the example above, we make the following definition.

5.1. DEFINITION. Let ¢ be a simple function on €1, say,
n
(5.1) ¢ = clp,
k=1

where ci’s are all the distinct values that ¢ assumes (and thus Ey’s are a
partition of ). Put

n

(5:2) E[¢] :== ) cxP(Ey),

k=1

and call it the expectation of ¢. Clearly, Ey, = {X = ¢} since we assume
that ¢y ’s are distinct. Thus we can rewrite E[¢] ad]]

n

(53) E[0] =) aP(X = c).

k=1

IWe write P(X € B) instead of P({X € B}) for the sake of brevity.

45
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In view of , we can interpret E[¢] as the “average” value of ¢, with
values of ¢ averaged by their probabilities of occurrence. In view of ,
we can interpret E[¢] as “area”: for each k, ¢ determines a region of height
¢ and width P(Ey), and thus circling an area of cxP(E}).

We need to relax the conditions in the expression for convenience
of computations later. The first relaxation is as follows.

5.2. REMARK. Unlike (5.1]), we may write

(54) (Zs = Zdlle
=1

where Fj’s are non-empty and still a partition of £ but we do not require
d;’s to be distinct. For example, the function

21(—001) ~ L1,00)
can also be written as
21 o,3) + 2132 2L 21] — 1(1,00)-

Clearly, (5.4)) is obtained from ([5.1)) by splitting each Ej into a few Fj’s
with the heights of ¢ on these Fj’s, d;’s, all equal to ¢g. Since the probability
of E} equals the sum of probabilities of the F;’s that are split from E}, it is

easy to see that
(5.5) El¢] =) _diP(F).
=1

For notational convenience, we may allow some F;’s to be empty in .
Note that still holds. Indeed, if F; = 0, then d;1F, = 0 on (2, so that
the term can be removed from the sum in (5.4), and d;P(F}) = 0, so that
the term can be removed from the sum in .

The following are fundamental properties of expectations and will be
extended to general random variables later.

5.1. LEMMA. Let ¢ and 1 be two simple functions. The following hold.
(a) Elag + bp] = aE[¢] + DE[Y)] for any a,b € R;
(b) E[¢] <E[Y] if ¢ <1 on €.

Proor. Write ¢ = ZZ=1 cklE,, where ¢;’s are all the distinct values
of ¢, and ¢ = > " di1p,, where d;’s are all the distinct values of ). Note
that the mn sets Ey N F}’s are disjoint with union 2 and thus constitute a
partition of Q; see Figure [T] for illustration.
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Fy F F3

EX|E1NF|Ei1NFy|E1NFy

Es

F1GURE 1. Double partition

For any k =1,...,n, since By, = =, (Ex N F}), one verifies that 1p, =
>ty 1g,nr (Exercise[5.1). Thus it follows that

n m n m
0= ) loon =) > alnom.
k=1 =1 k=1 1=1
Similarly,
m n n m
V=3 dY lgan =Y dlgnn,
=1 k=1 k=1 1=1

ag+byp = ) (ack + bdi)1g,nF

k=1 1=1
By Remark we have

n

Elag + by)] =>

NE

(acy, + bdy)P(Ey N F)

=
Sl

I
NE

,_.
—
Il

1

ackP(ER N Fy)+) > bdiP(Ey N F)
k=11=1

P(ExNEF)+ Y bd Y P(E,NF)
1 =1 k=1

o

Sl

NE

H
—
Il

—

acy,

o

Sl

[y

l

acyP(Ey) + > bd;P(F)

k=1 =1
=a Y cP(Ep) +bY_ diP(F)
k=1 =1
=aE[¢] + bE[y)].

This proves @ Suppose now that ¢ < 1 on Q. For each pair (k,[), where
l1<k<mnandl <1 <m,if ExyNnE = 0, then ¢tP(Ex N F}) = 0 =
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dP(E, N Fy). If Ex N F; # 0, then since ¢ = ¢ and ¢ = d; on it, ¢ < dj,
implying that ¢xP(Ex N Fy) < diP(Ex N Fy). Thus

=YY aP(ENF) <Y Y dP(E.NF) =E[Y],

k=1 I=1 k=1 I=1
by Remark again. This proves @ ([

The following remark continues to relax the conditions in the expres-
sion (|5.1]) to further ease the computation of E[¢].

5.3. REMARK. By induction, it follows from Lemma that, for any

simple functions ¢1,...,¢n, E[> 1 ¢x] = > r_q E[¢x]. Thus if we write a
simple function as ¢ = Y ,_; ¢x1g,, where ¢;’s may not be distinct and Ej’s
may not be disjoint, we still have

n

¢l => Elexlp] =) Elerlp, +01ge] = (ckP(Ex) + OP(Ef))

=1 k=1
n

= P (Ey).
k=1

5.2. LEMMA. Let ¢ and ¢, n € N, be simple functions such that 0 <
¢On T @ on Q. Then E[p,] T E[¢].

PROOF. The increasingness of E[p,]’s is immediate by Lemma
It remains to be shown that sup,, E[¢,] = E[¢].
Let’s assume first that ¢ is an indicator function, say, ¢ = 1. For any
€ (0,1), since ¢, T 1p, recall that

{pp>1—e}t{lp>1—¢c}.
The last set is easily seen to be equal to E. By Proposition [2.4F
(5.6) P(¢n >1—¢) 1T P(E) =E[1g].

On the set {¢,, > 1 —¢€}, ¢ is at least 1 —e and (1 — €)1y ~1_y is exactly
1 —¢; off the set {¢n, > 1 —¢}, ¢y is at least 0 and (1 —¢)1lsy, 51—} is exactly

0. Thus ¢, > (1 —¢)1i4,51-¢) everywhere on ). By Lemma
Elon] > E[(1 —€)l{g,51-c}] = (L —€)P(dn > 1 —¢).
This, together with m, implies that

sup,, E[¢n] [%]

. >supP(¢p, >1—¢) =E[1g].

2This is where countable additivity of P is essentially used.
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Letting € — 0, we obtain
sup E[¢n] > E[1p].

Reversely, for every n € N, since ¢, < 1g, E[¢,] < E[1g] by Lemma
again. Thus E[1g] = sup,, E[¢y], as desired.

Now we prove the general case. If ¢ = 0 on (), then there is nothing
to prove, since all the expectations are zero. Otherwise, we can write ¢ =
Yoty alg, where Ep’s are disjoint and ¢; > 0 for each I. Fix any [ =
17 cee M. We have ¢nlEl Tn d)lEl == CllEl~ Thus

fnle g

1El )
q

%251 1, Elp). By Lemmal5.1f(a)|

Summing over [ = 1,...,m, we get by Lemma
E|¢n D 1] Tn Y ciElls] = Els)
=1 =1

We claim that ¢, > ;21 1g, = ¢n. Indeed, simply note that > ", 1g =
1UIL g, and that outside the set ;" Ej, ¢ is zero and thus ¢, is zero as
well, since 0 < ¢,, < ¢. Putting things together, we obtain E[¢,] T, E[¢]. O

and by the case we just proved, E[

2. Expectations of general functions

We define expectations of general random variables, by approximating
them using simple functions, for which we already have a natural way of

defining expectations, as studied in the previous section.

5.4. DEFINITION. (a) For a non-negative random variable X on €2,
takxﬂ a sequence (¢n)neN of simple functions such that 0 < ¢, 1 X
on Q and define the expectation, E[X], of X by

E[X] = lim E[¢n] = sup E[(bn]ﬂ
n n
(b) For a general random variable X, we define its expectation by
E[X] == E[X] - E[X ],

if at least one of E[X™T] is finite. If E[X*] are both infinite, we say
that the expectation of X is undefined.

3By Theorem , such a sequence always exists.
4By Lemma , E[#n] 1, so that lim,, E[¢,] = sup,, E[¢n].
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If E[X] is defined, then E[X] € R iff E[X*] are both finite, E[X] = oo iff
E[X ] = oo and E[X ] < 00, E[X] = —c0 iff E[X ] < 00 and E[X ] = oo.
When E[X] € R, we say that X is integrable.

Clearly, if X > 0 on Q then E[X] > 0.

There are two issues that need immediate dissolution.

5.5. REMARK. (a) For a non-negative random variable, we must

show that our definition of E[X] is independent of the choice of
(¢n), i.e., if we take another sequence (1)) of simple functions such
that 0 < 4, 1 X on §, then we must have sup,, E[¢,] = sup,, E[¢n].
Indeed, take any simple function v such that 0 < ¢ < X on Q.
Since ¢, A 1, X A1) = 1 and each ¢, A1 is simple (Exercise
and non-negative, we have by Lemma

E[y] = supEl¢n A 9] < sup E[gy].
Thus
sup {E[w] 0< Y <X, is simple} < sup E[¢,,].

The reverse inequality also holds, since each ¢,, is a simple function
satisfying 0 < ¢, < X and thus lying in the defining set of the sup
in the left hand side. It follows that

sup E[¢,] = sup {E[¢)] : 0 < ¢ < X, ¢ is simple}.

Clearly, the same arguments, if applied to (¢, ), show that sup,, E[ty,]
is equal to the right hand as well.

For a simple function ¢, we now have two methods to define its
expectation: using Definition [5.1] or Definition [5.4, We must show
that they coincide. Let’s temporarily denote the expectation in
Definition [5.1] as Eg. If ¢ > 0, let ¢, = ¢ for each n € N, then

E[¢] = Sup Eo[¢n] = Eol¢]-

For an arbitrary ¢, since ¢ = ¢+ — ¢~ and ¢+ are both simple and
non-negative, it follows from Lemma [5.1f(a )}

Eo[¢] = Eo[¢"] — Eol¢™ | = E[¢"] — El¢~] = E[4].

5.1. EXAMPLE. Let © = N be endowed with a probability measure P.

For any non-negative random variable X on N, we define a sequence of
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simple functions as follows. For every n € N,
X(k) ifk<n,
¢n(k) = .
0 if k > n.

That is, ¢, knocks X to 0 on the set {k € N: k > n}. We can rewrite ¢,
as ¢n =y iy X (k)1ggy. Thus

ZX P({k}).

One sees that for each kK € N, 0 < <]5n( ) T X (k). Therefore,

E[X]—supE[cﬁnfsupZX P({k}) = ZX P({k}).

neN L

For a general random variable X on N, E[X*] = "7 | X (k)*P({k}). If
one of the sums is finite, then

E[X] =E[X*] — ZX E)YP{k}) i){ P({k})
k=1

Mg

P({k})

k=1
Moreover, X is integrable iff Y 72 ; X (k) TP({k})+> e, X (k) P({k}) < o0
Note that

> XRFPURY + Y X(R) Pk} =) (X (k)7)P({k})
k=1 k=1 k=1

— STIX(R)IP({k}) = EIIX])
k=1

Thus X is integrable iff E[|.X|] < co—this fact is true in general (see Exer-

cise .

We now extend Lemmal5.1]to the general case; the extension of Lemmal5.2]
is of fundamental importance and is put to the next section.

5.6. PROPOSITION. Let X,Y be two random wvariables such that E[X]
and E[Y] are both defined. The following statements hold.
(a) E[X] < E[Y] whenever X <Y on Q.
(b) ElaX] = aE[X] for any a € R.
(c) IfE[X]+E[Y] is defined, then E[X +Y] is defined, and E[X +Y]| =
E[X] +E[Y].
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PROOF. @ Let’s assume first that 0 < X < Y. Take a sequence
(¢dn)nen of simple functions such that 0 < ¢, T X on Q and a sequence
(¥n)nen of simple functions such that 0 <1, 1Y on Q. Then each ¢, A,
is simple and 0 < ¢, A, T X AY = X. Thus

E[X] = 5171lp E[on A ] < 81711p E[yn] = E[Y].

For general X,Y, note that since X <Y, XT < YT and Y~ < X~
(Exercise [0.1). Thus by what we just proved, E[X ] < E[Y"] and E[Y ] <
E[X ], implying that E[X] = E[X ]| — E[X | < E[Y ] — E[Y ] = E[Y].

@ Assume that a > 0. We start with the special case that X > 0.
Take any sequence (¢, )nen of simple functions such that 0 < ¢,, T X on Q.
Then each ag,, is simple and 0 < a¢,, T aX on Q. Thus

ElaX] = liyrln Elagn] = thzn aE[py] = align El¢n] = aE[X],

where the first and last equalities are definitions of expectation and the

second equality is due to Lemma |5.1j(a)
Now let X be general. Since a > 0, direct verification shows that

(aX)* = aX*. Thus E[(aX)¥] = E[aX*] = aE[X*], by the special case
we just proved. Since E[X] is defined, E[X¥] cannot be both co. Hence,
E[(aX)¥] cannot be both oco. It follows that E[aX] is defined and

E[aX] =E[(aX)*] — E[(aX)"] = aE[X*] — aE[X ]

=a(E[X 1] — E[X7]) = aE[X].

The case where a < 0 is left to the reader as exercise.

Let’s first consider the special case that X, Y > 0. Take a sequence
(¢n)nen of simple functions such that 0 < ¢, T X on Q and a sequence
(¥n )nen of simple functions such that 0 < ¢, 7Y on Q. Then each ¢, + v,
is simple and 0 < ¢, + ¢, T X +Y. By Lemma |5.1[a)

E[X + Y] =lmE[¢, + ¢hn] = lim (E[gn] + Eltn]) = lim E[¢] + lim E[¢),,]

—E[X] + E[Y].

By induction, we can extend this equality as follows: for any Xy,..., X, >0,

(5.7) E[Zn: Xk] - zn: E[X,].
k=1 k=1
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Consider the general case now. Note that X* — X~ + YT - Y~ =

X+Y=(X+Y)"—(X+Y) . Thus
XTH+Y T+ (X+Y) =(X+Y)T+ X +Y".
Applying expectations to the above, we have by (5.7)),
(5.8) E[XT]+EY T +E(X+Y) ]=E(X+Y) | +EX |+E[Y ]
Since some terms might be infinite, we need to put a bit more attention.
We discuss the following cases:
e E[X] =00 or E[Y] = 0.
Without loss of generality, assume that E[X] = co. Then E[X 1] =

oo and E[X ] < oo. Since E[X] + E[Y] is defined, it follows that
E[Y] # —oo, which in turn implies that E[Y~] < oo, and

E[X] + E[Y] = 0.
Recall that (X +Y)~ < X~ + Y~ (Exercise[0.1). Thus by [(a)]and
(5.7), we have
E(X+Y) | <EX +Y |=EX]+E}Y ] <.

This proves that E[X + Y] is defined. Moreover, from (5.8), it
follows that E[(X + Y)T] = co. Consequently,

E[X 4 Y] = 00 = E[X] + E[Y].

e E[X] = -0 or E[Y] = —o0.
Apply @ and consider — X, —Y and —X - Y.
e E[X] €R and E[Y] € R.
As in the first case, one obtains E[(X + Y)7] < oo. that
implies all the terms in it are finite. Moving around some terms,
we get E[X + Y] = E[X] + E[Y].
O
To include another interesting example, we need the following propo-
sition. We say that two random variables X,Y are almost surely equal,
written as X =Y a.s., if P(X #Y) = (ﬂ that is, X and Y coincide except

on a negligible set. Intuitively, we shall not distinguish almost surely equal
random variables. The following result provides support for this.

5.7. PROPOSITION. If X =0 a.s., then E[X] = 0.

5The set {X # Y} = {X — Y # 0} is always measurable since X — Y is measurable.
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Its proof uses a routine for proving many results in real analysis: first
consider simple non-negative functions, then consider general non-negative

functions, and finally consider general functions.

PRrOOF. Let ¢ > 0 be a simple function such that ¢ = 0 a.s. We show
that E[¢] = 0. If ¢ = 0 on €, it is clear. Otherwise, write ¢ = > }_, cxlg,
where ¢;’s are distinct and ¢, > 0 for each k = 1,...,n. Then E; = {¢ =
¢k} C {¢ # 0}, implying that P(Ey) = 0, for each k = 1,...,n. Therefore,
El¢] = > 11 ckP(Ex) =0, as desired.

Let Y > 0 be any function such that Y = 0 a.s. Take any simple function
¢ such that 0 < ¢ < Y. Then {¢ # 0} C {Y # 0} and thus P(¢ # 0) = 0,
i.e., ¢ =0 a.s. By the previous case, E[¢] = 0. Since ¢ is arbitrary, we have
by the definition of expectation that E[Y] = 0.

For the general case, note that X = 0 a.s.(Exercise . Thus by the
previous case, E[X*] =0 and E[X] = E[X ] - E[X "] = 0. O

We can similarly define that X <Y a.s. if P(X >Y) =0.

5.8. COROLLARY. If X <Y a.s. and both E[X] and E[Y] are defined,
then E[X] < E[Y]. If X =Y a.s. and E[X] is defined, then E[Y] is defined
and E[Y] = E[X].

We leave the proof to the reader as an exercise.

5.2. EXAMPLE. Let w; and wy be two distinct points in 2 and ¢ € [0, 1].
Let P = t6,, + (1 — t)dw,. Let’s compute E[X] for any random variable X.
The set 2\ {w1, w2} has probability 0. This motivates us to consider X on
three pieces of : {w1}, {w2}, and 2\ {w1,ws}. We can write X as follows:

X = X<w1)1{w1} + X((,Ug)l{wz} + XlQ\{wl,WQ}'

Note that X 1q\ (4, w,} 7 0 only possibly on Q\{w1,wa}. Thus { X 1o\ {0, wo) 7
0} C Q\{w1, w2} and P(X1g\ (0, wp} 7 0) = 0. It follows that X1\ (o) o) =

0 a.s. and E[X 1\ (4, ws}] = 0. Consequently, by Proposition

E[X] =E[X(w1)1{u}] + E[X(w2)L(u,y] + E[X 10\ fuy o}
=X (w1)P{{w1}) + X (w2)P({w2})
—tX (w1) + (1 = )X (w2).

See Exercise for an extension of this example.
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3. Convergence theorems

We extend Lemma [5.2] to general random variables. We first extend the
notion of almost surety. We say a property is satisfied almost surely on (2
if the set of points where it is not satisfied has probability 0.

5.9. THEOREM (Monotone Convergence Theorem). Let X, X,,,n € N, be

random variables such that X, > 0 a.s. for everyn € N, X, < X411 a.s.
for every n € N, and X = lim,, X,, a.sﬁ Then E[X,,] T E[X].

Using X = lim, X,,, we can rewrite the conclusion in the theorem as
E[lim,, X,] = lim,, E[X},]. That is, we can change the order of taking expec-
tation and limit, under the assumptions of the theorem.

ProOOF. We first prove the case where 0 < X,, T X on ). For each

n € N, take a sequence (¢, )ren of simple functions such that
0 < dpi Tk Xn-
Now for every n € N, put
Yp =max{gm,, :m=1,...,n}.

See Figure [2] for illustration. Clearly, each 1, is simple and non-negative.

é11 ®1,2 bzl - — Xy
$2,1 $2.2 P3| - — Xy
®3,1 ®3,2 ¢33 | - — X3

FIGURE 2. Double array of simple functions

Since each row is increasing,
Ypt1 =max{dmmpi1 :m=1,...,n+1} > max{¢mnt1 :m=1,...,n}
>max{¢mn:m=1,...,n} = ,.

Since every ¢, is bounded by X, and thus by X, 1,, < X for every n € N,
implying that lim, 1, < X. For any k € N, ¢, > ¢, whenever k < n.
Letting n — oo, it follows that lim, ¥, > lim, ¢y, = X}. Letting k — oo,

6The set of points of convergence is always measurable; Exercise m
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it follows that lim,, v, > X. Therefore, lim, v, = X. By the definition of
expectation,
E[X] = lim E[¢,,].
n
Finally, note that since each row in Figure [2|is increasing, for any n € N,

Y =max{¢m, :m=1,...,n} <max{X,, :m=1,...,n} =X,.

Thus by Proposition [5.6(a)| E[¢,] < E[X,] < E[X]. Using the Squeeze Law,
we have lim, E[X,,] = E[X]. The increasingness of E[X,]’s is also due to
Proposition The special case is thus proved.

Now we prove the general case. Set

[e.e] oo
A= U {X, <0} U U {Xn > Xp11} U {(Xn)n does not converge to X }.
n=1

n=1
Fach of the sets in the right hand side has probability zero. Thus A has
probability zero as well, by Corollary We now set ¥ = X14c and
Y, = X, 14c for any n € N. One sees that Y = X a.s. and Y,, = X, a.s. for
every n € N. Thus by Corollary

(5.9) E[Y] =E[X], E[Y,] =E[X,], for every n € N.

Moreover, if w € A, then Y (w) =0 =Y, (w) for each n € N; if w € A, then
Y, (w) = Xp(w) forevery n € N, 0 < X, (w) < X471 (w) for every n € N, and
lim,, X,,(w) = X(w). In either case, one sees that 0 <Y, 1Y on Q. Thus
the proof is complete by and the special case we just proved. ([

5.10. COROLLARY (Fatou’s Lemma). If X,, > 0 a.s. for every n € N and
liminf, X,, € R on Q, then E[liminf, X,] < liminf, E[X,].

Proor. For any n € N, set Y,, = inf;>, Xj,. One sees that Y,, > 0 a.s.
for every n € N (why? cf. Exercise [5.17) and Y;, 1 liminf, X, on Q. Thus
Eliminf X,,] = sup E[Y;,].
n n
Now for every n € N, since Y,, < X} for any £ > n, we have by Proposi-

tion [5.6/(a )|
E[Y,] <E[Xy] for any k > n.

Taking infimum over k, we have E[Y,,] < inf;>, E[X}]. Therefore,

Elliminf X,,] = sup E[Y;,] < sup inf E[X}] = liminf E[X,].
n n n k>n n
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One may compare Theorem [5.9] and Corollary with Proposition [2.8
and Corollary 2.4} see Exercise See also Exercise and for the

cases when the limit/liminf takes infinite values.

5.11. COROLLARY (Dominated Convergence Theorem). Let X* > 0 be
integrable. Let X, X,,n € N be such that | X,,| < X* a.s. for every n € N
and X, — X a.s. Show that E[X,] — E[X].

We leave the proof of this corollary to the reader; Exercise [5.13

Exercises
5.1. Show that if Ey,..., By, are disjoint then 1 g =30 1p,.
5.2. Show that for two simple functions ¢ and 1, ¢ A 1 is also simple.
5.3. Show that if X =0 a.s., then X* =0 a.s.
5.4. Complete the proof of Proposition
5.5. Show that X is integrable iff E[|X|] < oo.
5.6. Show that if X is integrable then X 14 is integrable for any A € F.

5.7. Prove Corollary

5.8. Let (wp)nen be a sequence of distinct points in 2 and let (t,)nen
be a sequence of non-negative real numbers such that > >, ¢, = 1. Let
P = 3" tww,. Show that for any non-negative function X, E[X] =
fozl tn X (wn).

5.9. Suppose that X is integrable and Xy < X,, T X a.s. Then
lim, E[X,,] = E[X].

5.10. Suppose that Xg is integrable and X9 > X, | X a.s. Then
lim, E[X,,] = E[X].

5.11. Suppose that Xy is integrable, Xy < X,, a.s. for every n € N, and
liminf, X,, € R on Q. Then E[liminf, X,] < liminf, E[X,].

5.12. Suppose Xy is integrable, Xy > X, a.s. for every n € N, and
limsup,, X,, € R on Q. Then E[limsup,, X,,] > limsup,, E[X,,].

5.13. Use Exercises and to prove Corollary
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5.14. Let (A,) be a sequence of subsets of a set 2. Show that

limsup 14, = Liimsup,, Ans
n

lirn inf 1An = 1lim inf,, A, -
n
Moreover, 14, T 14 iff 4, T A.
5.15. Use Exercise to deduce Proposition [2.8 and Corollary [2.4] from
Theorem [5.9] and Corollary respectively.

5.16. Find a sequence (X,,) over some probability space (2, F,P) such
that E[liminf,, f,] > liminf,, E[f,].

5.17. Let X,, and Y}, n € N, be such that X,, > Y, a.s. for every n € N.
Show that X,, > Y,, for all n € N a.s.

5.18. Show that X =Y a.s. if X > Y a.s. and X <Y a.s.

5.19. Let (A,)nen be a disjoint sequence of measurable sets such that
p(Ar N Aj) =0 whenever k # j. Show that (14,) converges to 0 a.s.

5.20. Let X,Y be integrable and a,b € R. Show that aX + bY is inte-
grable.

5.21. Let (X, )nen be a sequence of random variables such that X, >0
a.s. for every n € N and X,, < X,,41 a.s. for every n € N. If X, (w) 1 oo for

every w in a set of positive measure, then E[X,] 1 oc.
5.22. If X,, > 0 a.s. for every n € N, then liminf,, X,, > —o0 a.s.

5.23. If X,, > 0 a.s. for every n € N and liminf,, X;,, = oo on a set of

positive measure, then lim inf,, E[X,,] = co.
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We continue to establish some further properties of expectations. Fix
an arbitrary probability space (€2, F,P) in this chapter.

1. Some fundamental inequalities

The first inequality controls P(|X| > ¢) in terms of expectation.

6.1. PROPOSITION (Chebyshev’s inequality). Let X be an integrable ran-
dom wvariable on 2. For any € > 0,
E[lX]]
—

P(X]>¢) <
PrOOF. Apply Proposition [5.6(a)| to €1y x|>¢} < [X]. O
6.2. COROLLARY. IfE[|X|] =0 then X =0 a.s.

PROOF. By Chebyshev’s inequality, P(|X| > %) = 0 for every k € N.
Thus P(X # 0) = P(Up2, {|X| > +}) =0, by Corollary 2.7 O

The following result will be needed later.

6.3. COROLLARY. Let X,Y be integrable. Then X >Y a.s. iff E[X14] >
E[Y14] for every A € F.

Note that X14 and Y14 are both integrable (Exercise .

PrOOF. The “only if’ part is immediate by Corollary For the “if”
part, take A = {X <Y}. Then 0 > E[Y14] —E[X14] =E[(Y —X)14] >0,
where the last inequality is due to (Y — X)14 > 0 (verify it). Therefore,
E[(Y—X)14] = 0. By Corollary[6.2 (Y—X)14 = 0a.s. Since (Y —X)14 >0
at every point in A, it follows that P(4) =0, i.e., X > Y a.s. O

The technique of truncating a random variable X to sets where it takes
certain special values is very impotant. For example, it has been used in
the proofs of Theorem and Chebyshev’s inequality. We demonstrate
another application of it. See Exercise [6.3] for another good application.

59
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6.1. ExAMPLE. If E[X?] < oo then E[|X|] < co. Indeed, note that
EIXT) = E[[X]Lqxj<y] + E[IX[Lx12n]-

Clearly, E[\X\1{|X|<1}] < E[1{|X‘<1}] < 1. Thus the integrability of X
purely depends on | X \1{| X|>1}, the piece of X where it takes large values.
Note that if w € {|X| > 1} then |X(w)|] < X(w)?®. Thus |X[1fx>1} <
X21{\X|21} < X2, It follows that E[|X|1{|X\Zl}] < E[X2] < 0.

We now turn to the famous Hoélder’s Inequality and Minskowski’s In-
equality. For a random variable X, its p-norm is given by

1
P .
x|, = | (E0XPT) if1<p<oo,
inf {M >0:|X|<Mas} ifp=oc.

It is easy to see that
(6.1) [1X1[[, = X1l and [laX|l, = |al[|X]|,

for any a € R. In particular, if 0 < ||.X||, < oo, then

(6.2) =1.

X 1
I, = eyt
1 Xp e Xl
If 1 < p < oo, we call p’ such that % + 1% = 1 the conjugate index of p.

Clearly, p" = ;55 € (1,00) and (p)’ = p. The conjugate index of p =1 is

1" = oco; the conjugate index of p = 0o is 00’ = 1.

6.4. PROPOSITION (Holder’s inequality). For any two random variables
XY and 1 <p < o0,
I XY [l < ([ X[p 1Yl
ProoOF. We prove the inequality for 1 < p < oo; it is left to the reader
when p = 1 or co. We begin with kicking away the trivial cases. If || X||, = 0,
then X = 0 a.s. by Corollary It follows that XY = 0 a.s. and thus

|XY]|1 = 0 by Proposition Therefore, the inequality holds. Similarly,
if ||Y'||,» = 0, then the inequality holds. Assume now that

1X1[p >0, [[Yy >0.

If | X||, = oo or ||Y||,y = oo, the inequality is clear since the right hand side
is co. Thus we assume that

[ X1lp < o0, [[Y]ly < oo
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Dividing both sides by || X||,||Y ||/, by (6.1, the desired inequality becomes
‘WM Y]
1 Xp Y]l

Thus in view of (6.2)), it is enough to prove that if || X||, =1 = [|Y||,y and
X,Y >0, then

1=

E[XY] < 1.
Let’s prove the last inequality. Put f(¢) = Int on (0,00). Then f"(t) =
—t72 < 0on (0,00) and f is concave, i.e., tInz+(1—t) Iny < In (tz+(1—t)y
for any t € [0,1] and z,y > 0. It follows that

syt Tt <tz + (1 —t)y

for any ¢ € [0,1] and z,y > 0. Taking t = % (so that 1 —t = I%), z = aP and

Yy = W' we get the famous Young Inequality:
bP

I3
for any a,b > 0. In particular, at every w € €2,

X@p | Ywp

/

p
abﬁa—+
P

X(w)Y (w) <

Taking expectations we have

Elx?]  EYP] O IxX|E YIS 1 1
p p p p p D
This completes the proof. O

When p = 2, Holder’s Inequality is usually called Cauchy-Schwarz In-
equality.

6.5. COROLLARY (Minkowski’s Inequality). For any two random vari-
ables X, Y and 1 < p < o0,

X + Y], < 1X [l + Y [lp-

Proor. We prove the inequality for 1 < p < oo; it is left to the reader
when p = 1 or co. If ||X||, + ||Y||, = oo, there is nothing to prove. Let’s
assume that || X||, + ||Y|, < co. Note that

X +YP=[X4+Y|[- | X+YP ' <|X| | X+Y]P L+ |V] | X+YP L

Applying Hélder’s Inequality to the last two terms, we obtain

E[X +YP) < XX + VP, + 1YV )1X + P
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In view of p’ = we have

P
p—1’

p—1

p
>—1 p
X + Y|, = <E[(1X+YP—1)" ID =[IX + Y5~

It follows that
1X + Y12 = E1X + Y] < (Xl + 1Y ) IX + Y2

If | X + Y, < oo, then diving both sides by || X + Y5~ yields the desired
inequality.
Let’s now show that || X 4+ Y|, < co. Let a,b > 0. Then

(a+b)? < (2max{a,b})? = 2” max{a?, B} < 2°(a? + VP).
Thus
E[IX + Y1) <E[(1X]|+ [Y])"] < 2PE[IX]? + |Y]7]
=27 (E[IX ] + E[[Y 7)) = 2°(IX 15 + Y[15) < oo.
This completes the proof. O

6.2. EXAMPLE. Let 1 < p < oco. Consider 2 = {1,2,...,n} endowed
with the probability P({k}) = % for any k = 1,...,n. Then E[X] =
% > 1 X (k) for any function X. Thus Hélder’s Inequality reduces to

=

P

LS Xy e < (i Z\X(k)#’) p (fl DY(k)rp') ,
k=1 k=1 k=1

or simply,

63) S IXRY(H) < (me)p (mep’)
k=1 k=1 k=1

Similarly, Minkowski’s Inequality reduces to

(6.4) <Z|X<k> +Y<k>|p> < <ZXU<:)I”> o <ZY<k>|p)
k=1 k=1 k=1

It is interesting to observe that the general inequalities can be deduced

1
o’

p

from these much simpler reduced forms. Let’s illustrate to deduce Proposi-
tion from (6.3]). Take any non-negative simple functions ¢, on Q. We
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may write ¢ =Y ¢ arlp, and ¢ =Y, bylg,. Then by (6.3),

L

Elod] = > arbiP(Er) = 3 ayP(Ex)7 - bP(Ey)¥
k=1 k=1

< (Z az,;p@k)) ' (Z bf,;’P<Ek>> "= lollél
k=1

k=1
Now for general non-negative random variables X, Y, take two sequences
of simple functions such that 0 < ¢, T X and 0 < ¢, T Y. Then 0 <
dtn T XY, 6% 1 X7, and ¢ 1 Y7 Thus E[gnvn] T ELXY], E[gh] 1 E[X7],
and E[yh] 1 E[Y?']. Writing these terms in norms and letting n — oo in
Elpntn] < [|onllplltonllp, we get ELXY] < [ X]|p[[Y ]l
Put

LP(Q, F,P) :={X : || X||, < oo}
We may abbreviate it as LP. It can be shown that LP is a vector space
for any p € [1,00]; in fact, a Banach space (Exercise . If we interpret

norm as “length” of a vector, Minkowski’s inequality is then the triangle
inequality:.

2. Indefinite integrals

Let X be a non-negative integrable random variable on 2. We define

(6.5) w(E) =E[X1g] for every E € F.

6.6. PROPOSITION. For a non-negative integrable random variable X, p
in (6.5) is a finite measure on (2, F) such that (E) = 0 whenever P(E) = 0.

PRrROOF. Clearly, u(E) > 0forany £ € F. If P(E) =0, then 1z =0 a.s.,
and thus X1gp = 0 a.s. It follows that pu(E) = E[X1g] = 0. In particular,
1(0) = 0. Let (En)nen be a disjoint sequence in F. Set Y, = X1y p,
forany n € Nand Y = XlUiil g,- Then 0 <Y, 7Y. Thus by Monotone

Convergence Theorem,

u( U Ek) =E[Y] = imE[Y,] = imE[X 1 p,]
k=1

n n n

=limE[X E 1g,] = lim g E[X1g, ] = lim g w(Ey)

n n n
k=1 k=1 k=1

= ZM(Ek)-

=1
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This proves that u is a measure. It is finite since u(Q2) = E[X] < oo. O

Sometimes p is called the indefinite integral of X.
Surprisingly, the converse of this proposition is also true.

6.7. THEOREM (Radon-Nikodym). Let u be a finite measure on (2, F)
such that p(E) = 0 whenever E € F and P(E) = 0. Then there exists a
non-negative integrable random variable X on € satisfying (6.5)).

The proof of this theorem is very technical and beyond the scope of this
book; we skip it. The random variable X is called the Radon-Nikodym
derivative of u with respect to P and is denoted by

dp

P
It is unique up to a.s. equality. That is, if Y is another non-negative inte-
grable random variable satisfying , then X =Y a.s. (Exercise .

3. Lebesgue and Riemann integrals

Let (€2, F,u) be a general measure space. We can similarly define ex-
pectations of non-negative simple functions and then extend the definition
to general functions as in Definition [5.4} However, in this case, we rename

expectation as integral and rewrite it as

Lﬂ@@@%

/Q fdu, /Q /,

as long as there is no possible ambiguity. One can effortlessly verify that all
the results in Sections [2] and 3] of Chapter [5] and in Section [I] of this chapter,
except Example still hold. Results in Section [2] of this chapter hold for

o-finite measures (see Exercises and [6.22)). In non-probability measure
spaces, we rename almost sure to almost everywhere.

or even

6.3. EXAMPLE. Let p be the counting measure over N. Then for any
non-negative function f on N, [ fdu = > 72, f(k). Cf. Example

6.4. EXAMPLE. We illustrate an application of Dominated Convergence
Theorem. Let z,x,,n € N, be real numbers such that z,, — z. We want
to show that

lim (1 + ﬁ)n = e,
n n
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Endow © = N U {0} with the counting measure. Let M := sup,|z,| € R.

Define the following functions on N U {0}:

1

k!
L %

f:NU{0} = R; kl—)Eaj ;

fF:NU{0} = R; k+— —MF

nn—1 n—k+11
Fn i NU{O} = Rs b Ligcny e Exﬁ.

One sees that f, is simple and |f,| < f* for every n € N and that f, — f
on NU{0}. Since [, f*du = e < oo, f* is integrable. Thus by Dominated
Convergence Theorem, [, fn — [, f = €®. Finally, note that

n k [e.e]
Tp\™ n\w nn—1 n—-k+11 ,
(1+77) =Z<k)n’ézzl{kén}n W T R
k=0 k=0

We introduce one more convenient notation. For a measurable function

fon Q and any E € F, we write

/E fdp = /Q fLpdp,

as long as the latter integral is defined.

We may extend |, g Jdu to functions defined only on E. Indeed, for any
function f that is defined only on E, we extend it to a new function on
Q by setting it equal to f on F and 0 off E. Abusing the notation a bit,
we also write the function as flg. One sees that flg is measurable iff
{weE: f(w) <c} € Fforevery ¢ € R. Now define [, fdu as above. There
is an alternative way to achieve this extension; see Exercise [6.23

So far, we’ve only given examples of expectations and integrals over
relatively simple measure spaces, such as counting measures or Dirac’s mea-
sures. Let’s work on R. Let F' : R — R be increasing and right continuous,
and let p be its associated Lebesgue-Stieltjes measure. Instead of writing

| sar

and call it the Lebesgue-Stieltjes integral of f with respect to F. There

Jg fdu, we write

are two cases where Lebesgue-Stieltjes integrals are relatively computable:
one is that u is a combination of Diract measures (Exercise [5.8); the other
is that F' has a density, which we postpone to Chapter [§]
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Let’s look at the most important case. Recall that if F'(z) = = for any
x € R, then the Lebesgue-Stieltjes measure is the Lebesgue measure. The
corresponding integral is called the Lebesgue integral and is written as

/Rfdm or /Rfdx.

Let f : [a,b] — R be continuous or monotone. Recall that we already have
an integral of f, called the Riemann integral and denoted by

/a ' fdz.

On the other hand, as is discussed above, we can extend f to R (the extended
function is Borel-measurable and integrable; Exercise 6.19) and have the

Lebesgue integral of f:
/ fdzx.
[a,b]

For convenience, we use f; and f[a ) to indicate the Riemann and Lebesgue

integrals, respectively.

6.8. PROPOSITION. Let f : [a,b] — R be continuous or monotone. Then

}fdx:/abfdx.

[a7b

PRrROOF. Let’s write the proof for ¢ = 0 and b = 1. For every n € N,

define f,, : R — R by setting it to 0 on (—o0,0) and [1, oo)E| and to the value

of f at the left endpoint % over each interval [%, %), k=1,...,n. See
Figure [1| for illustration. We can write out f,, as

—~ (k-1
=1 iy
k=1

We want to show that f,, =5 f 1(0,1) on R. The convergence is clear on
(—00,0) U (1, 00) since all the functions are 0 there. We don’t care about
convergence at © = 0 or 1, since m({0,1}) = 0. We claim that if z € (0,1)
is a continuous point of f, then f,(z) — f(z). Indeed, take any ¢ > 0.
Then continuity of f at x implies that there exists a small § > 0 such that

(x—6,x+6) C (0,1) and

|f(2') — f(z)|<e forany 2’ € (x—3d,z+0).

1A one will see, inclusion or exclusion of endpoints does not matter as we only need
to guarantee a.e. convergence so that Monotone Convergence Theorem is applicable; we

choose this way for notational convenience.
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Jn

Sl

Sy

Sl
—

FiGure 1. Graph of f,

Let ng = [§] +1 € N. For every n € N, since = € (0,1) C Up_; [&1, £),
there exists a unique k from {1,2,...,n} such that x € [%, %) Thus if
n > no,
k—1 kK k—1 1 1
PR VP R P R
n n n n ~ ng

and consequently,

[ Fal@) = @) = |F (=) - fl@)] <.

This proves the claim. If f is continuous on [0, 1], then it is immediate that
fo 25 f 101 on R. Let f be monotone. Recall from Example that the

set of points where f is discontinuous is finite or countably infinite and thus

k—1
n

has Lebesgue measure 0. Therefore, we again getf, — f 1j9,1) on R.

Next, let M := sup,cpq1|f(2)[- Since f is continuous or monotone on
[0,1], M < oo. Set f*= M1y . Then [ f*dz = M and f* is integrable.
Moreover, it is clear that |f,,| < f* on R for every n € N. Thus by Dominated
Convergence Theorem,

/fndx—>/fl[071]dx— fdx.
R R [0,1]

On the other hand, each f,, is a simple function and direct computation
gives |5 fudz = 314 f(%)%, which is a Riemann sum. Since Riemann
sums converge to the Riemann integral, we get the desired equality. O

6.9. COROLLARY. Let f : [a,00) — R be non-negative and is either

continuous or monotone. Then

/ fdx:/ fdz = lim/ fdzx.
la,00) a N0 Jq

We leave the proof to the reader as an exercise.
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Exercises
Exercises are set over an aribitrary probability space (2, F,P).
6.1. Show that if X € L' then lim, E[|X |1 x|} = 0.
6.2. Show that if X € L! then lim,, ., nP(|X| > n) = 0.
6.3. Show that X € L iff °°° kP(k — 1 < |X| < k) < oo.
6.4. Suppose that X € L>. Show that | X| < || X||s a.s.

6.5. Deduce Proposition from (/6.4]).

6.6. Prove Holder’s Inequality and Minkowski’s Inequality for p = 1 and
p = 00.

6.7. Let X € L?. The variance of X is defined by V[X] := E[(X —
E[X])2]. Show that V[X] = 0 iff X is a.s. equal to a constant.

6.8. Let X € L2. Show that V[X] = E[X2] — (E[X])®. Deduce that
|E[X]| < [ X]l2. Deduce that || Xy < || X

6.9. For X,Y € L?, their covariance is defined by
Cov[X,Y] =E[(X — E[X]) (Y — E[Y])].

(If the covariance is 0, we say that the two random variables are uncorre-
lated). If V[X],V[Y] > 0, their correlation is defined by
Cov[X,Y]
VIXIV[Y]
Show that —1 < Cor[X,Y] < 1. Show that

Cor[X,Y] =

Cov[X,Y] = E[XY] — E[X]E[Y].
6.10. Show that if 1 < p < oo then || X||; < || X, < |X||oo-
6.11. Show that if 1 < p < ¢ < oo then || X||, < | X,

6.12. Let 1 < p < oco. Show that if 0 < X, T X then || X[, T || X||, and
if 0 < X, L X then | Xpllp 4 | X,

6.13. Let 1 < p < oco. Let X, > 0 for any n € N. Show that
13021 Xal| < X0t 1 Xnllp-

6.14. Show that LP is a vector space for any 1 < p < oo.
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6.15. Let 1 < p < oo and (X, )nen be a sequence of random variables
in LP. Show that if > 7°|| X, |, < oo, then > >°,|X,| < oo a.s. and there
exists a random variable X € LP such that X = ) 7 X,, a.s. and || X —
2 k=1 Xillp < 22521 [ Xillp for every n e N.

6.16. Let 1 < p < oco. Let (X,,)nen be a sequence in LP that is Cauchy,
i.e., for any £ > 0, there exists ng € N such that || X,, — X,,|| < & whenever
n,m > ng. Show that there exists a strictly increasing sequence (ny)ren in
N such that ||.X. — X, | < 2% for every k € N.

MNEk41

6.17. Let 1 < p < oo. Let (X,,)nen be a Cauchy sequence in LP. If
there exist a subsequence (Xp, )ren and X such that || X,, — X|, — 0
then ||.X;, — X|, — 0.

6.18. Let 1 < p < oo. Show that LP is a Banach space, i.e., for any
Cauchy sequence (X,,) in it, there exists X € LP such that ||.X,, — X||, — 0.

6.19. Let f : [a,b] — R be continuous or monotone. Show that f1f,y is
Borel-measurable and Lebesgue integrable.

6.20. Show that the Radon-Nikodym derivative is unique up to a.s.
equality.

6.21. Let X be a non-negative measurable function. After replacing P
with a o-finite measure, show that p defined by (6.5)) is a o-finite measure.
Moreover, p is finite if X is integrable.

6.22. Let u,v be two o-finite measures on (2, F) such that v(E) = 0
whenever £ € F and u(E) = 0. Show that there exists a non-negative
measurable function f : Q@ — R such that v(E) = [, fdu for any E € F.

6.23. For any non-empty set £ € F, recall from Exercisethat Fig =
{F:F € F,F CE}is a o-algebra over E. Observe that f: E — R is Fg-
measurable iff f1g is measurable. Let p be any measure on F. Define y g :
Fig — [0,00] by pg(F) = u(F) for any F € Fp. Show that [, fdug =
e fdp.

6.24. Prove Corollary [6.9]






CHAPTER 7

Product Measures

In this chapter, we systematically study how to build higher-dimensional

measures from low-dimensional ones.

1. Construction of product measures

Let (Q,F,P) and (I',G,Q) be two probability spaces. For A € F and
B € G, Ax B is called a measurable rectangle. Let F x G be the o-algebra
generated by all measurable rectangles, i.e.,

fxg::U({AXB:AEf,BEQ}).

We want to construct a probability measure g on (2 x I', F x G) satisfying
the following condition:

(A x B) =P(A) xQ(B), forany A€ F,Beg.

Basically, it means that if we interpret P(A) and Q(B) as the “length” of A
and B, respectively, then we want u to measure the “area” of A x B.

We introduce two natural approaches for the construction of the desired
measure. For the first approach, let’s use sets in R? for illustration. Assume
that we know how to measure the length of objects in R, in particular, line
segments. Then we know how to measure the areas of rectangles: set the
area as the product of the length of the two sides. We can then extend the
measurement to more complex objects in R? by covering the object using

rectangles. See Figure [I] for illustration. When we use smaller and smaller

= ~ = =

\ / ~ 1

FiGURE 1. Cover a disk by rectangles.

71
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rectangles to cover the disk, we can intuitively feel that the total area of
the rectangles in the covering, which we term as the area of the covering,
approximates the “area” of the disk. We put quotation marks around the
word area, because we have not defined the area of the disk yet. A bit
sneaky, we may define the area of the disk as the infimum of the areas of all
rectangular coverings. (In Figure [I| because the disk has very nice shape,
we cover it using finitely many rectangles. For a general set, we should use
countably infinitely many rectangles to cover it.)

The mathematical formulation of this approach of obtaining measure-
ment of complex objects from that of simple ones is actually . We sketch
the construction explicitly. Let A be the collection of all the unions of finitely
many disjoint measurable rectangles, and for any E = |J;_; Ay X By, where
A X By’s are disjoint measurable rectangles, set

1(E) = P(Ax)Q(By).
k=1

Then A is an algebra and p is a pre-measure over A; see Exercises
Applying Theorem we get the desired measure p over o(A) = F x G.
Clearly, for any A € F and B € G, u(A x B) = u(A x B) = P(A)Q(B). In
particular, u(2 x I') = 1. By , we actually know the explicit definition
of pu: Forany F € F x G,

(7.1)  p(E) = inf { iH(An) : Ap € Aforeachn € N, E C G An}.
n=1

n=1
One can replace sequences in A by sequences of disjoint measurable rectan-
gles in the above formula; see Exercise [7.4
Now we focus on the second approach. Let E be a non-empty subset of
Q x I'. The idea is to reduce the dimension of the set. We do it as follows.

Pick any w € €. Consider the w-section of E:

“E:={y:(w,7) € E}.

See the left figure in Figure[2] This is a subset of I', so we may get its length
as Q(“E). We can then integrate the length of all sections across 2 using P:

(7.2) v(E) = /QQ(“E)dP(w).
See the right figure in Figure

7.1. EXAMPLE. Let A € Fand Be€ G. If w € A, then “A x B = B;
if w¢g A, then “Ax B = (. Thus QA x B) = Q(B) if w € A and



1. CONSTRUCTION OF PRODUCT MEASURES 73

r r

w 0 w O
FIGURE 2. Low-dimensional sections.

QUWAXx B)=0ifw ¢ A. Tt follows that Q(“A x B) = Q(B)14(w) and hence
v(A x B) =P(A)Q(B).

Of course, for a general set F € F x G, we shall ask whether the set “FE
and the function Q('E) are always measurable in their appropriate senses,
so that the right hand side of (7.2)) is defined. The answer is yes.

7.1. LEMMA. Let E be a set in F x G. Then “E € G for any w € Q.

PROOF. Let D={E C QxI': YE € G for every w € Q}. We want to
show that F x G C D. Denote the collection of all measurable rectangles
by P. Then o(P) = F x G, P C D by Example and it is immediate
verification that P is a m-system. Thus by Dynkin’s 7-\ theorem [1.10] it
suffices to show that D is a A-system over (2 x I'. We verify it now. Clearly,
being a measurable rectangle, ) = § x T' € Tfl} Take any E € D. Then for
any w € Q, “E € G. Thus

YE)={rveTl: (w,y) e Et={y€el: (w,7) & E}
(7.3) =I'\{yel: (w,y) e E}=("E) eg.

Consequently, E° € D. Similarly, for any (disjoint) sequence (E,)nen in D,
it follows from

w( [j En) :{VEF:(w,'y) € @En}

n=1
o0 o0
(7.4) =J{velr:(wy ek} =J"“En
n=1 n=1
that |J;~; E, € D. This proves that D is a A-system over Q x T.. U

7.2. LEMMA. Q('E) is F-measurable for any E € F x G.

IThe first empty set is a subset of 2 x I'. The second empty set is a subset of .
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PROOF. Let D = {FE € F x G : Q('E) is measurable}. By Example
again, D contains all measurable rectangles. Thus as before, it suffices to
show that D is a A-system. We apply the probability Q to the first and last
terms of the formulas in the proof of Lemma Then for any E € D,

Q(*(E9)) = Q((“E)*) = 1-Q("E),
implying that Q((EC)) is measurable, so that £F° € D. For any disjoint

sequence (E,)nen in D, note that (“E,) is a disjoint sequence in G for any
w € Q. Thus it follows from

o o((0a)-o(J5) - Sa)
that Q(" (U, ; En)) is measurable, so that ;2 E, € D. O

7.1. THEOREM. For any two probability spaces (0, F,P) and (T',G,Q),

there exists a unique measure v on F X G such that
(7.6) v(Ax B)=P(A) xQ(B) forany Ae F,Beg.

PRrROOF. Clearly, if such a v exists, we have v(Q x I') = P(2)Q(I") = 1.
Thus the uniqueness part follows from Theorem since the set of all
measurable rectangles is a 7w-system. For the existence part, we only need
to show that the measure v in is a measure. Indeed, it is clear that
v(0) = 0. The countable additivity follows from taking expectations of the
first and last terms in . This completes the proof. O

Of course, we can define the y-sections, . F, of a set £ € F x G and then
define a measure of E in a similar fashion as in . By the uniqueness
part in Theorem [7.1] we must have, for any F € ]: x G,

(7.7) B) = [ QB)Pw) = [ PLENQM),

where p is as in . From now on, we rewrite the measure as P x Q and
call it the product measure of P and Q.

2. Fubini Theorem

We now study integrals with respect to the product measure. The fol-
lowing theorem says that integrating with respect to the product measure
is the same as integrating with respect to the two measures one by one.

7.2. THEOREM (Tonelli-Fubini). Let (Q, F,P) and (T',G,Q) be two prob-

ability spaces.
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(a) Let X : Q xI" — [0,00] be F x G-measurable. Then

@8 [ X x Q) = [ [ [ Xwaaem)]dre)
(b) Let X € L' (QXI‘) be such that [ X (w,~)dQ(y) is defined for every
w € Q. Then [ X(-,7)dQ(v) € L*() and holds.

At a first glance, one may feel no ideas to prove the theorem. But once
we connect to , the proof of Theorem will become transparent
and almost immediate. Take any E € F x G. Note that 1g(w,vy) = 1 iff
(w,v) € Eiff y € “E iff 1ug(y) = 1. Therefore,

/ 15(w,7)dQ(7) = / Lop(7)dQ(7) = QE)
T T

for any w € . Consequently, with X = 1g, (7.8) becomes
PxQ(E / Q“E)dP(w

which is precisely . In other words, holds for indicator functions.
The rest of the proof will fall into our general routine: prove it for simple
functions, and then for non-negative functions and for general functions.

However, before proceeding to the proof, we need to show that for each
we N X(w,-)is g—measurable, so that [ X (w,~)dQ(~) is possibly defined,
and also that [ X(-,7)dQ(y) is F-measurable, so that the double integral
Jo [ Jr X (w, 7)dQ( )] P(w) is possibly defined. We include the arguments
for these measurability issues in the proof of Theorem

PrROOF OF THEOREM [T.2l [(a)] If X = 1 for some E € F x G, then
as is observed above, lp(w,:) = lep is G-measurable for any w € Q,
Jr1E(,7)dQ(y) is F-measurable, and

fyp 108 Q) = [ [ [ 35t a0] (o)

Now let ¢ be any non-negative simple function on Q x I', say, ¢ =
Z?Zl ¢jlp,, where all ¢;’s are non-negative and all E;’s lie in F X G. Recall
that linear combinations of measurable functions are measurable (Corol-
lary . Thus by the indicator function case, ¢(w, ) = Z? 1 clej (w,-) is

G-measurable for any w € Q, [ ¢(-,7)dQ(y) = Zf 16 Jp 1, (-,7)dQ(y) is
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F-measurable, where the equality is due to linearity of expectations, and

QxT

P(w,7)dP x Q(w,7)
_ZC]/QXF (w,y)dP x Q(w,~) = ]z;q/[/lE (w,7)dQ(vy )} P(w)

/ch [ 15, @ maem]ape) = [ | /chlE (2. 1)dQ(7)| dP(w)
= [ [ [ ¢t mae)]ape).

Now let X > 0 be general. By Theorem [£.12] we can take a sequence
(¢n)nen of simple functions such that 0 < ¢, T X on Q x I'. Recall that
the limit of a sequence of measurable functions is also measurable (Propo-
sition . Then by the simple function case, since

¢n(wv ) T X(wa ')v

X (w,-) is G-measurable for any w € Q. Taking expectation with respect to
Q, we have, by Monotone Convergence Theorem,

/ b (w,7)AQ() 1 / X(w,7)dQ(~)
T T

for any w € Q, implying in particular that [ X(-,)dQ(y) is F-measurable.
Taking expectation with respect to P and applying Monotone Convergence
Theorem again, we have

/Q[/F¢n(w7’7)dQ(’Y)]dP(w)T/Q [/FX(WW)dQ(’Y)]dP(W).

On the other hand, by the simple function case,

/Q Uﬁﬁn(wﬁ)dQ(v)}dP(w)

= ¢n(w,7)dP x Q(w,7)
QxI

0 X(w,7)dP x Q(w,),
QxI’

where the convergence in the last step is due to Monotone Convergence
Theorem applied to 0 < ¢, T X over the product space (2xT', F xG,P x Q).
Combining the last two equations, we finish the proof of @
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(b)l The proof of this part has no mathematical ideas but only some
technicalities. Let X : Q x I' = [—00, c0] be integrable. Then by the non-
negative case, X (w,-) = Xt (w,-) — X~ (w, ) is G-measurable for any w € .
As functions in w, [ X*(-,7)dQ(y) may take infinite values, but their dif-
ference is defined at every point of €, since we assume that [ X (w,~)dQ(y)
is defined for every w € Q, which by the definition of integrals of X (w,-)

with respect to Q is equal to

/X*wfde /X (w,7)dQ(v).

Thus by Remark applied to the functions [ X*(-,7)dQ(y) on €, it
follows that [ X (w, v)dQ(v) is F-measurable. Moreover,

[ [ [ X*.nae0)]|ape)
Q T
< [ [ [Ix@aiaem]ape) = [ X )idP x Q. < o

implying that [ X*(-,7)dQ(v) are both integrable. Thus [ X(-,7)dQ(v) =
Jp XT(-,v)dQ(y) — Jp X~ (-,7)dQ(y) is integrable, and

[ [ xtmaem]ape)
= [ [ [xr@maem]are) - [ [ [ x-w@miem]dee

= X" (w,7)dP x Q(w,v) — X (w,7)dP x Q(w,v)
QxT QxT

= X(w,7)dP x Q(w, ),
QxI
where the first equality is due to linearity of expectation with respect to P
and the second equality is due to the non-negative case. ([l

Of course, one may do the double integral by integrating with respect
to P first and then to Q. Parellel results follow. Comparing the double
integral in this case to that in the previous case, we obtain that for any
F x G-measurable function X : Q x I' — [0, oc],

a9 [ [[Xemiam]ew = [ [ [ xenape]aen).

That is, we can change the order of integration in double integrals.

The non-negative case in Theorem [7.2(a)| and (| is usually referred
to as Tonelli Theorem, and the general case in Theorem and is
referred to as Fubini Theorem.



78 7. PRODUCT MEASURES

7.3. REMARK. The results in Sections [ and 2 hold for o-finite measures
spaces. In fact, Lemma [7.2]is the only place that needs additional care. We

leave the verification to the reader as an exercise.

7.2. EXAMPLE. Let (2, F,P) be a probability space and (X, )n,en be a
sequence of non-negative random variables on 2. Consider N endowed with

the o-algebra P(N) and the counting measure. The product o-algebra is
P(N) xf::a({A xE:ACNE ef}).

Define F': N x Q — [0,00] by F(n,w) = X, (w). For any ¢ € R,
{F<c}={(nw): Xow) <c}=|J{n} x{Xn<c} eP(N)x F.
n=1

Thus F'is P(N) x F-measurable. Applying ([7.9)), one gets that

iE[Xn] - E[an].

7.3. EXAMPLE. Let 1 < p < oco. Let X > 0 be a random variable on a
probability space (2, F,P). Whenever 0 < ¢ < X (w)P, we can find a positive
rational number 7 such that ¢ < r < X (w)P. Thus it is easy to see that

{(t,w)GRxQ:0§t<X(w)P}

—U{ttw) eRxQ:0<t <rr < X))

T

~Jio,) x {weQ:X(w) >r%} cBxF.

T

Therefore, 1(; w)eRx0:0<t<X (w)r} 18 B x F-measurable. Applying (7.9) with
Q replaced with the Lebesgue measure, one gets that

E[X7] —/QX(w)de(w) _/Q[/R1{(t,w)eR><Q:O<t<X(w)P}dt}dp(w)
=/ [/ 1{(t,w)€R><Q:0§t<X(w)P}dP(W)}dt
r LJo

_ /R [ /Q 1{X>t%}(w)dP(w)}dt

:/ 1g.00) (HP(X > £7)dt.
R
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For any ¢t > 0, denote wx (t) = P(X > t). Then wx is a decreasing function
on [0,00). Thus by Corollary we have

E[X?] :/ wX(tllo)dt:/ wx (s)psP~1ds,
0 0

where the second equality follows from a change of variables ¢t = sP for the

Riemann integrals.

3. Higher-dimensional constructions

We are not satisfied with constructing the product space of only two
probability (or o-finite) measure spaces. For example, once we know how to
measure the length of objects in R, in addition to knowing how to measure
the area of objects in R?, we also want to know how to measure the volume
of objects in R3. In another word, if we have three probability (or o-finite)
measure spaces (Q, Fi, Px), & = 1,2, 3, how can we get their product space?
Of course, we can first get the product space (21 x Qa, F1 X Fa,P; X Pg)
and then cross with the third space to get the following probability space

(Ql X QQ X Qg, (./—"1 X .FQ) X ]:3, (Pl X PQ) X Pg)

Alternatively, we may cross the last two spaces first and then cross with the
first one to get the following probability space

(Ql X QQ X Qg,fl X (.;Eg X .Fg),Pl X (PQ X Pg)).

What is the relationship between these two spaces then? They are identical!
Firstly, one can verify that

(FixFo)xF3=F1 x(FoxF3)=c({AxBxC:Ae F,Be F,CeFs})

(Exercise , so that the two probability spaces have the same o-algebra.
Secondly, observe that for any A € F1,B € F5,C € F3,

(P1 x P2) X P3(A x B x C)=P; xPs(Ax B)P3(C) =P1(A)P2(B)P3(C)
and
P1 x (P2 x P3)(A x B x C)=P1(A)Py x P3(B x C) =P1(A)P2(B)P3(C),
and thus

(P1 X P2) x P3(Ax BxC)=P; x (P2 xP3)(Ax BxC).

Since the collection {A x B x C : A € F1,B € F,C € F3}) is a 7-
system generating the o-algebra, we get (P1 x P2) x P3 = P1 x (P2 x P3), by
Theorem [2.9] That is, the order to get the product space of three probability
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spaces does not matter. In view of this, we may simply denote the product
space as (21 x Qg x Q3, F1 X Fa x F3,P1 x Py x P3). With the standard
technique of passing from indicator functions to simple functions to non-
negative functions, one can also easily show that, for any Fi x Fo X Fs3-
measurable function X : Q; x Qg x Q3 — [0, 0],

/leﬂgxfzg X (w1, w2, ws)dP1 x Py x Pg
:/Q1 [/92 [ QBX(wl,w2,w3)dP3(w3)]dP2(w2)] dPy(w1)
= UL L, i waps ] P apagen)

or in any order one may like to arrange 1,2, 3. For a F; X F2 X F3-measurable
function X that may take negative values, similar results hold as long as the
intermediate integrals are all defined.

In general, whenever we have d probability (or o-finite) measure spaces
(e, Fi,Pr), k=1,2,...,d, we can get the product spaces by gluing them
together one by one: Q1 x Qa, (2 x Q2) x Q3, (( x Q2) x Q3) x Qy, etc,
We denote the final product space

d d d
(HQk;, 11711 Pk>~
k=1 k=1 k=1

Remark that

d d
H]—"kza({HEk:Eke}'k,kzl,...,d}>
k=1 k=1

(Exercise and that szl P is the only measure on HZ:l F such that

d d d
11 Pk;( 11 Ek) =[] Pr(Ex)
k=1 k=1 k=1

for any Fy € Fi,...,Eq € F4. The order of gluing the d-spaces together and
expressing the integral with respect to the product measure as a multiple
integral does not matter.

7.4. EXAMPLE. Consider szl(R,B,m). Note that HZ:l B = B? (Ex-
ercise . Instead of writing ngl m, we abuse the notation and still write
it as m, and call it the Lebesgue measure on R%.



EXERCISES 81

7.5. EXAMPLE. Let Fi,..., Fy be distribution functions on R with as-
sociated Lebesgue-Stieltjes measures pq, ..., g. Then we can obtain the
unique measure p on (R%, B¢) such that

d d
M(H ak,bk) H Fy.(br) — Iy, akz))
k=1 k=1

for any ag, by € R with ap < bg, k=1,...,d.

Exercises

7.1. Let A be as in Section [I]and F € A be non-empty. Show that we
can obtain a partition {Ej}1<x<n, of  and a partition {F}}1<j<m of I' such
that F is the union of some of the Ej, x F}’s. Show that A is an algebra
over Q x T'.

7.2. Let p be as in Section |1 Suppose that (A, x By)nen be a disjoint
sequence of measurable rectangles whose union is a measurable rectangle
A x B. Show that for any w €  and v € T,

14 Z 14, (w)lB, (v

Deduce 14(@)Q(B) = Y302, L, (£)Q(B,) and P(A)Q(B) = Y22, P(A,)Q(By).

7.3. Let p and A be as in Section Show that u is a pre-measure on
A.

7.4. Let A, pt, 1 be as in Sectionm Show that for any F € F x G,

=inf { ZH(AH) : (An)nen is a disjoint sequence in A, E C U An}

n=1 n=1

o0
=inf { Z 1(Ry) : (Rn)nen is a disjoint sequence of measurable rectangles,

o
Ec |/ Rn}.
n=1
7.5. Verify the first equality in (|7.3]) and the first equality in ([7.4)).

7.6. Verify that the results in Sections|l] and [2| hold for o-finite measures
spaces.
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7.7. Suppose F and G are the o-algebras generated by two collections C
and D, respectively. Show that F x G is generated by C x D := {C' x D :
C € C,D € D}. Use induction to extend this result to multiple o-algebras.

7.8. Use Exercise to show that
(]:1 X]:Q) X Fg = F1 X (]:Qxfg) = U({AXBXC :Ae F,Be F,Cce .7:3}),
7.9. Use Exercise to show that B x B2 x ... x Bdk = Bdit-+d

7.10. Let X,Y be random variables over (2, F,P) and (', G, Q), respec-
tively. Cosnider the function XY : Q x I' — [—00,00]. Show that XY is
F x G-measurable. If X, Y are real-valued, one can similarly define X — Y.
Show that X — Y is F x G-measurable.

7.11. Prove Example

7.12. Let (2, F,un) and (I',G,v) be two o-finite measure spaces. Let
X :QxI'—[0,00] be F x G-measurable. For 1 < p < oo, show that

</F</QX(W77)dM(w)>pdu(fy)>; S/F(/QX(W"V)pdV(’Y));dM(w)-

If (Q,F, p) is N with the counting measure, the formula reduces to

o oo
I3 x| <1l
n=1 p n=1

which is Exercise In view of this, the first inequality is called Minkowski
Inequality in integral form.

7.13. Let X be a bounded random variable over (2, F,P). Show that if
Joxal X (w) — X(w')[dP x P(w,w') = 0 then X a.s. equals a constant.



CHAPTER 8

Distributions

Let € be the set of all Canadians and let X : 2 — R be the 2019 income
of Canadians. In most cases, it will not be of economic concern what X (w)
is for a particular Canadian w. But rather, it is of great importance to
know, e.g., what is the probability that a randomly selected Canadian’s
2019 income is below $15k, i.e., P(X < 15k), or say, if the middle class
2019 income is $80k, then what is the probability of a randomly selected
Canadian’s 2019 is middle-class or above, i.e., P(X > 80k)? In another
word, we would like to know how X distributes its values?

We have a more intuitive example explaining the meaning of “distribu-
tion”. Say, you throw a fair die. If you get a small number 1,2, 3, then you
lose $5; if you get a big even number 4, 6, then you win $3; if you get 5, then
you win $1. Let X be your net gain after one toss. Then P(X = —5) = %,
P(X =1) =, and P(X = 3) = 1. So we may say that X distributes & of
its values to —5, % of its values to % and % of its values to 3.

In this chapter, we study distributions in details.

1. Probability distributions

Let X be a random variable over a probability space (£2, F,P). Define
Fx :R —[0,1] by

F¥(z) =P(X <2)=P(X € (—o0,2]), =z€R

One sees that FX is increasing, right-continuous satisfying that F(co) = 1
and F(—oo) = 0. Thus by Proposition it generates its Lebesgue-Stieltjes
measure on (R, B). It can be easily verified (Exercise[8.1]) that the Lebesgue-
Stieltjes measure is given by follows:

(8.1) PY(B):=P(Xe€B), BecbB.

We call PX the probability distribution, or simply distribution, of
X because for any set B € B, PX(B) tells the chance that X distributes its
values to B, or in general, P¥ tells how X distributes its values. From now
on, PX, instead of P, is usually our focus of study.

83
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We call FX the cumulative distribution function (CDF) of X.
With the new notation of P¥X, we have

(8.2) F(z) = P*((—o0,1]), x €R.
Being the Lebesgue-Stieltjes measure of FX, PX is determined by FX. Thus
we may refer to FX as the distribution of X as well.
8.1. DEFINITION. Let X be a random variable with CDF F. Its proba-
bility mass function (PMF) f:R — [0,1] is defined by
fX(z)=P(X =2) =P*({z}), =z€R

By definition, f*(z) > 0 means precisely that the value x is taken by X
with a positive probability. Recall from Proposition [3.0] that, for any = € R,

f¥(x) =P*({z}) = F¥(2) = F* (z—);
thus fX(x) > 0 if and only if FX has a jump at x, in which case, the size of

the jump is fX(z).

8.1. EXAMPLE. Let X be a discrete random variable with values {z } ken,
each of which has a positive probability to be taken (it does not matter if
X only takes finitely many values). Then

P(X =) >0 if x =z}, for some xy,
PX=2)=0 ¢ {zr}tren;

and
1 =P(X € R) = P(X =z for some z3) = ZPX(X =) = fo(xk)
k=1 k=1

Consequently, the CDF FX has jumps precisely at xj, k € N, and the
total jumps are Y p° | (F(zy) — F(zx—)) = 1. Moreover, for any B € B,

(8.3) PX(B)=P(X€B)= > flax) = f(z)0r,(B).
k=1

k:xpeB
That is,

PY =" f(ar)bs,,
k=1

a form of probability measures that we have discussed in Example In
particular, the PMF dertermines PX—thus, we refer to the PMF as the
distribution for discrete random variables as well, but of course, the PMF
looks neater and is more workable as will be seen.
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The converses of the above statements are also correct, namely, if the
PMF of a random variable are positive at finitely many or countably infin-
itely many points with a sum of 1, or if the CDF has total jumps equal to
1, or if the probability distribution is of the form in Example then it is

discrete (Exercise [8.2).

8.2. EXAMPLE. Let X be a random variable that takes only two values
0,1 both with positive probabilities. Then X is said to be binary or is
called a Bernoulli trial. Its distribution is given by

p=Fr1),  1-p=fY0),
or equivalently,
PX = pd; + (1 — p)do.
In practice, X may count the number of heads when flipping a coin once,
with p the probability of getting a head.

8.3. EXAMPLE. Let n € N and p € (0,1). A random variable X that
takes values 0,1, ...,n with the PMF

FX(2) = <Z>px(1 Pz =0,1,...,n,

is called a binomsial random variable. Its distribution is called a binomzial
distribution, written as Bi(n,p). In practice, X may count the number of
heads when flipping a coin for n times, with p the probability of getting a
head for each flip.

While probability mass functions work well for discrete random vari-
ables, we need to introduce probability density functions for continuous

random variables.

8.2. DEFINITION. A random variable X is said to be continuous if FX
is continuous. X 1s said to be absolutely continuous if there exists a
function fX :R — [0,00) such that

FX(z) = FX(t)dt, €R;
@=[  fww

or more commonly, in this case, we say that X has a probability density
function (PDF) fX.

8.3. REMARK. (a) If f1, fo are both PDFs for a random variable
X, then f; = fy m-a.e. (cf. XXX). In fact, in this case, the PDF is
given by fX = (FX) m-a.e.
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X [ X _
(b) For a PDF f*, [% fX(t)dt = 1.
(¢) A random variable with a PDF is always continuous (Exercise 8.3)).
The converse is not true in general, i.e., a continuous random vari-
able may not have PDFs.

8.4. EXAMPLE. Suppose that X has PDF fX. Then the distribution of
X is given by

(8.4) PX(B) = / X (t)dt, BeB.
B

Indeed, the indefinite integral in the right hand side is a probability measure
and coincides with PX for all intervals of the form (—oco,z], 2 € R. Thus it
coincides with PX for any B € B (Corollary .

Like PMFs for discrete random variables, PDFs are referred to as the
distributions of absolutely continuous random variables. These two classes
of random variables are most used in reality.

8.5. EXAMPLE. A random variable X is said to follow the normal dis-
tribution, written as X ~ N(u,o?), if it has density

1 _@=w?
e 207 T €R,

2o
where p € R and ¢ > 0 are fixed constants. When p = 0 and ¢ = 1, the

distribution is called standard normal distribution.

(a) If X ~ N(u,0?), then Z := 2= ~ N(0,1). Indeed,

X —
P(Zgz):P< ng):P(XS,u—i-az)
o
n+oz 1 (zfu)2
= e 202 dx
0 2mo

z 1 2
:/ e_%dt,
oo V2T

where the last step follows from a change of variable t = *=£.

(b) Similarly, it is easy to verify that if Z ~ N(0,1), then X := y+0Z2 ~
N(u,0?) (Exercise .

2. The Expectation Formula

The probability distributions P (in particular, PMFs and PDFs) bring
significant convenience and simplicity for calculating expectations, as it
pushes everything from (2, F,P) to (R, B,P¥).
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8.4. THEOREM. Let X be any random variable over (Q, F,P). Let EX
be the expectation over (R,B) with respect to PX. Let h : R — R be a

Borel-measurable function. Then
(8.5) E[h(X)] = E¥[h],

where the expectations either both exist or both do not exist. Furthermore,
if X is discrete with PMF X, then

(8.6) E[R(X)] =Y hlar) f¥ (z1),

where x1’s are the values admitted by X with positive probabilities; if X has
PDF X, then

(8.7) E[h(X)] = /R h(t) £ (t)dt.

ProoOF. Without loss of generality, we assume that h > 0.
Step I: h is an indicator function, say, h = 1p for some B € B. In this
case, 1p(X) = 1if X € B and 0 otherwise, thus 15(X) = 1;xcp}. Hence,

E[1p(X)] =E[lixep] = P(X € B) = P*(B) = EX[15].

Step II: h is simple, say, h = > ;_, cx1p,. Then by Step I and linearity
of expectations with respect to both E and E¥X,

ER(X)] =) aEllp (X)] =) eE*[1p] =EY[A].
k=1 k=1

Step III: A > 0 is general. Take a sequence (¢,,) of simple functions such
that 0 < ¢, T h. Then 0 < h,(X) 1T h(X). Using Step II and applying
Monotone Convergence Theorem with respect to both E and E¥X, we have

E[h(X)] = lim E[h,(X)] = lim EX[h,] = EX[n).

In particular, E[h(X)] < oo if and only if EX[h] < co. This proves (8.5).
The proofs of and (8.7) go along similar lines; for h = 1p, they
follow from (8.1)) and (8.4)), respectively. O

Let’s do some classical examples.
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8.6. EXAMPLE. Suppose X ~ Bi(n,p). With A(t) = t for all t € R,
h(X) =X, and

EX] :Zn:‘r(?;)pm(l P = iw(’;)pm -

x=0 =1

:Zx:m(n - x)lpx(l —p)""
r=1 ' :

- (n—1)! o 1) (e
B2 ey e ey AU A
= n—1)! 1)
:"pgwpy“—p“ v
:np?

where the fourth inequality is due to change of variable y = x — 1 and the
last one is due to that the new summands are the PDF of Bi(n — 1,p) and
thus the sum is 1. With h(t) = t2 for all t € R, h(X) = X?, and

n

=2
= x(:p—l)x!(nix)'pm(l—p)n T+ np
=2
= n!
_Zg(x—2)!(n—x)!px(1_p>n B
:n(n_l)in (n—2)' px—Q(l_p)(n—Q)—($—2)+np
2 @2~ (&~
=n(n—1 2N~ (n=2)! v(1 (n=2)-y 4,
(n—1)p ;y![(n_Q) P’ =) +np

=n(n — 1)p* + np.

It follows that
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8.7. EXAMPLE. Suppose X ~ N(u,0?). Then with h(t) =t for all t € R,
h(X) =X, and

/ (t—m?d /OO( ) 1 52 d
202 dt = +o0s e 2ods
27ra o0 a V2o
52
= 7 ds +/ e zds
M/oo V2 O’ 27r0
=p+0=up,

where the second equality is due to change of variable ¢t = u + os and we
2

use the fact that [7° s\/QLWe*?ds = 0 (Exercise . With h(t) = t2 for

all t €R, h(X) = X2, and

E[X?] / 5 ar /Oo( os) e Tad
20 = oS e 20ds
27ra a V2o
/ 1 d &0 1 s2d
= _2 s+ 2uoc S e 2ds
a —00 V27O a oo V2O
m 2 1 52
s e 2ds
V2o
:,uQ—i—az.
Therefore,

V[X] = E[X?] — (E[X])? = ¢*.

3. Higher-dimensional analogues

What we have discussed applies to random vectors (Definition . Let
(X1,...,X4) be a random vector. We define its CDF F&1..Xa) o Rd _y R

by
F(Xl"“’Xd)(azl, coxg) =P(Xy <, Xg < xy), (x1,...,2q) € RY.
We define its probability distribution P(X1:-+Xa) on (R4, B%) by

P1Xa)(BY = P((Xl, LX) € B), Be B

By Corollary it is easy to verify that P(X1--+Xd) ig the unique probability
measure on (R?, B%) such that, for any (x1,...,z4) € R?,

d
F(Xl""’Xd) (ml, Ce ,l’d) == P(X17...7Xd) ( H(_OO, l’k])

k=1



90 8. DISTRIBUTIONS

A random vector (Xi,...,X ) is discrete if it admits finitely many or
countably infinitely many values. We can define its PMF by

f(Xl""’Xd)(xl, oo xg) =P(Xy =2, , Xg = 2y9), (x1,...,2q) € R,

Its properties are similar as outlined in Example In particular, if
{x1}ren are the values in R? admitted by (X1, ..., Xy) with positive prob-
abilities, then we have

p(X1..Xa) () =P((X1,...,Xq4) € B) = Z f(r)

k:xpeB
o0
k=1
That is,
p(Xi, Xa) — Zf ()6 -
Similarly, a random vector (X7, ..., Xy) is absolutely continuous or has

PDF if there exists a non-negative function f&1-%Xa) such that
ﬂ%wxmmwnwwz/‘ & Xa) ()t d (. tg),
d
fe=1(—00,7]

for any (x1,...,74) € RY Similar properties as in Remark hold. In
particular, we have

(8.8) PX1-Xa)(p /thxw o)At ta),  BeB

As before, we may term F&1Xa) and P(X1-Xd) a5 well as the PMF
and PDF whenever appropriate, as the distribution of the random vector
(X1,...,Xq).

3.1. Marginal distributions. In Probability Theory, P(X1:Xa) ig of-
ten called the joint distribution of (X1, ..., X4); similarly, the CDFs, PMFs
and PDFs are also termed with the word “joint”. The corresponding distri-
butions, CDFs, PMFs and PDFs for each individual X}’s are termed with
“marginal”.
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The joint distributions contain the marginal distributions as partial in-
formation. For example, if F(X1:2%Xd) ig the joint CDF of (X1,...,Xaq),

FX(21) =P(X; € (—o0,a1]) = P((Xl,Xg,...,Xd) € (—o0,z1] X Rd—l)
d
— lim P((Xl,XQ,...,Xd) € (00, z1] X H(—oo,n]>

n—00
k=2

= lim F&vXa) (g n, o n),
n—oo

which we can symbolically write as
F(Xl""’Xd)(ml, 00, ...,00).

So the marginal CDF FX1 is obtained from the joint CDF. For another
example, if f(X1:-+Xd) ig the joint density of (X1,...,X4), then by (8.8)),

FX1(21) =P(X; € (—00,21]) = P((Xl,Xg,...,Xd) € (—o0, 11] X Rd”)

:/( ] i f(Xl"”’Xd) (tl, RN ,td)d(tl, e ,td)
—o0,r1|XRI~

:/ diy ( f(Xl’""Xd)(tl, .. ,td)d(tg, . ,td)> ,
(—o0,x1] Rd—1

where the last equality is due to Fubini Theorem. Thus the PDF of X; is
obtained from the joint PDF:

/d 1 f(X1,~~.,Xd)(.7 to,... ,td)d(tg, A >td)~
Rd—

In particular, existence of joint PDF implies that of marginal PDFs.
This method can be extended to find the CDFs of any component of a
random vector. Let’s look at multivariate Gaussian distributions.

8.8. EXAMPLE. A random vector X is said to be normal or Gaussian if

it has the following density function
(27) "% det(D) " 2e 2@ WEN@-w' g o RY

where ¥ is a d x d positive definite matrix and p € R In this case, write
X ~ Ng(p,X), or simply X ~ N(p,X).

Write X1 = (X1,...,Xg,) and X2 = (X4, 4+1,---,Xa),50 X = (X1, X2).
Accordingly, write ©1 = (21,...,24,), T2 = (Tay41,-- -, Zaq), and

211 Y12
p= (M, p2), and X =
(1 p12) (5321 222;)
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where X1 is the di X di-block in ¥. By symmetry, Y91 = 232. Then for any
B € B%, we have, by (8.8) and Fubini Theorem,

PX1(B) =PX(B x R ™)
:/ daq / (27r)_% det(E)_%e_%(w_“)zil(w_“)tdxg
B Rd—dq
Setting
b= Mo + (wl — ul)El_llElg and A= Yoo — 22121_11212,
we have by direct simplifications (Exercise ,
(- )=z - p)
(8.9) =(x1 — p1)S (@1 — )" + (22 — b)A™ (22 — b)".
Plugging this into the previous formula, we have
PX1(B) = / (27)~F det(T) 3 det(A)Fe 3@ —m)=H @) g,
B

d—dq

x / (27)" 2" det(A) " ze 2@ AT @2-b)" g g
Rd—d1
The second integral is equal to 1 because the integrand is precisely the PDF
of N(b, A). Notice also that (Exercise
(8.10) det(X)"Ldet(A) = det(2q;) "L
Thus
PXl(B) — / (Zﬂ)*%l det(zll)*%6*%(%*Hl)zﬁl(wlﬂh)tdwl'
B

Therefore, X1 ~ N(p1,%11). Similarly, one shows that Xo ~ N(pa, X22).
Other components of X, e.g., (X1, X3,X4), can be handled in a similar
fashion; they are all Gaussian whose parameters are extracted accordingly
from p and . In particular, if we write ¥ = (o), then Xj ~ N(ug, o)
for each k =1,...,d. Thus, ux = E[X}] and o = V[Xk].

3.2. The expectation formula. The following theorem generalizes
Theorem [8.4] and can be proved in the identical format.

8.5. THEOREM. Let (X1,...,Xq) be a random vector over (Q, F,P). Let
EX1Xa) be the expectation over (R?, BY) with respect to PX1-Xa) - Let
h:R%Y = R be a Borel-measurable function. Then

E[h(X1,..., Xg)] = EXXa) [



3. HIGHER-DIMENSIONAL ANALOGUES 93

where the expectations either both exist or both do not exist. Furthermore,
if (X1,...,Xq) is discrete with PMF f(X1-Xd) then

E[(X1, ..., Xo)] = > hlmg) fE0 X0 (),

where i ’s are the values admitted by (X1, ..., Xq) with positive probabilities;
if (X1,...,Xq) has PDF f(X1-Xa) then

E(R(X1, ..., Xa)] = / Bl ) O (4t ta)
R

8.9. EXAMPLE. Suppose X ~ Na(u, ). By the expectation formula, we
have

CoV[Xy, Xo] =E[(X1 — 1) (X2 — p2)]

1 _
- /R (21— 1)@z — pi2) —— e 3R @) g

2m/det(X)

1 o
- L Ty,
/Rl T et () Y

Write ¥ = (o). Then

o1 _ 1 O22  —O012
- _
011022 — Ofy \ =012 011

Consider the following change of variable

1 /099 0
2 o g
V011022 — 074 —\/% o1~ 52

(t1,t2) = (y1,92)

Then (Exercise

(8.11) yX Yy =]+ 83,

1 on—g2 0
(812) Yy :t\/m 2 lilz o2

Vonyfon — 22 Vo2 V22

22

4 (\/;E\/anagg—aﬁ 0 )

012
NG Vo2

and

dy =14/011022 — U%th.
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Therefore,

1 012
X1, Xo] = ( — o2t + ——t t
CoV[X1, Xo] /R2 \/@\/011022 oyt + NG 2)(\/022 2)

1 142,42
X =€ 2(t1+t2)\/011022 — 0'%2dt.
2m\/011022 — 075

Split the parenthesis in the integrand. Note that by symmetry, the integral

of the term containing t1to is 0. Thus

1 /
COV[Xl,XQ] :/ Ulgt% 5 6_%(t%+t%) 0110922 — O‘%th
R2 27T\/011022—012

/ L _édt 2ot _édt
=0 (& e
2 e Vor Y e 2

That is, 012 is precisely the covariance of X; and Xs.
Suppose that X ~ Ng(u, ), where ¥ = (0;;). For any two distinct j, k,
from Example [8.8] we know that

i Ok
(vaXk) ~ N ((M]:,uk)? ( 7 ! )) .
Okj Okk

Following this with an application of the above result, we obtain that o, =
CoV [Xj, Xk] .

For a random vector X = (X1,...,Xy), we define its mean vector by
and its variance matricz by
COV[Xl,Xl] COV[Xl,Xd]
VIX] = : :
COV[Xd, Xl] NN COV[Xd, Xd]

The preceding two examples conclude that if X ~ Ngy(u,X), then p =
E[X] and ¥ = V[X]; in particular, ¥ is diagonal iff X}’s are uncorrelated.

Exercises

8.1. Prove that P¥X in (8.1)) is indeed the Lebesgue-Stieltjes measure of
FX.

8.2. Prove the statements in Example

8.3. Show that a random variable with a PDF is continuous.
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8.4. Prove Example 8.5(b)

> 1 2
/ s e 2ds=0,
S 2mo

> 1 2
/ $?—— e 7ds=1.
S 2mo

8.6. Verify and (8.10)).
8.7. Verify (8.11)) and ({8.12]).

8.5. Show that

8.8. Uniform distribution
8.9. Poisson distribution
8.10. Geometric distribution

8.11. Exponential distribution






CHAPTER 9

Independence

There are two notions that draw the essentially different focus between
Probability and Analysis (measure theory): independence and conditioning.
In this chapter, we establish some basic facts about independence. The
two well-known, fundamental results regarding independence: Law of Large
Numbers and Central Limit Theorem, will be studied in the three chapters
that follow. Conditioning will be studied in Chapters [13] and

1. Characterization via distributions

We have long learned that two events A and B are independent if P(AN
B) = P(A)P(B). Independence of random variables are defined in a similar
fashion: they distribute their values in an independent way.

9.1. DEFINITION. Let Xi,...,X4 be random wvariables over (2, F,P).
We say that they are independent if for any B € B, k=1,...,d,

(9.1) P({Xl € Bl} n---N {Xd € Bd}) = P(Xl € Bl) X oo X P(Xd S Bd>
Here the left hand side is often for simplicity written as
P(X1 €EBy,---,X,€ Bd>.

Using the notion of joint distributions in Chapter [8, we can rewrite the
left hand side of (9.1) as

)

Using the notion of product measures in Chapter [7], we can rewrite the right
hand side as

d
PX1(B)) x - x PX¢(By) = (H PXk) (H Bk> .
k=1

97
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Therefore, X1,..., Xy are independent means that, for any set B = szl B €
Bd
d
(9.2) pUX1-X0)(B) = (H ka) (B),
k=1
i.e., the two measures P(X1:-Xa) and szl PX* coincide on all such sets.

9.2. THEOREM. The following are equivalent:

(a) X1,...,Xq are independent;
(b) FXuXa) (g ay) = FX () x- - -x FXd(zq) for any (z1,...,24) €

Rd,'
(c) F(Xl"“7Xd)(1:1,...,:rd) is the product of d mon-negative functions
each of which is a function in xy alone, k=1,...,d;

(d) PKrXa) = TT4_ PX% as measures on (R, BY).

PRrOOF. Taking By = (—o0, xg] in (9.1)), we obtain

Thus = can also be translated to that P(X1:-Xa) and Hi:] Pk
coincide for all sets of the form szl (—o0, xk|, which then, by Corollary|2.10,
implies that P(X1-Xa) = Hg:1 PXk as measures on (R%, BY). Hence, |(b)| =
@ @ = @ is immediate in view of .

@ - is clear. The proof of — @ is an elementary play of
functions; we include it for the sake of completeness. Assume that holds,
XtoXa) (g, xg) = szl G (zy), where Gy > 0 for each k. Each
Gy, cannot be identically 0 (why?). Take 29 € R such that Gj(z?) > 0 for
k=2,...,d. Then

say, F(

d
FO0 XD (g 0, ) = Gu(an) [] Grlad)
k=2
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(X150, Xa)

for any x1 € R. Since F is increasing in x1 (why?), it follows that

(71 is increasing in x;. Similarly, each G is increasing in x;. Thus

d d
H Gp(c0) = lim H Gr(n) = lim F&u-Xad(n . p)

n—oo n—o0

d d
i P (m{xkgn}> _p (m{xkeR}> 1
k=1 k=1

Recalling how to recover marginal CDF's from the joint CDF from Subsec-
tion 3.1 of Chapter 8] we have

d
FXl(xl) :nh_{?go F(Xhm’Xd)('ZElan?- : 'an) = nh—>nolo Gl(xl)gak(n)

) _ Gl(xl)
Gl(OO)

d
:Gl ($1) H Gk(oo
k=2

Similarly, one obtains the case for other k’s. This proves = @ ([

Apparently, Condition @ is the most convenient one to verify. The
following result extends @ to PDFs whenever existing.

9.3. COROLLARY. Let Xq,..., Xy be random variables.

(a) If they are independent and have PDFs f**’s, then they have a
joint PDF which is given by szl Xk

(b) If they have a joint PDFH that is a product of d non-negative func-
tions each of which a function of xp alone, k =1,...,d, then they

are independent.

ProoOF. @ For any x1,...,x4 € R, by independence of X;’s and The-
orem [9.2(b)|, we have

FOeaXa) (g g HFX’“ (k) H/ £ () dty,
(—o0,xg]

d
= 1 —00,T, (tk)ka (tk)dtk = 1 —00,T, (tk)ka (tk)dt
,H JETE—, / PICTE
d

— _ X
= Rdlﬂi (ool Hf (tp)dt = /Hd T 75 t)dt,

k=1(—00,x1] k=1

1Recall from Section [3] of Chapter [§|that if a random vector has a joint PDF then all

the component random variables automatically have PDFs as well.
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where the fourth equality is due to Fubini Theorem. By the definition of
(joint) PDF, szl f*X*(ty) is the PDF of (X1,...,Xy). This proves|(a)

Form, say, fOXa) (4 ty) = Hi:l gk (tx) for any (z1,...,z4) €
RZ. Then for any z1,...,zq € R, we have

d
FX0Xd) (g, Xy) = / ferXidt = / [ [ gn(ti)at
H(Iifl(_oo ) z 1 (—00,z¢]

k=1
= H / w () dt.
00 mk]

For k = 1,...,d, write Gi(x) = f(ioo 4] g(tx)dty for z € R. Then by

Theorem [9.2(c), Xj’s are independent. O

9.4. REMARK. The parallel result holds for PMFs and discrete random
variables.

9.1. EXAMPLE. Suppose that (Xi,...,Xy) ~ Ng(p, X). If ¥ is diagonal,
then their joint density is

(27) "2 det(%) ze "2 (@I (@)’

_yd (i) 1 _(opmng)?
e k=l 20p = Il e 2%k

Jy
)
b
|
Nl
YR
==
Q
ol
ol
S~
e

Thus by Corollary Xi’s are independent. Moreover, recall from
Example that X ~ N(ug,oxk) for each k. That is, if X ~ Ng(u, )
with 3 diagonal, then X}’s are independent Gaussians.

The converse is also easily seen to be true by an application of Corol-

lary [9.3((a)

Below is another application of Corollary [9.3(a);

9.2. EXAMPLE. Let Xj ~ N(,uk,ak) k=1,...,d, be independent. Put
X = Zk:l Xpi. Let’s try to determine the distribution of X. For conve-

2
nience, write f(t) = \/%76_% for t € R. By Corollary 9.3I(a), the PDF of X
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is szl Uikf(%) Then by Corollary for any x € R,

d
I /g — pk
POX < 0) Bl g e (01 = [ Lwgien (@ [ o7 (51 )as

g
Y | SIS P
Rd—2 (% Ok
k=1

/ 1 f<l‘d—1—/Ld—l)if(%l_ﬂd)d(xd )
{(ta—1 ta)ta 1 +ta<e—320 22y} Od—1 0d-1 od od ’

d—2
- L /xk — pg
- /Rw EI a:f<7>d<wh e

ud1 + f1a) )

— 1 (2 — pg
_/F\’d1 1{('517 ta—1):0f t<$}(aj1"“ Td-2,% H; < Ok )

sy Ld—2, Z)

<Z — (Md—1 + pa) )

. x17 ...
\/03—1+‘7§ \/Oi-1t+ o
Comparing the right hand sides of the second and last equalities, one sees

that the integrands have the same pattern but the latter one has one less
variable. Thus repeating the process, we obtain that

P(X <z)= /R Liti<ay(2) . ( Zl Mk)

Vi N /Sie?

It follows that X ~ N(E‘li Lk chl 0?). In particular, the sum is still a normal

distribution!

We include a useful observation.

9.5. PROPOSITION. Let Xy, ..., Xy be independent random variables and
hiy:R— R, k=1,...,d, be Borel measurable functions. Then hi(X1),...,hq(Xq)
are also independent.

ProOF. Note that {hr(Xy) € B} = {Xk € hlzl(Bk)}. Thus

P(h1(X1) € Bi,. .., ha(Xq) € By) =P(X1 € hi "(B1),..., X4 € h;,'(Bq))
d

d
=[] P(Xk € " (Br)) = [ P(hr(Xy) € By),

k=1 k=1
which gives independence of hy(Xj)’s. O
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2. Characterization via expectations

So far we have not used Theorem [9.2(d)] Below is a very important
application.

9.6. THEOREM. Let X1,...,Xy be random variables. Then Xi’s are
independent if and only if E[sz1 hi(Xy)] = ngl E[hx (X)) for any Borel
measurable functions hy : R — [0,00], k =1,...,d.

Proor. Taking h; = 1p,, we immediately obtain the “if” part. Now
suppose that Xi,..., Xy are independent. Then by Corollary

d

d
E [H hk:(Xk)] =/ H hip () dPC1 %) (g )
k=1 R

d
k=1

d d
= hi(zp)d | [ P (21, ... 2a)
d
:H/hk(l‘k)de’“.
k=17R

where the second equality is due to Theorem [9.2(d)| and the last equality
is due to a repeated application of Fubini Theorem. Of course, to apply
Corollary one needs to show that szl hy as a function on R? is Borel

measurable (Exercise . (]
9.7. COROLLARY. Let Xq,..., Xy be independent random variables and

hi : R — [0,00], k = 1,...,d, be Borel measurable functions. If hy(Xy) €
L', then TI¢_, he(Xg) € L' and E[[[¢_, hr(X2)] = T14o, Elhe(Xs)]. If
szl hi(Xx) € L' and each hy(Xy) is not a.s., then hy(Xy) € L' for each
k=1,....d.

ProoF. For integrability, apply Theorem to |hg|; for the second as-
sertion, note that E[|hx(X)|] > 0 for each k. For the asserted equality, apply
E[Hz:1 hE(Xp)] = Hi:l E[h(Xx)] and reassemble the terms according to
hi = h; — h;, and linearity of expectations. U

9.8. COROLLARY. Let X and Y be independent integrable random vari-
ables. Then CoV[X,Y]=0.
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ProOOF. By Corollary (X —pux)(Y —py) = XY —uxY — Xuy +
pxpy € L', so that CoV[X, Y] is well-defined. Moreover,
CoV[X, Y] =E[XY — puxY — Xpy + pxpy]
=E[XY] — uxE[Y] — E[X]py + pxpy]
EIXIE[Y] — pxpy — pxpy + pxpy =0

|
9.9. COROLLARY. Let Xi,...,Xy be independent random wvariables in
L2. Let ay,...,ay be real numbers. Then V[ZZ:1 ap Xy] = Zizl azV[Xy].
PROOF. Write uj, = E[X}]. We have
d d d 9
Vv Z%Xk] =E (Zaka - Z%Mk) ] =E [(Z%(Xk - Mk)) ]
k=1 L k=1
[
=E | ap(Xp — ) + ) ajar(X; — 1) (Xy, — )
| k=1 J#k
d
:Zai [Xk] —I-ZajakCov Zakv Xp]
k=1 JF#k
O

3. Independence of random vectors

The notion of independence can be extended from random variables to

random vectors.

9.10. DEFINITION. Let Xj = (Xg1, Xk2,.. ., Xga,), k= 1,...,m, be
random vectors over (2, F,P). We say that these m random vectors are
independent if for any B, € B%*, k=1,...,m,

m
P(X1€By,...,Xm € Bp) H (X € By).

The following results can be proved similarly.

9.11. PROPOSITION. Let X be a random vector of dimension dy, k =
1,...,m. Let hy : R%* — Rd§€7 k =1,...,m, be any Borel measurable

functions. Then h1(X1), ..., hm(Xnm) are still independent random vectors.

9.12. THEOREM. Let X be a random vector of dimension di, k =

1,...,m. The following are equivalent:
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(a) X1,..., X, are independent;
(b) FXvXm) (g ) = [ FX*(zk) for any zp € R%, k =

1,....,m;
(¢) FXumXm) (g a,,) is the product of m non-negative functions
each of which is a function in x, € R% alone, k=1,...,m;

(d) PXuXm) = TT PX% as measures on (R&k=1% B2k=1k).

9.13. COROLLARY. Let X be a random vector of dimension di, k =
1,...,m.

(a) If they are independent and have PDFs fXk’s then they have a
joint PDF which is given by [[je, fX*;

(b) If they have a joint PDF that is a product of m non-negative func-
tions each of which a function of xy alone, k =1,...,m, then they
are independent.

9.14. THEOREM. Let X be a random vector of dimension di, k =
1,...,m. Then X}’s are independent if and only if E[J[;-; hi(Xk)] =
szl E[hx(X})] for any Borel measurable functions hy : R% — [0, 00],
k=1,...,m.

Finally, we mention the following remark for clarification purposes.

9.15. REMARK. (a) Let X, k=1,...,m, be independent random
vectors of dimension dg, respectively. Then the random variables
in Xy, i.e., X1, Xro, ..., Xpa,, of course may not be independent.
But random variables such as X711, Xo1,..., X1 are independent.
Indeed, in Proposition taking hi(zg1, ..., %Tka,) = Tp1, We
obtain this assertion.

(b) On the other hand, let X, k =1,...,m, j = 1,...,dy, be given
random variables. If X;;’s are independent, then the random vec-
tors X’s are independent too, where X, := (Xg1, Xio, .-, Xkd, ),
k=1,...,m. Indeed, by TheoremKEﬂ7 the CDF of (X1,...,Xm)
is the product of all FXki, k = 1,...,m, j = 1,...,d. Since
Xij, j = 1,...,dy, are also independent (Exercise , by The-
orem @ again, the CDF of X, is the product of FXki, j =
1,...,dg. Thus the CDF of (X1,...,X,,) is the product of the
CDFs FXk k =1,...,m. It follows from Theorem that
X1,...,X,, are independent.
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Exercises

9.1. If Xq,..., X, are independent then any few of them are also inde-
pendent.

9.2. Show that

2 2
1 _ |:(I1*#1) +(12*u2)
/ e 207 203 d(xth)
{(t1,t2)

ity +Hte <z} 210109

T 1 _ (z=py—po)?
:/ S — S S TP
o0 \/27(0] + 03)

1+ =2
Hint: apply the change of variable: o , repackage
To = —=E=w + 2

oito;

. (w—a)2

the terms in the exponent, and use fR \/%U e 2t dw=1for any a € R.
1

9.3. Let Z1,...,Z4 be standard normal distributions. Let a1,...,ar be
real numbers. Determine the distribution of Zgzl apZy,.

9.4. Let hy :R— R, k=1,...,d, be Borel measurable functions. Show
that HZ:1 hy is Borel measurable as a function on RY,

9.5. Prove Proposition Theorem Corollary and Theo-
rem [9. 14l

9.6. Find three random variables X,Y, Z such that they are not inde-
pendent but any two of them are independent.






CHAPTER 10

Law of Large Numbers

This note briefly reviews laws of large numbers, which in a narrow sense
asserts that sample means approximate the population mean as the sample
size gets larger. Several applications of them to statistics will also be dis-
cussed: Monte Carlo methods, Empirical distributions, the Bootstrapping,
and the Moment estimators.

1. Type of convergence

Laws of Large Numbers involve convergence of sequences of random
variables. So far, we have encountered the most important one: almost sure
convergence. Another crucial one is as follows.

10.1. DEFINITION. Let X, X,,n € N random wvariables. We say that
(Xn)nen converges to X in probability, and write X, P X, if for any
e>0,P(|X,—X|>¢e) —0asn— .

Basically, convergence in probability means that, for any given error
bound € > 0, as X,, approaches X, the probability of that the error | X,, — X|

exceed e approaches 0.

10.2. ProprosITION. If X,, — X in norm or a.s., then X,, — X in
probability;

2. Law of Large Numbers

2.1. Weak law of large numbers. The term of weak law refers to
convergence in probability in the context of laws of large numbers. We
decompose the proof of weak law into several short lemmas. The first one

provides a typical way to yield convergence in probability.
10.1. LEMMA. For a sequence (X,) of rvs in L?, if V[X,] — 0, then

X, — E[X,] 25 0.

107
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PROOF. For any € > 0, by Chebyshev’s inequality,

E| 0% —EXD]  vix,)

5 57— — 0.

P(‘Xn ~E[X,)]

>€)§

3 S

O

The second one encourages us to do truncations. Two sequences of Tvs,
(X») and (Y,), are said to be equivalent if Y7 | P(X,, #Y,,) < occ.

10.2. LEMMA. (a) If (Xn) and (Yy,) are equivalent, then L 31| X,
converges a.s. (resp., in probability) if and only if % Y1 Y con-
verges a.s. (resp., in probability). The limits also coincide in the
case of convergence.

(b) Let (X,) a sequence of identically distributed, integrable random
variables. Let Y, = Xy1lyx,|<ny for each n € N. Then (Xn) and

(Y,,) are equivalent.

Proor. ((a)). Assume that (X,) and (Y;) are equivalent. By Borel-
Cantelli Lemma,

P(lim sup{X,, # Yn}) ~0.

Take any w € (lim sup, { X, # Yn})C = liminf,,{X,, = Y,,}. There exists ny,
depending on w, such that for any n > ng, w € {X,, = Y, }, i.e., X, (w) =
Y, (w), implying that

lim % D (Xk(w) = Yi(w)) =0.
k=1

These two observations together give that % > p—q(Xk —Y%) converges to 0
a.s. and thus in probability. The assertions in ((a)|) now follow immediately.

(b)) holds because

O
The nice properties of truncated rvs are contained in the next lemma.

10.3. LEMMA. Let (X,,)nen be a sequence of identically distributed inte-
grable rvs. Let Y, = Xp1yx,|<n) for each n € N. Then
oo
VY,
> s
n

n=1
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Consequently,
1 n
Jm, 2 2, VI =0
k=1
ProOOF. Let F' be the CDF of X,,’s. Then

= V) SREYE &1 [ SN :
= =23 edF(z) = ) — / 2?dF(z)
n=1 . ; n? ;n {lz|<n} ;”2; {k—1<|z|<k}
Sl / 2 = 2 )
= — PdF@) <Y 2 / PAF(x)
1;7122;”2 {k—1<|z|<k} ,;k {k—1<|z|<k}
o0 2 00
S| Held() =23 | AP (z)
;k {k—1<|z|<k} ; {k—1<|z|<K}
=2E[| X|] < o0

The second assertion follows from Kronecker’s Lemma below on convergence
of numbers, whose proof can be found in a mathematical analysis textbook

and we omit. O

LEMMA (Kronecker). Let (z,,)nen be a sequence of real numbers, (ap)neN
4o y y S SR 77)
be a sequence of positive real numbers increasing to co. If > > | ot converges

to a real number, then
1 n
— Z . — 0.
-
We are now ready to present the proof of the weak law of large numbers.

10.3. THEOREM (Weak LLN). Let (X, )nen be a sequence of pairwise
independent, identically distributed, integrable rvs. Then

R o
- Z Xk — p
n
k=1
where p is the mean of X;’s.

Proor. Let Y, = X,lyx,|<n) for each n € N. By Lemma it
suffices to prove that

1 n
"
n Z
k=1
Moreover,

E[Y,] = E[XuL{x, jn] = / 2dF(2) = E[X11y|x, <n] — E[X1] = 4

|z|<n
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by the Dominated Convergence Theorem, where F' is the CDF of X,,’s. Thus
1 n
— E E[Y,] — p.
n
k=1

Therefore, it suffices to prove that

T = > pe1 (Ve — E[YE]) oo
n

Note that Y,,’s are also pairwise independent and thus are uncorrelated.

Hence,
1. 1< 1<
VIT) = S5v| Yo% — )| = = Yo vivi) —o.
k=1 k=1
by Lemmam Thus by Lemmam T, =T, — E[T,] 0. O

2.2. Strong law of large numbers. The term of strong law refers to
a.s. convergence. Again, we split the proof into several lemmas.

10.4. LEMMA. Let (X,,) be a sequence of independent mean-zero rvs in
L?. Put S, = > w1 Xk for each n € N. Then for any e >0 and n € N,

V[Sn]
g2’

P( max |Sk| > 5) <
1<k<n
PRrOOF. For each n € N, set F,, = o(X;:1 <k <mn). Then

E[Sn+1|]:n] = E[Sn + Xn+1|]:n] = Sp + E[Xn+1|fn] = Sn,

where we use the fact that since X, 1; is independent from F,,, E[X,, 1| F,] =
E[X,41] = 0. It follows that {(S,); (F,)} is a martingale, and thus {(S2); (F,)}
is a positive submartingale. Thus by Doob’s maximal inequality,

E[S2] V]S,
P(maX|Sk|>6):P(maxS,%>52)§M: [ ]
1<k<n 1<k<n ) -2

O

10.5. LEMMA. Let (X,,) be a sequence of independent mean-zero rvs in
L%, Suppose that 320 | V[X,,] < oco. Then Y o | X, converges a.s.

PrOOF. For any m € N, take n,, € N such that
o0

1
> VX < —
k=nm+1

For any n’ > n,,, by Lemma we have

1\ _ V[Suy — Sn,
P<nmﬁ§’égnf‘s’“_5”m‘ > E) < [1] =m’ Z VIX;] <

1
2 m?’
m nm+1<k<n’
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Putting
1
Ay ={ max |Sp—S,,.|>—}
k>nm+1 m
and letting n’ — oo above, we have

1
so that )~ P(A;,) < co and thus by Borel-Catenlli Lemma,
P(limsup 4,,) =
m
Now take any w ¢ limsup,,, A,,, there exists some m € N such that w & A,,,
which is equivalent to that [Sg(w)—Sy,, (w)| < & for any k > n,,. Therefore,

2
[Sk(w) = Si(w)l = —,  for any k.1 = np.

This proves that the partial sums of the series )7 ; S, (w) are Cauchy, and
hence the series is convergent. This completes the proof. [l

10.4. THEOREM (Strong LLN). Let (X,)nen be a sequence of indepen-
dent, identically distributed, integrable rvs. Then

where [ is the mean of X;’s.

PROOF. Let Y, = X,1(x,|<n) for each n € N. As in the weak case, it
suffices to prove that

T, = Zk 1( E[Y:]) a8,
n
By Lemmas H and . Yoy Yoz E[Y" converges a.s. By Kronecker’s
Lemma, T}, =3 0. U

3. Monte Carlo Simulations

The SLLN provides a numerical method for computing the expectation
E[X] of a rv via simulations. Recall that a distribution function F': R — R is
an increasing, right-continuous function such that F'(—oo) = 0 and F(0c0) =
1. Recall also that there is a bijection between distribution functions and
probability measures on R via:

u((a,b]) = F(b) - F(a).
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We will call a distribution function F' of interest a (univariate) pop-
ulation. A random sample drawn from the population F' is a sequence
(Xp) of independent rvs all having F' as their CDF. A sample drawn from
the population F is a sequence (z,,) of real numbers, which is a realization
of a random sample (X,,), namely, there exists w such that

xn = Xp(w) for each n.

Suppose that the population mean m := [y x dF(z) is finite. Let (X},)
be a random sample drawn from F. Then E[|X,[] = [g|z|dF(z) < oo, so
that the SLLN is applicable to the sequence (X,,). Thus, for a sample (x,)
drawn from F', the sample means converge to the population mearﬂ

1 n
—Zxk — E[X1] :/ach(ac) =m, asn — oo.
n R
k=1
In reality, the sample drawn from the population is of course a finite se-
quence, say, 1i,T2,...,Ty, where n is called the sample size. When the

size n is large enough, we have the following approximation:
1 n
— E T ~ M.
n
k=1

This algorithm of computing a population parameter using random sampling
is typically referred to as Monte Carlo methods. For example, once we
have a way to generate from F' a sample, also called random numbers in
the context of Monte Carlo methods, we can evaluate the population mean
m by 2 37|z, as above.

Most computational software contain random number generators for
classical distributions, such as uniform distribution and normal distribu-
tions. For example, x = rand(n,1) returns n random numbers from the

uniform distribution on (0, 1):

>> x=rand(10,1)

0.1622
0.7943

INot an accurate assertion, since for any random sample, the convergence may fail on
a set of probability 0. But for all practical purposes, probability-zero events are regarded

as never happening.
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L3112
.5285
.1656
.6020
.2630
.6541
.6892
. 7482

O O O O O O O O

When n is large, we can see that the sample mean %Zzzl x) is indeed
close to the population mean y = | 0,1) xdx = % We simulate 5 samples of
size one million and calculate the respective sample means; all of these five

sample means are close to p = 0.5:

>> y=zeros(5,1);

for k=1:5
x=rand (1000000,1) ;
y(k)=mean(x) ;

end

y

y =
0.5002
0.4999
0.5000
0.5001
0.4998

Of course, we can use the Monte Carlo methods to compute population
parameters other than the mean. Suppose that the population F' has a
finite second moment, i.e., [ 2?dF(z) < co. Let (X,) be a random sample
drawn from F. Then E[X/] 2 fR 22dF(z) < oo, which further implies that

E[|X,|] < oo by the Cauchy—Schwartz inequality. Thus the the SLLN applies
to both (X,,) and (X2), namely,

2 vdF(x 19 2 s pry2) 2dF(x
ZX 2% E[X] = /RdF( ), nkZ:an—>E[X1] /R dF ().
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It follows that for a sample (x,,),

Ly at— (3w’ — e — e - v
k=1 k=1

where the far right term is clearly equal to

V{F] == /Rx2dF(x) - (/RxdF(x))2,

called the population variance. Thus V[F] is evaluated by

1~ 1 ¢ 2 S (xp —T)?
15 (13 - Bl

k=1

for some large enough n; here T := %22:1 xy is the sample mean.

We can use tricks to generate random numbers to compute more sophis-

ticated probabilistic terms. Say, let’s compute the expectation of

2U

N2

where U and Z are independent, U is uniform on (0, 1), and Z is standard

normal. We simulate a sample of size one million for the uniform distribution

and the standard normal, respectively, aggregate them to produce random
numbers for F, where F' is the CDF of X, and then take the new sample

mean:

>> u=rand (1000000,1) ;
z=randn(1000000,1) ;
x=2."u./exp(sqrt(abs(z)));

mean (x)

ans =

0.6736

One can run these codes a few times and will see that the answer is stable

around 0.673.

4. Empirical Distributions

In Statistics, one often draws a histogram of data, which shows “distri-

bution” of the data, to infer the distribution of the population. For example,
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the following codes in Matlab simulate 1000 random numbers from the stan-
dard normal distribution and produces the histogram of these numbers with
50 bins, Figure 1.

>> x=randn(1000,1);

>> histogram(x,50)

ylabel(’Relative frequency in each bin’)

0.03

0.025

0.02

0.015

0.01

Relative frequency in each bin

0.005

One sees that the histogram does demonstrate a shape like the graph of
the density of the standard normal distribution. We now study why this
happens.
In general, suppose that we collect n observations, i.e., a sample of size
n, from the population, which we denote by x1, 2, ..., z,. In the histogram,
one first cuts the z-axis into several bins. Then the histogram captures the
relative frequencies of observations that belong to each bin (aj, b;]:
#{k taj <ap < bj}
- .
We consider the following function F, : R — R defined by

Fo(z) = M’ r€R.

Clearly, F,(x) is the relative frequency of the observations x1,...,z, that
belong to the interval (—oo, z]. In this notation, the relative frequency in a
bin (aj,b;] can be expressed by

E(bj) — Fu(ay).
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Thus, the histogram is produced by the values of F;, at the end points of
the bins.

One can easily see that F,, is an increasing, right continuous function
such that F,,(—oo) = 0 and F),(c0) = 1. That is, F,, is also a distribution
function. It is called the empirical distribution, because it is the distri-
bution of the empirical evidence x1,...,x,. The assertion that histograms
can be used to approximate the population distribution is mathematically
equivalent to that whenever n is large enough, F,(x) is close to F(z) at
every x € R, or

sup|Fn (z) — F(x)| is small, whenever n is large.
z€R

10.5. THEOREM (Central Statistical Theorem). Let (X,,) be a random
sample drawn from the population F. For eachn € N and x € R, put

1 n
k=1

Then
P(limsup]Fn(x) — F(x)| = 0) =1.

n zeR
That is, out a set of probability 0, (Fn(x)) converges to F(x), uniformly in
x.

Clearly, at any realization (z,) of (Xy), the two ways of defining F,,(x)

coincide.

PrOOF. We only provide the proof of the following weaker version. At
every x € R, outside a set of probability, we have F,,(z) — F(x). This is
easy! Fix z € R. Since X,,’s are iid, the random variables 1;x, <,}’s are iid
too. In fact, their common distribution is as follows:

P(l{Xngx} - 1) —P(X, <) = F(z),
and
P(L(x, ) = 0) = P(Xy > ) = 1~ F(a).
Thus by the SLLN,

1 ¢
Fu(z) = D lixi<ay B Ellix <)) = P(X1 < @) = F(a).
k=1

2Note that F, (z) is in fact a rv depending on the random sample.
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The following are histograms with 100 bins of four simulated samples
from the standard normal distribution of sizes 103, 10,105, 105, respectively.
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CHAPTER 14

Conditional Expectation

Setup. Let (2, F,P) be a fixed probability space. Let G be a given
sub-o-algebra of F. Denote by L£(€, F,P) the collection of all integrable
random variables over (2, F,P) (without modulo a.s. equality). Random
variables are real-valued.

1. Definition and Basic Properties

1.1.

14.1. THEOREM. Let X € LY(Q,F,P). Then there erists a random
variable Y such that
(a) Y € £Y(Q, F,P)
(b) Y is G-measurable,
(¢) [L,YdP= [, X dP for any AcG.

The reader may read the Appendix at the end for a proof.

1.2. Suppose Y € LY(Q, F,P) and is G-measurable. Then
Y >0 as <— /YzOforanyAeg.
A

Indeed, if Y > 0 a.s., then Y14 > 0 a.s., so that [, Y = [1,4Y >0
for any A € g[| Conversely, suppose [ 4Y >0 for any A € G. Since YV
is G-measurable, {Y < 0} € G, so that by assumption, 0 < f{Y<0}Y =
JLv<oyY = [ =Y, where the last equality follows from the identity
1iy<o}Y = =Y. Therefore, [ Y~ <0, and thus [ Y~ = 0. Since Y~ >0,
we have Y~ =0 a.s.E] implying that Y > 0 a.s.

1Use the fact: over (Q, F,P), if X; > X, a.s., then J X1 > [ Xo, as long as both
integrals are well-defined.
2Use the fact: over (Q,F,P),if X >0 as., then X =0 as. iff [X =0.

125
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1.3. Suppose Y, Z € L1(Q, F,P) and Y, Z are G-measurable. Then

Y > 7 as. <— /YZ/ZforanyAeg.
A A

Y=7as < /Y:/ZforanyAeg.
A A

1.4. Any random variable Y satisfying the three conditions in Theo-
rem is called a wversion of conditional expectation of X with respect to
Gg. By any two versions of conditional expectation of X with respect to
G are a.s. equal. For convenience, we now take any such a version and call it
the conditional expectation of X with respect to G, and write it as E[X|G].
Note that E[X|G] is just one version among all the versions.

We first deal with equalities regarding conditional expectations.

1.5. If X € £(Q, F,P) is G-measurable, then E[X|G] = X a.s.
For X itself satisfies the three conditions in Theorem [I4.1] and is thus a
version of conditional expectation of X.

1.6. Let X ¢ El(Q,}', P) and G; C Gy be two sub-o-algebras of F.
Then
E[E[X|g1]‘g2} = E[X|G1] = E[E[X|g2]‘gl] a.s..
Since E[X|G1] is Gi-, and thus Ga-, measurable, the first equality follows
from For the second one, note first that E[E[X|g2] gl} € LYQ,F,P)
and is Gi-measurable. Moreover, for any A € G,

[ Eferxialla)] = [ erxig = [ x

where the first equality follows from definition of E[-|Gi] and the second
one follows from definition of E[-|G2] and the fact that A € Gs. Thus
E[E[X |g2]‘g1] is also a version of conditional expectation of X wrt Gi, so

that E[E[X\gﬂ‘gl} — E[X|G1] as.

1.7. Let X1, X2 € £L(9, F,P) and ¢,d € R. Then,
E[CXl + dX2|g] = CE[X1|g] + dE[X2|g] a.s.

Indeed, clearly, cE[X;|G] + dE[X2|G] € £1(Q, F,P) and is G-measurable.
Moreover, for any A € G,

/A<cE[X1|Q]+dE[X2|Q]> :cAE[X1|Q]+dAE[X2|Q] :c/AXl—Fd/AXQ

:/ (X1 + dXa).
A
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We now deal with two simple inequalities regarding conditional expec-
tations.

1.8. Let X,Y € £Y(Q,F,P) be such that Y is G-measurable. By
and definition of conditional expectation,

E[X|G] > Y as. — /Xz/onranyAeg.
A A

1.9. Let X, X, € £YQ,F,P) and X; > X5 a.s. Then by [1.3] and
definition of conditional expectation,

E[Xl‘g] Z E[X2|g] a.S.

2. Jensen’s inequality

2.1. Conditional form.

14.2. THEOREM. Let X € LY(Q, F,P). Let ® : R — R be a convex
function such that ®(X) € LY(Q, F, P)E| Then

P (E[X|G]) < E[®(X)|G] a.s.

PrOOF. We use the fact that there exist at most countably many lines
ln(x) = apz+by, such that ®(x) = sup,, l,,(z) for any x € RE| For any n € N,
since ®(X) > 1,(X),

E[®(X)|G] > E[l.(X)|G] = I.(E[X]|G]) as.

Let 4, = {E[8(X)|6] < L (E[X|G])}. Then P(UnA,) = o For any
w € A, we have

E[2(X)[0](w) > supl, (ELX|0]() ) = @ (ELX|G](w)).
(]

3Note that @ is continuous and thus ®(X) is F-measurable. Similarly, ®(E[X|G]) is
G-measurable.

Aput & (y) = sup, g (zy—®(x)) for any y € R. Recall that ®(z) = sup, g (zy—2*(y))
for any z € R. Note that ®*, possibly taking oo, is convex on R. Thus [ := {y €eR:
D (y) < oo} is a convex set in R, and is thus an interval if not a singleton. Write
I = (a,b) UE where E consists of possible endpoints of (a, b) that lie in I. Let {yn }»>1 be
a countable set that contains E and a dense subset of (a,b). Since ® is convex and finite on
(a,b), it is continuous there. One can now easily verify that ®(z) = sup,,>; (zyn — 2" (yn))-
The desired lines are given by ln(z) = zyn — ®* (yn).

5This is why we insist on at most countably many lines.
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2.2. Unconditional form. Putting G = {, 2} in the previous theo-

rem, one obtains the unconditional form of Jensen’s inequality:
P(E[X]) < E[®(X)].

2.3. Let 1 <p < oo. Let ®(t) = [t[’. Then ® is convepﬂ so that
1
Ex19)|" < E[IXP|g), implying [E[X|G]] < (E[|X[?|G])7. Replacing X

with |X|, one has

1
(14.1) E[Ix1|g] < (E[IXP|9])".
1
e[1x1) < (E[IXP])".
Taking the expectation of the p-th power of both sides of , we have

Jenxiel], < (e[etxriar])” = xp)? = 1x,

3. Convergence theorems

3.1. Conditional MCT. Suppose0 < X,, T X a.s.and X € £L1(Q, F,P).
Then
E[X,|G] T E[X|]] a.s.
Indeed, let Y = sup, E[X,|G]. Then Y is G-measurable. Put A =
Un{E[X,11|0] < E[X,|G]}. Then P(A) = 0, and E[X,|G] 1 Y on A°, so
that by the unconditional MCT,

/Y:liTILn/E[Xn|Q] znqgn/X :/X:/E[Xg].

Put B = Up{E[X,|G] > E[X|G]}. Then P(B) = 0, and E[X,|G] < E[X]|G]
on B for each n, so that Y < E[X|G] outside B. It follows that ¥ = E[X|J]
a.s[]

3.2. Conditional Fatou. Suppose X,, > 0 a.s. and X,, € L1(Q, F,P)
for each n € N. Then

E[lim inf X,|G] < lim inf E[X,,|G] a.s.
3.3. Conditional DCT. Suppose X, X as. Suppose| X,,| < X a.s.
for all n € N and some Xo € £}(, F,P). Then
E[X,|G] — E[X|G] a.s. and in L}(Q, F,P).

6Use the fact: if ' exists everywhere and is increasing, then ® is convex.
TUse the fact: if X1 < X5 a.s. and le = sz € R, then X1 = X3 a.s.
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3.4. Let X,Y € L£LY(Q,F,P) be such that Y is G-measurable. Then
XY € £Y(Q, F,P) iff YE[|X||G] € £L}(Q2, F,P). In this case,

(14.2) E[XY|G] = YE[X|F] a.s.
Indeed, by splitting X = X+ — X~ and Y = Y™ — Y ~, one may assume
that X,V > 0.
Suppose first that XY € £1(Q, F,P). Pick any A € G. For any B € G,
/ E[X14|G] = / 1. X=] x=[ EX[g = / 14E[X]9],
B B B

ANB ANB
where the third equality is due to AN B € G. Thus E[X14|G] = 14E[X]|]]
a.s., that is, holds when Y = 14. Thus it also holds when Y is
G-simple. Now since Y is G-measurable, we can take a sequence (Y;) of
G-simple functions such that 0 < Y,, T Y, so that 0 < XY, 1 XY. By
Conditional MCT,

E[XY|G] = lim E[XY,|G] = lim Y, E[X|G] = YE[X]|G] a.s.

In particular, YE[X IG] € £1(Q, F,P). Conversely, assume that YE[X|G] €
LY(Q, F,P). Let (Y,,) be as before. Then by the unconditional MCT,

/YEX|Q —hm/YEXQ —hm/ (XY, |G] —hm/XYn—/XY

so that XY € LY(Q, F,P).

3.5. Let X,Y € £YQ,F,P). Then XE[|Y||G] € LY(Q, F,P)iff E[| X||GIE[|Y]|G] €
L£Y(Q, F,P)iff YE[|X||G] € LY(Q, F,P). In this case,

E[XE[Y|Q]} - E[YE[X|Q]] - E[E[X|g]E[ng]]
Indeed, by [3.4]

/XE[ng] _ /E[XE[Y]Q]‘Q] _ /E[X\Q]E[Y\g].

For brevity, it is conventional to suppress the explicit indication

Of “a s 2

when dealing with conditional expectations; for example,
one may drop all the “a.s.” in the previous sections. But the
reader should be aware of its existence, particularly when possible

ambiguity arises and such suppression is inappropriate.
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A. Outer measures

To be specific, the process will construct an outer measure from the

pre-measure and then construct a measure from the outer measure:

Pre-measure

|

Outer measure

l

Measure

B. Open sets

131



	Notation and Terminology
	Chapter 1. Measurable Sets
	Chapter 2. Measures
	Chapter 3. Lebesgue-Stieltjes Measures
	Chapter 4. Random Variables
	Chapter 5. Expectations I
	Chapter 6. Expectations II
	Chapter 7. Product Measures
	Chapter 8. Distributions
	Chapter 9. Independence
	Chapter 10. Law of Large Numbers
	Chapter 11. Characteristic Functions
	Chapter 12. Central Limit Theorem
	Chapter 13. Conditional Distribution
	Chapter 14. Conditional Expectation
	

