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Notation and Terminology

1. Numbers

2. Sets

3. Functions

union over empty index

sum over empty index

if fn ↑ f then {fn > c} ↑ {f > c}
expand sets for measurable functions

convergence, Cauchy

0.1. Show that (X+Y )− ≤ X−+Y −.(X+Y )+ ≤ X+ +Y +. If X ≤ Y ,

then X+ ≤ Y + and X− ≥ Y −.

0.1. Example. A monotone function has at most countable discontinu-

ity.
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CHAPTER 1

Measurable Sets

At any given time point, we are interested in knowing what the future

will be at a later time point. But the future is full of uncertainties: tomorrow

it may rain or may not rain; the lottery ticket you are buying now may win

or may not win. Just like flipping a coin, we will not know which scenario

would eventually become true, until the coin has been flipped. Thus, in the

presence of uncertainties, instead of asking what the future will be, we shall

ask what are the possible scenarios and what are their chances to become

true in the future. This leads us to the realm of Probability Theory. Modern

Probability Theory is built over a triple (Ω,F ,P), where Ω is the collection

of all possible scenarios for the future, F collects all the events that are

of interest, and P tells the probability of each event in F . We start with

exploring F in this chapter.

1. Definition and basic properties

Suppose that we are going to conduct an experiment of flipping a coin

three times. We use H and T to denote head and tail, respectively. Then we

are facing eight possible outcomes in the future: HHH, HHT, HTH,HTT,

THH,THT,TTH,TTT. We collect them together and denote it by a set

Ω :=
{
HHH,HHT,HTH,HTT, THH, THT, TTH, TTT

}
.(1.1)

Consider the event that the first flip is H. It means precisely that if we

have conducted the experiment, then our final outcome would be one of the

following four: HHH, HHT, HTH,HTT. We may thus use the set

FH :=
{
HHH,HHT,HTH,HTT

}
to denote the event that the first flip is H. Other events can be similarly

identified as subsets of Ω as well. For example, we identify the event that

the second flip is H with the set SH := {HHT,HHH,THH, THT}.
Given that we use subsets of Ω to denote events, how do we formulate

the occurrence of an event mathematically? Say, we have conducted the

experiment of flipping the coin three times, and the final outcome is ω

3



4 1. MEASURABLE SETS

(which of course is an element in Ω). The event that the first flip is H has

occurred means precisely that the realized outcome ω is one of the four:

HHH, HHT, HTH,HTT. Thus the event FH occurs at a realization ω iff

ω ∈ FH .

Let’s now consider the collection of all interesting events. Say, suppose

that, for some reasons, we care about only the first two flips. Take any event

E in the collection of interesting events. At an arbitrary realization ω, E

occurs iff ω ∈ E iff ω 6∈ Ec iff Ec does not occur. That is, Ec is the contrary

of E. Intuitively, we shall care about the contrary of an interesting event.

Thus Ec should also be included in our collection of interesting events. For

example, if E = SH , then its complement ST := {HTH,HTT, TTH, TTT}
is the event that the second flip is T, which is of course interesting. We may

also look at multiple interesting events together. Let’s take two interesting

events E and F . At an arbitrary realization ω, the intersection E∩F occurs

iff ω ∈ E ∩ F iff ω ∈ E and ω ∈ F iff both E and F occur. Intuitively,

we shall care about the simultaneous occurrence of two interesting events.

Thus E ∩ F should lie in our collection of interesting events as well. For

example, for the event FH that the first flip is T and the event ST that the

second flip is T, the intersection FH ∩ ST = {HTH,HTT} is precisely the

event that the first flip is H and the second flip is T, which is again obviously

interesting to us as we care about the first two flips.

The above discussions motivate us to conclude that our collection of

interesting events should be closed under taking complementation and in-

tersection. This leads us to the following notion.

1.1. Definition. Let Ω be a non-empty set. Let F be a collection of

subsets of Ω. We say that F is a σ-algebra over Ω if it satisfies the following

conditions:

(a) F has at least one member;

(b) if E ∈ F , then Ec ∈ F
(c) if (En)n∈N is a sequence in F , then

⋂∞
n=1En ∈ F .

Members in F are also called F-measurable sets, or simply, mea-

surable sets if there is no ambiguity about the σ-algebra in question. In

probabilistic terms, Ω is usually called the sample space and members in

F are called events.
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Condition (c) means that if we are interested in any given countably in-

finite many events, then we are interested in their simultaneous occurrence.

A quick observation regarding this condition is the following.

1.2. Proposition. Assuming Conditions (a) and (b) in Definition 1.1,

Condition (c) is equivalent to the following:

(c’) if (En)n∈N is a sequence in F , then
⋃∞
n=1En ∈ F .

Proof. Assume that Conditions (a) and (b) are satisfied by F . The

proof is a simple application of De Morgan’s Laws.

Suppose first that (c) is satisfied by F . Take any sequence (En)n∈N in

F . Then Ec
n ∈ F for each n ∈ N by Condition (b). Thus

⋂∞
n=1E

c
n ∈ F by

(c). It follows from Condition (b) again that

∞⋃
n=1

En =
( ∞⋂
n=1

Ec
n

)c
∈ F .

This proves that (c) =⇒ (c’). The reverse implication (c’) =⇒ (c) can be

proved similarly by noticing
⋂∞
n=1En = (

⋃∞
n=1E

c
n)c. �

Some other basic properties of σ-algebras are listed below.

1.3. Proposition. Let F be a σ-algebra over Ω. The following hold.

(a) ∅,Ω ∈ F ;

(b) If E1, . . . , En ∈ F , then
⋂n
k=1Ek ∈ F ;

(c) If E1, . . . , En ∈ F , then
⋃n
k=1Ek ∈ F ;

(d) If E,F ∈ F , then E \ F ∈ F .

Proof. (a). By Definition 1.1 (a), F has at least one member, say, E.

Then by Definition 1.1 (b), Ec ∈ F . Consider the sequence Ec, E,E, . . .

in F . Clearly, the intersection is ∅ and lies in F by Definition 1.1 (c); the

union is Ω and lies in F by Proposition 1.2.

(b). Suppose E1, . . . , En ∈ F . Put Ek = Ω for each k ≥ n + 1. Then⋂n
k=1Ek =

⋂∞
k=1Ek ∈ F by Definition 1.1 (c). (c) can be proved similarly

by setting Ek = ∅ for each k ≥ n+ 1 and using Proposition 1.2.

(d). Suppose E,F ∈ F . Then F c ∈ F by Definition 1.1 (b), and thus

E \ F = E ∩ F c ∈ F by (b) that we have just proved. �

1.1. Example. Let Ω be given in (1.1). Then {∅,Ω, FH , FT } is a σ-

algebra over Ω.

1.2. Example. Let Ω be any non-empty set. Its power set P(Ω) is a

σ-algebra over Ω.
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2. Generated σ-algebras

Sometimes we start with a collection of interesting events that is not a

σ-algebra yet. In this case, we find the “smallest” σ-algebra enveloping it.

1.3. Example. Let Ω be given in (1.1). Consider the collection C =

{FH , ST }. Suppose F is a σ-algebra and C ⊂ F .

The events in C involves only the first two flips.

By Definition 1.1 (b), clearly FT , SH ∈ F . Thus all the possible events

resulting from the first flip, FH and FT , lie in F , and also all the possible

events resulting from the second flip, SH and ST , lie in F . Using them, we

conclude that all the “building-blocks” events from the first two flips all lie

in F :

(a) FH ∩ SH = {HHH,HHT}; the first two flips are both H;

(b) FH ∩ ST = {HTH,HTT}; the first flip is H and the second flip is

T;

(c) FT ∩ SH = {THH,THT}; the first flip is T and the second flip is

H;

(d) FT ∩ ST = {TTH, TTT}; the first two flips are both T.

We can now produce all other events that must lie in F by taking unions

of these “building blocks”. Precisely,

(a) taking union of no building blocks yields ∅;
(b) taking union of exactly one building block yields the four building

blocks;

(c) taking union of exactly two building blocks yield

(FH ∩ SH) ∪ (FH ∩ ST ) = FH ,

(FT ∩ SH) ∪ (FT ∩ ST ) = FT ,

(FH ∩ SH) ∪ (FT ∩ SH) = SH ,

(FH ∩ ST ) ∪ (FT ∩ ST ) = ST ,

(FH ∩ SH) ∪ (FT ∩ ST ),

(FH ∩ ST ) ∪ (FT ∩ SH);

(d) taking union of exactly three building blocks yield

(FH ∩ SH) ∪ (FH ∩ ST ) ∪ (FT ∩ SH),

(FH ∩ SH) ∪ (FH ∩ ST ) ∪ (FT ∩ ST ),

(FH ∩ SH) ∪ (FT ∩ SH) ∪ (FT ∩ ST ),

(FH ∩ ST ) ∪ (FT ∩ SH) ∪ (FT ∩ ST );

(e) taking union of exactly four building blocks yield

Ω.
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Denote by σ(C) the collection of all the sixteen events above. One sees

that it is a σ-algebra containing C as a subset. On the other hand, σ(C) is

the smallest σ-algebra containing C as a subset, in the sense that if F is any

other σ-algebra containing C as a subset, then σ(C) ⊂ F .

In general, for any non-empty collection C of subsets of Ω, we can find

the smallest σ-algebra enveloping it. Recall first that there is at least one

σ-algebra containing C as a subset: P(Ω).

1.4. Proposition. Let C be a non-empty collection of subsets of Ω. Let

{Fλ}λ∈Λ be the collection of all σ-algebras over Ω containing C as a subset.

Put

σ(C) :=
⋂
λ∈Λ

Fλ.

Then σ(C) is a σ-algebra over Ω containing C as a subset. Moreover, if F
is any σ-algebra over Ω containing C as a subset, then σ(C) ⊂ F .

Proof. By Proposition 1.3, ∅ ∈ Fλ for each λ ∈ Λ, so that ∅ ∈⋂
λ∈ΛFλ = σ(C). Thus Condition (a) in Definition 1.1 is verified.

Take any set E ∈ σ(C). Then for any λ ∈ Λ, E ∈ Fλ, and since Fλ is a σ-

algebra, Ec ∈ Fλ as well. It follows that Ec ∈ ⋂λ∈ΛFλ. Thus Condition (b)

in Definition 1.1 is verified.

Let (En)n∈N be a sequence in σ(C) =
⋂
λ∈ΛFλ. Then for each n ∈ N

and Λ ∈ Λ, En ∈ Fλ. Since Fλ is a σ-algebra,
⋂∞
n=1En ∈ Fλ for each λ ∈ Λ.

Thus
⋂∞
n=1En ∈

⋂
λ∈ΛFλ, and Condition (c) in Definition 1.1 is verified.

Finally, if F is any σ-algebra containing C as a subset, then F = Fλ0 for

some λ0 ∈ Λ. Thus σ(C) =
⋂
λ∈ΛFλ ⊂ Fλ0 = F . �

From now on, we call σ(C) the σ-algebra generated by C. The mem-

bers of C are called generators of σ(C).

1.5. Remark. The last assertion in Proposition 1.4 shall be read as

follows: in order for a σ-algebra F to contain a generated σ-algebra G as a

subset, it is enough to ensure that F contains all the generators of G.

We are ready to introduce special σ-algebras over Rd.

1.4. Example. The following hold.

σ({(a, b] : a, b ∈ R, a < b})
=σ({(−∞, a] : a ∈ R})
=σ({[a, b] : a, b ∈ R, a < b}).
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Let’s denote the σ-algebras by F1,F2,F3, respectively. For any a, b ∈ R

with a < b,

(a, b] = (−∞, b]\(−∞, a] ∈ F2.

Thus F2 contains all the generators of F1, and by Remark 1.5,

F2 ⊃ F1.

Similarly, for any a ∈ R,

(−∞, a] =
⋃
n∈N

[a− n, a] ∈ F3,

so that F3 contains all the generators of F2, and

F3 ⊃ F2.

For any a, b ∈ R with a < b,

[a, b] =
⋂
n∈N

(
a− 1

n
, b
]
∈ F1,

so that F1 contains all the generators of F3, and

F1 ⊃ F3.

Combining the above, we get the desired equalities.

1.6. Definition. We denote the σ-algebra in the preceding example by

B and call it the (one-dimensional) Borel algebra. Every element in B is

called a Borel set.

See Exercise 1.4 for more equivalent characterizations of B.

1.5. Example. The following hold.

(a) {a} ∈ B for any a ∈ R. Indeed, {a} =
⋂
n∈N

(
a− 1

n , a] ∈ B.

(b) If A is a finite or countably infinite subset of R, then A ∈ B. Indeed,

A can be expressed as a finite union or a countably infinite union

of singletons; apply Propositions 1.2 and 1.3.

The higher-dimensional Borel algebras can be defined similarly.

1.7. Definition. Let d ∈ N. We denote by Bd the σ-algebra generated

by the collection of all bounded, left-open, right closed cubes
∏d
k=1(ak, bk],

where ak, bk ∈ R and ak < bk, k = 1, . . . , d, and call it the d-dimensional

Borel algebra. Elements in Bd are also called Borel sets.
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1.6. Example. The following hold.

Bd = σ
({ d∏

k=1

(−∞, ak] : ak ∈ R, k = 1, . . . , d
})
.

We can argue similarly as in Example 1.4; the reader may take d = 2

and draw graphs to see the arguments below visually. Denote the σ-algebra

in the right hand side by F . Let ak ∈ R, k = 1, . . . , d, be arbitrary. Note

that

d∏
k=1

(−∞, ak] =
⋃
n∈N

( d∏
k=1

(ak − n, ak]
)
∈ Bd.

Thus by Remark 1.5 again,

Bd ⊃ F .

For the reverse inclusion, we work coordinate by coordinate. Let ak, bk ∈
R with ak < bk, k = 1, . . . , d, be arbitrary. Then

(a1, b1]×
d∏

k=2

(−∞, bk] =
( d∏
k=1

(−∞, bk]
)\((−∞, a1]×

d∏
k=2

(−∞, bk]
)
∈ F .

Thus

2∏
k=1

(ak, bk]×
d∏

k=3

(−∞, bk]

=
(

(a1, b1]×
d∏

k=2

(−∞, bk]
)\((a1, b1]× (−∞.a2]×

d∏
k=3

(−∞, bk]
)
∈ F .

Repeating this process, one gets that

d∏
k=1

(ak, bk] ∈ F .

Therefore, by Remark 1.5,

Bd ⊂ F .

Combining the above, we get the desired equality.

See Exercise 1.5 for more equivalent characterizations of Bd.
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3. Monotone class theorem

It is generally extremely difficult to figure out all the elements in a

generated σ-algebra. A general approach to get around this difficulty is to

study another collection of subsets of Ω that contains the generators of the

σ-algebra in question but satisfies some other properties and then compare

this collection with the generated σ-algebra. We present a monotone class

theorem in this spirit. It will be used later a few times.

To this end, we introduce two new notions.

1.8. Definition. A non-empty collection P of subsets of Ω is called a

π-system over Ω if E ∩ F ∈ P whenever E,F ∈ P.

π-systems usually have relatively simpler structures.

1.7. Example. The following collections of generators for the Borel al-

gebra Bd are both π-systems.

P1 ={∅} ∪
{ d∏
k=1

(ak, bk] : ak, bk ∈ R, ak < bk, k = 1, . . . , d
}
,

P2 =
{ d∏
k=1

(−∞, ak] : ak ∈ R, k = 1, . . . , d
}
.

1.9. Definition. A collection D of subsets of Ω is called a λ-system

or Dynkin system over Ω if it satisfies the following conditions:

(a) ∅ ∈ D;

(b) Ec ∈ D whenever E ∈ D;

(c)
⋃
n∈NEn ∈ D whenever (En)n∈N is a disjoint sequence in D.

The definition of λ-systems only “slightly” differs from that of σ-algebras

in the third condition. A σ-algebra is obviously a λ-system but a λ-system

need not be a σ-algebra (Exercise 1.12).

The monotone class theorem is stated as follows.

1.10. Theorem. Let P be a π-system over Ω and D be a λ-system over

Ω such that P ⊂ D. Then σ(P) ⊂ D.

For the proof, we need to exploit the notion of generated λ-systems.

1.1. Lemma. Let C be a non-empty collection of subsets of Ω. Let

{Dλ}λ∈Λ be the collection of all λ-systems over Ω containing C as a sub-

set. Then

D(C) :=
⋂
λ∈Λ

Dλ
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is a λ-system over Ω containing C as a subset. Moreover, if D is any λ-

system over Ω containing C as a subset, then D(C) ⊂ D.

Its proof is straightforward verification and is similar to that of Propo-

sition 1.4. We leave it to the reader (Exercise 1.9).

Proof of Theorem 1.10. We begin with a few deductions to simpler

assertions. First, by the minimality of generated λ-systems, D(P) ⊂ D.

Thus it suffices to prove that

σ(P) ⊂ D(P).

Second, since P ⊂ D(P), by the minimality of generated σ-algebras it is

enough to show that D(P) is a σ-algebra. Finally, note that a λ-system

that is also a π-system is a σ-algebra (Exercise 1.7). Thus it only remains

to be shown that the generated λ-system D(P) is also a π-system.

Consider the collection of all sets whose intersections with every member

in D(P) remain in D(P):

D1 :=
{
E ⊂ Ω : E ∩D ∈ D(P) for every D ∈ D(P)

}
.

Then D(P) being a π-system is clearly equivalent to D(P) ⊂ D1. Using the

minimality of generated λ-systems again, we only need to show the following

two assertions:

(a) P ⊂ D1;

(b) D1 is a λ-system.

We start with verifying the second assertion. By Definition 1.9 (a), ∅∩D =

∅ ∈ D(P) for any D ∈ D(P). Thus ∅ ∈ D1. Next, take any E ∈ D1 and

any D ∈ D(P). Then E ∩D ∈ D(P) by Definition of D1, and Dc ∈ D(P)

by Definition 1.9 (b). Consider the disjoint sequence E ∩D,Dc, ∅, ∅, . . . in

D(P). By Definition 1.9 (c), their union, which is (E∩D)∪Dc, lies in D(P).

Thus by Definition 1.9 (b) again,

Ec ∩D =
(
(E ∩D) ∪Dc

)c ∈ D(P).

It follows that Ec ∈ D1. Finally, let (En)n∈N be a disjoint sequence in D1.

Then for any D ∈ D(P), (En ∩ D)n∈N is a disjoint sequence in D(P). By

Definition 1.9 (c), ( ∞⋃
n=1

En

)
∩D =

∞⋃
n=1

(En ∩D) ∈ D(P).

It follows that
⋃∞
n=1En ∈ D1, completing the proof of the second assertion.
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The first assertion cannot be verified directly. Instead, consider the

following collection:

D2 :=
{
E ⊂ Ω : E ∩ P ∈ D(P) for every P ∈ P

}
.

Since P is a π-system, it is easy to see that P ⊂ D2. Along the same lines

as for D1, one also sees that D2 is a λ-system. Therefore, D(P) ⊂ D2. That

is, for any D ∈ D(P), D ∩ P ∈ D(P) for every P ∈ P. This can be restated

as: for any P ∈ P, P ∩ D ∈ D(P) for every D ∈ D(P). Hence, if P ∈ P,

then P ∈ D1. The proves the first assertion and hence the theorem. �

This theorem is also called Dynkin’s π-λ Theorem.

Exercises

1.1. Let F be a σ-algebra over a set Ω and E be a non-empty set in F .

Then

F|E := {F : F ∈ F , F ⊂ E}

is a σ-algebra over E. Note that the universal set for F|E is E, not Ω.

1.2. Let Ω be as in (1.1). Let TH be the event that the third flip is H.

Show that P(Ω) = σ({FH , SH , TH}).

1.3. Let Ω be a non-empty set. Let {An}n∈N be a given partition of Ω,

i.e., Ω = ∪n∈NAn and Aj ∩Ak = ∅ for any distinct j, k in N. Show that

σ
(
{An}n∈N

)
=
{ ⋃
j∈J

Aj : J ⊂ N
}
.

1.4. Show that

B =σ({(a,∞) : a ∈ R}) = σ({[a,∞) : a ∈ R})
=σ({(−∞, a) : a ∈ R}) = σ({[a, b) : a, b ∈ R, a < b}).
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1.5. Show that

Bd =σ
({ d∏

k=1

(−∞, ak) : ak ∈ R, k = 1, . . . , d
})

=σ
({ d∏

k=1

(ak,∞) : ak ∈ R, k = 1, . . . , d
})

=σ
({ d∏

k=1

(ak, bk) : ak, bk ∈ R, ak < bk, k = 1, . . . , d
})

=σ
({ d∏

k=1

(ak, bk) : ak, bk ∈ R, ak < bk, k = 1, . . . , d
})
.

1.6. Let C be a collection of subsets of Ω such that Ω ∈ C. Show that C
is a λ-system over Ω iff both of the following hold:

(a) if E,F ∈ C and E ⊂ F , then F \ E ∈ C;
(b) if (En)n∈N is an increasing sequence in C, then limnEn ∈ C.

1.7. Show that if a collection C of subsets of Ω is both a π-system and

a λ-system, then it is a σ-algebra.

1.8. Let D be a λ-system. Show that if (En)n∈N is a monotone sequence

in D then limnEn ∈ D.

1.9. Prove Lemma 1.1.

1.10. Show that in the proof of Theorem 1.10, D1 = D(P).

1.11. Let P be a π-system over Ω. Show that σ(P) = D(P).

1.12. Construct a λ-system that is not a σ-algebra.





CHAPTER 2

Measures

In the previous chapter, we study the collections of interesting events.

In this chapter, we study the probability of their occurrence.

1. Definitions and examples

We begin with the definition of measures. In order to gather intuition

for them, one may interpret it as “length”, “area”, or “weight” of objects.

2.1. Definition. Let F be a σ-algebra over Ω. A mapping µ : F →
[0,∞] is a measure on (Ω,F) if it satisfies the following two conditions:

(a) µ(∅) = 0;

(b) for any disjoint sequence (En)n∈N in F ,

µ
( ⋃
n∈N

En

)
=
∞∑
n=1

µ(En).

We will call the triple (Ω,F , µ) a measure space . We may also simply

say that µ is a measure on Ω if there is no doubt about F in the context.

Condition (b) is referred to as countable additivity of µ. Intuitively, it

can be interpreted as that the total area of countably infinite non-overlapping

regions equals the sum of the areas of all the sub-regions.

We first look at several illustrative but elementary examples; most im-

portant ones will be constructed in Chapter 3.

2.1. Example. Let Ω = {HH,HT, TH, TT} and F = P(Ω). Set

µ({HH}) = µ({HT}) = µ({TH}) = µ({TT}) =
1

4
.

For an arbitrary set E ⊂ Ω, set

µ(E) :=
∑
ω∈E

µ({ω}).

For example, µ({HH,HT, TH}) = µ({HH}) + µ({HT}) + µ({TH}) = 3
4 .

One can verify that µ is a measure over (Ω,F).

15
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This example can be extended to much more general cases.

2.2. Example. Let Ω be an arbitrary non-empty set, and F = P(Ω).

Suppose that for each ω ∈ Ω, there corresponds a real number pω ≥ 0, called

the weight at ω. For each set E ⊂ Ω, put

µ(E) :=
∑
ω∈Ω

pω.(2.1)

Then µ(E) is the “total weight” of the elements in E. Again, it is easy to

see that µ is a measure on (Ω,F).

If pω = 1 for any ω ∈ Ω, then µ is called the counting measure on Ω,

as it simply counts the number of elements in a set. In this spirit, we may

term the general measure µ in (2.1) as the weighted counting measure

on Ω with weights (pω)ω∈Ω.

2.3. Example. Let Ω be a non-empty set, and fix any ω0 ∈ Ω. Choose

the weights by pω0 = 1 and pω = 0 for any ω 6= ω0. Then the weighted

counting measure satisfies the following

µ(E) =

1, if ω0 ∈ E
0, if ω0 6∈ E

.

In particular, µ({ω0}) = 1 and µ(Ω \ {ω0}) = 0. Thus µ concentrates all its

mass, which is of size 1, at the single point ω0. We give it a special notation

δω0 and call it the Dirac measure at ω0.

We now introduce probability spaces.

2.2. Definition. Let µ be a measure on (Ω,F).

(a) It is called a probability measure if µ(Ω) = 1. In this case,

the triple (Ω,F , µ) is called a probability space. From now on,

probability measures will be denoted by P or Q, with or without

subscripts.

(b) It is said to be finite if µ(Ω) <∞.

(c) It is said to be σ-finite if there exists a sequence (En)n∈N in F
such that Ω =

⋃
n∈NEn and µ(En) <∞ for each n ∈ N.

2.4. Example. Let Ω be an uncountable set. Then the counting measure

on Ω is not σ-finite. Indeed, otherwise, Ω can be expressed as a countable

union of sets, each of which is finite. This would imply that Ω is countable.

2.5. Example. Let Ω = N, and let µ be any weighted counting measure

on N. Then µ is σ-finite. Indeed, simply note that N =
⋃
n∈N{n}.
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2.6. Example. Let Ω = N, and let µ be the weighted counting measure

for given weights (pk)k∈N. Then µ is finite iff
∑∞

k=1 pk < ∞, and µ is a

probability measure iff
∑∞

k=1 pk = 1. Indeed, simply note that

µ(N) =
∞∑
k=1

pk.

In particular, Dirac measures are probability measures.

The following example says that taking convex combinations of proba-

bility measures still results in a probability measure.

2.7. Example. Let F be a σ-algebra over Ω, (Pk)k∈N be a sequence of

probability measures on (Ω,F), and (ck)k∈N be a sequence of non-negative

real numbers such that
∑∞

k=1 ck = 1. Put

P(E) =
∞∑
k=1

ckPk(E) for every E ∈ F .

Clearly, P(∅) =
∑∞

k=1 ck · 0 = 0, and P(Ω) =
∑∞

k=1 ck · 1 = 1. Let (En) be a

disjoint sequence in F . Then

P
( ∞⋃
n=1

En

)
=

∞∑
k=1

ckPk
( ∞⋃
n=1

En

)
=

∞∑
k=1

ck

( ∞∑
n=1

Pk(En)
)

=
∞∑
k=1

( ∞∑
n=1

ckPk(En)
)

=
∞∑
n=1

( ∞∑
k=1

ckPk(En)
)

=

∞∑
n=1

P(En),

where the second equality follows from countable additivity of Pk and the

fourth one is due to changing order of summation, which is always true

for double sums with non-negative terms. It follows that P is a probability

measure on (Ω,F). We usually rewrite P as
∑∞

k=1 ckPk.

A special case of the preceding example is as follows.

2.8. Example. Let (xk)k∈N be a sequence of distinct real numbers and

(ck)k∈N be a sequence of positive real numbers such that
∑∞

k=1 ck = 1. Then

P =
∑∞

1 ckδxk is a probability measure on (R,P(R)). Clearly,

P({xk}) = ck for each k ∈ N

and

P(R \ {xk : k ∈ N}) = 0.
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That is, P has a mass of ck at each xk. Such probability measures are

important as they are precisely the probability distributions of so-called

discrete random variables. We will revisit them in Chapters 3 and 8.

(Of course, P is just the weighted counting measure on R with weights

ck at each xk and 0 elsewhere.)

From now on, we will state results only in the framework of probability

spaces. However, nearly all interesting results in Chapters 4-7 hold for σ-

finite measure spaces. Chapters 8-14 will only deal with probability spaces.

2. Basic properties

We fix an arbitrary probability space (Ω,F ,P) for this section.

Note first that P also has finite additivity and is increasing.

2.3. Proposition. (a) Let E1, . . . , En be disjoint sets in F . Then

P(
⋃n
k=1Ek) =

∑n
k=1 P(Ek).

(b) Let E,F ∈ F be such that E ⊂ F . Then P(F \E) = P(F )− P(E).

In particular, P(E) ≤ P(F ).

Proof. For (a), put Ek = ∅ for k ≥ n+1 and apply countable additivity

of P. For (b), note that E and F \ E are disjoint. Thus by (a),

P(E) + P(F \ E) = P
(
E ∪ (F \ E)

)
= P(F ),

from which the desired results follow immediately. �

2.4. Proposition. Let (En)n∈N be a sequence of sets in F and E ∈ F .

If En ↑ E, then P(En) ↑ P(E).

Proof. The increasingness of P(En)’s is due to Proposition 2.3 (b).

For the convergence, we cut En’s into disjoint sets as follows. Put F1 =

E1. For n ≥ 2, put Fn = En \ En−1. See Figure 1 below for illustration.

Clearly, (Fn) is a disjoint sequence of sets in F ,
⋃n
k=1 Fk = En for any n ∈ N,

and
⋃∞
n=1 Fn =

⋃∞
n=1En. Thus by the countable (and finite) additivity of

P, it follows that

P(E) =P
( ∞⋃
n=1

En

)
= P

( ∞⋃
n=1

Fn

)
=

∞∑
n=1

P(Fn) = lim
n→∞

n∑
k=1

P(Fk)

= lim
n→∞

P
( n⋃
k=1

Fk

)
= lim

n→∞
P(En).

�
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E1

E2

E3

F1

F2

F3

Figure 1. Cutting an increasing sequence of sets into a dis-

joint sequence

The property in this proposition is called continuity from below . It

is an equivalent form of countable additivity (Exercise 2.5) and, as will be

seen (e.g., in the proof of Theorem 5.9), is the very property of measures

that guarantees the nice convergence properties of Lebesgue integrals and

expectations. We now include some of its elementary corollaries below.

The following property is called countable sub-additivity .

2.5. Corollary. Let (En)n∈N be a sequence of sets in F . Then

P
( ∞⋃
n=1

En) ≤
∞∑
n=1

P(En).(2.2)

Proof. For any two sets F1, F2 ∈ F , note that

P(F1 ∪ F2) =P
(
F1 ∪ (F2 \ F1)

)
= P(F1) + P(F2 \ F1)

≤P(F1) + P(F2).(2.3)

This observation, together with induction, implies (see Exercise 2.6) that P

has finite sub-additivity:

P
( n⋃
k=1

Ek

)
≤

n∑
k=1

P(Ek).(2.4)

In view of
⋃n
k=1Ek ↑n

⋃∞
k=1Ek, letting n −→∞ completes the proof. �

An immediate consequence of the countable sub-additivity is that union

of countable negligible sets remains negligible.

2.6. Definition. A set E ∈ F is said to be negligible if P(E) = 0.

2.7. Corollary. Let (En)n∈N be a sequence of negligible sets. Then⋃∞
n=1En is also negligible.
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2.8. Corollary. Let (En)n∈N be a sequence of sets in F . Then

P(lim inf
n

En) ≤ lim inf
n

P(En).

Proof. Set Fn =
⋂∞
k=nEk for n ∈ N. Recall that Fn ↑ lim infnEn.

Thus

P(lim inf
n

En) = lim
n

P(Fn) = sup
n≥1

P(Fn).

Furthermore, for any k ≥ n, since Fn ⊂ Ek, P(Fn) ≤ P(Ek). Thus

P(Fn) ≤ inf
k≥n

P(Ek).

Combining the above, we have

P(lim inf
n

En) ≤ sup
n≥1

inf
k≥n

P(Ek) = lim inf
n

P(En).

�

3. Uniqueness

Probability measures, though defined on σ-algebras, are in fact deter-

mined by their values on smaller collections of sets.

2.9. Theorem. Let P and Q be probability measures over (Ω,F), where

F is generated by a π-system P. If P and Q agree on P, then they agree on

F .

The proof uses a general approach of handling generated σ-algebras:

collect all the sets satisfying the desired property and then manage to apply

the monotone class theorem 1.10.

Proof. Put

D =
{
E ∈ F : P(E) = Q(E)

}
.

Then P ⊂ D. If D were a λ-system, then by Theorem 1.10, F = σ(P) ⊂ D,

we are done. We now verify that D is a λ-system. First, since P(∅) = 0 =

Q(∅), ∅ ∈ D. Second, take any E ∈ D. Then by Proposition 2.3 (b),

P(Ec) = 1− P(E) = 1− Q(E) = Q(Ec),

so that Ec ∈ D. Third, let (En)n∈N be any disjoint sequence in D. Then by

the countable additivity,

P
( ∞⋃
n=1

En

)
=

∞∑
n=1

P(En) =

∞∑
n=1

Q(En) = Q
( ∞⋃
n=1

En

)
.

Thus
⋃∞
n=1En ∈ D. This proves that D is a λ-system. �
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2.10. Corollary. Let P and Q be probability measures over (Rd,Bd).
Then P = Q if they agree either on the collection of all cubes of the form:

d∏
k=1

(ak, bk], where ak, bk ∈ R, ak < bk, k = 1, . . . , d,

or on the collection of all cubes of the form:

d∏
k=1

(−∞, ak], where ak ∈ R, k = 1, . . . , d.

Proof. The second collection is a π-system generating Bd. The first

collection is not a π-system, but its union with the singleton {∅} is a π-

system generating Bd, on which P and Q still agree. �

We close this chapter with the following remark.

2.11. Remark. (a) All the results in Section 2 hold for a general

measure space, except that P(F \ E) = P(F ) − P(E) in Proposi-

tion 2.3 (b), which is still valid as long as ∞−∞ does not occur.

See Exercise 2.13.

(b) Theorem 2.9 may fail for a general σ-finite measure space. How-

ever, under a mild additional assumption, it still holds. See Exer-

cises 2.14 and 2.15.

Exercises

Let (Ω,F ,P) be a probability space.

2.1. Let E be a set in F such that P(E) > 0. For every F ∈ F , put

Q(F ) =
P(F ∩ E)

P(E)
.

Show that Q is a probability measure on F . (It is called the conditional

probability given E and is usually written as P(·|E). In contrast, P is

sometimes called the unconditional probability .)

2.2. Let (Ω,F , µ) be a measure space. Let E be a set in F . Put ν(F ) =

µ(F ∩ E) for every F ∈ F . Show that ν is a measure on F .

2.3. Let (Ω,F , µ) be a measure space and c ≥ 0 is a real number. Put

ν(F ) = cµ(F ) for every F ∈ F . Show that ν is a measure on F .

2.4. Let (µn)n∈N be a sequence of measures on (Ω,F). For every E ∈ F ,

put ν(E) =
∑∞

n=1 µn(E). Show that ν is a measure on F .
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The measures ν in Exercise 2.3 and 2.4 are usually denoted as cµ and∑∞
n=1 µn, respectively.

2.5. Let F be a σ-algebra over Ω. Let µ : F → [0,∞] be a mapping

such that µ(∅) = 0 and µ(
⋃n
k=1Ek) =

∑n
k=1 µ(Ek) for any n ∈ N and any

disjoint sets E1, . . . , En in F . Show that µ is a measure iff it is continuous

from below, i.e., if En ↑ E, then µ(En) ↑ µ(E).

2.6. Deduce (2.4) from (2.3).

2.7. Suppose that P(En) = 1 for any n ∈ N. Show that P(
⋂∞
n=1En) = 1.

2.8. Let (En)n∈N be a sequence of sets in F and E ∈ F be such that

En ↓ E. Show that P(En) ↓ P(E).

2.9. Give a counterexample to show that the conclusion in Exercise 2.8

may fail for a general measure µ. Show that it still holds if µ(E1) <∞.

2.10. Let (En)n∈N be a sequence of sets in F . Show that

lim sup
n

P(En) ≤ P(lim sup
n

En).

2.11. Give a counterexample to show that the conclusion in Exercise 2.10

may fail for a general measure µ. Show that it still holds if µ(
⋃∞
n=1En) <∞.

2.12. Let E,En, n ∈ N, be sets in F such that En −→ E. Show that

P(En) −→ P(E).

2.13. Observe that the conclusions in Proposition 2.4 and Corollaries 2.5,

2.7 and 2.8 hold for a general measure. The same arguments work.

2.14. Let µ be the counting measure on N and ν = 2µ. Let

P =
{
{k ∈ N : k ≥ n} : n ∈ N

}
.

Show that P is a π-system, σ(P) = P(N), µ = ν on P, but µ 6= ν on P(N).

2.15. Let µ and ν be σ-finite measures over (Ω,F), where F is generated

by a π-system P. If µ and ν agree on P and are finite on an increasing

sequence (Pn)n∈N in P whose union is Ω, then they agree on F .



CHAPTER 3

Lebesgue-Stieltjes Measures

We have not seen any non-trivial measures other than the weighted

counting measures. It is because constructing non-trivial measures, even in

the case of R, is generally very difficult.

1. An extension theorem

Say, we want to construct a measure m on (R,F) that measures the

“length” of one-dimensional objects in R. Here F is a σ-algebra over R,

conceptually consisting of “measurable” objects (we reasonably expect that

some objects may be too complex for us to measure their length). We start

with the simplest objects, intervals. It should be in common agreement that

we know how to measure their length: simply specify that

m
(
(a, b]

)
= b− a.

Once we agree on this, we should agree that we can also measure the length

of a bit more complex objects, finite unions of intervals, e.g.,

m
(
(−4,−1] ∪ (1, 2] ∪ (5, 7]

)
=m

(
(−4,−1]

)
+ m

(
(1, 2]

)
+ m

(
(5, 7]

)
=
(
− 1− (−4)

)
+ (2− 1) + (7− 5)

=6.

But the assumption that all the intervals are “measurable” and belong

to F already forces that F contains all the Borel sets (Example 1.4). A

general Borel set B could have a very complicated structure, and directly

specifying the value m(B) could be extremely difficult.

Luckily, we have a theorem that guarantees that if it is known how to

measure the length of simple objects, such as intervals or finite unions of

intervals, then there is an automatic way to extend our measurement to

much more complex objects, such as Borel sets.

23
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To introduce the theorem, we need the notions of algebras and pre-

measures, which are weakened versions of σ-algebras and measures, respec-

tively.

3.1. Definition. A collection A of subsets of Ω is called an algebra

over Ω if it satisfies the following conditions:

(a) ∅ ∈ A;

(b) Ac ∈ A whenever A ∈ A;

(c) A ∩B ∈ A whenever A,B ∈ A.

By using induction and De Morgan’s Laws, it is easy to see that A is

closed under taking finite intersections and unions (Proposition 1.3 holds

for A). The definition of algebras differ from that of σ-algebras in that the

latter allows to take unions of countably infinite objects.

3.2. Definition. Let A be an algebra over Ω. A mapping µ : A → [0,∞]

is a pre-measure on (Ω,A) if it satisfies the following two conditions:

(a) µ(∅) = 0;

(b) for any disjoint sequence (An)n∈N in A, if
⋃∞
n=1An ∈ A, then

µ
( ⋃
n∈N

An

)
=

∞∑
n=1

µ(An).

One can easily see that µ has finite additivity and is increasing (cf. Propo-

sition 2.3). The weakness of µ is that it is defined only on an algebra, and

thus in Condition (b) of Definition 3.2, if (En)n∈N is a disjoint sequence in

A such that
⋃∞
n=1En 6∈ A, then we have no control of

⋃∞
n=1En.

We are ready to present the Carathéodory extension theorem.

3.3. Theorem. Let µ be a pre-measure on an algebra A over Ω. Then

there exists a measure µ on σ(A) such that

µ(A) = µ(A) for every A ∈ A.(3.1)

Furthermore, if there exists an increasing sequence (An)n∈N in A such that

Ω =
⋃∞
n=1An and µ(An) < ∞ for every n ∈ N, then there is a unique

measure on σ(A) satisfying (3.1).

Proof. For the existence part, the “automatic” way that we alluded

earlier is as follows. For every E ∈ σ(A), put

µ(E) = inf
{ ∞∑
n=1

µ(An) : An ∈ A for each n ∈ N, E ⊂
∞⋃
n=1

An

}
.(3.2)
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Basically, one measures E ∈ σ(A) by covering it with countably infinite

elements from A, whose objects we already how to measure: use µ. Though

the formula is easy to state, verifying that µ defined this way is a measure

on σ(A) satisfying (3.1) is quite technical. As we will not use the techniques

in the proof for the rest of the book, we put the proof to Appendix A.

For the uniquness part, let µ1 and µ2 are two measures on σ(A) satisfying

(3.1). Then they agree on A. Observe that an algebra is a π-system. Thus

they agree on σ(A), by Theorem 2.9 (Exercise 2.15, to be accurate). �

2. Lebesgue-Stieltjes measures

We now employ the Carathéodory extension theorem to construct im-

portant, non-trivial measures on (R,B). Of course, the theorem reduces our

work to construct pre-measures on algebras.

We start with the algebra that we will build the pre-measures on. Con-

sider intervals that are left open and right closed, namely, intervals of one

of the following forms:

(−∞, a], (b, c], (d,∞), a, b, c, d ∈ R, b < c.

Let A be the collection of ∅ and all unions of finitely many, disjoint such

intervals. Members in A have quite simple structure. For example,

(−∞,−2] ∪ (0, 1] ∪ (2, 3] ∈ A.

R = (−∞, 1] ∪ (1,∞) ∈ A.
Note that a member in A may be written in more than one form. For

example,

(−∞, 0] ∪ (1, 7] = (−∞,−2] ∪ (−2, 0] ∪ (1, 3] ∪ (3, 5] ∪ (5, 7].

3.1. Lemma. A is an algebra on R.

The proof is very simple; the reader may draw a graph to illustrate it.

Proof. Condition (a) in Definition 3.1 is clear. For Condition (b), take

any A ∈ A. If A = ∅, clearly Ac = R ∈ A. Otherwise, write A =
⋃n
k=1 Ik,

where Ik’s are disjoint intervals and each has the designated form. For each

k, let ak, bk be the left and right endpoints of Ik, respectively. Without loss

of generality, assume that −∞ ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn ≤ ∞.

Thus

Ac = (−∞, a1] ∪ (b1, a2] ∪ · · · ∪ (bn,∞);
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if a1 = −∞, or bk = ak+1 for some k, or bn =∞, remove the corresponding

intervals from the expression. It follows clearly that Ac ∈ A.

For Condition (c), take any A =
⋃n
k=1 Ik and B =

⋃m
l=1 Jl in A, where

Ik’s and Jl’s all are intervals of the designated form, and Ik’s as well as Jl’s

are disjoint. Then

A ∩B =
n⋃
k=1

m⋃
l=1

(Ik ∩ Jl).

One sees that Ik ∩ Jl’s are disjoint and all have the designated form, if

non-empty. Remove the empty ones. It follows that A ∩B ∈ A.

Combining the above proves that A is an algebra. �

To build very general pre-measures, fix a function F : R → R that is

increasing and right continuous. For convenience, put

F (−∞) = lim
x→−∞

F (x) ∈ [−∞,∞),

F (∞) = lim
x→∞

F (x) ∈ (−∞,∞].

Put µ(∅) = 0. For any interval I of the designated form with endpoints a

and b with −∞ ≤ a < b ≤ ∞, put

µ(I) = F (b)− F (a).

(Here it explains why we want F to be increasing: to ensure that µ takes

only non-negative values.) For a general A ∈ A, say, A =
⋃n
k=1 Ik, where

Ik’s are disjoint and each Ik has the designated form, put

µ(A) = µ(I1) + µ(I2) + · · ·+ µ(In).

For example,

µ
(
(−∞, 2] ∪ (3, 4]

)
=F (2)− F (−∞) + F (4)− F (3).

Note, however, that since A ∈ Amay have multiple expressions, we also have

multiple ways to specify µ(A). But all different forms give the same value.

For example, let’s write (1, 7] in two forms (1, 7] and (1, 3] ∪ (3, 5] ∪ (5, 7].

Then clearly,

F (7)− F (1) = F (7)− F (5) + F (5)− F (3) + F (3)− F (1).

Finally, note that

µ(R) =µ
(
(−∞, 1] ∪ (1,∞)

)
= F (∞)− F (1) + F (1)− F (−∞)

=F (∞)− F (−∞).

3.2. Lemma. µ is a pre-measure on A.
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Proof. We split the proof into a few steps.

Step I. The first quick observation is that if A,B ∈ A are disjoint then

µ(A ∪B) = µ(A) + µ(B).

Indeed, write A =
⋃n
k=1 Ik and B =

⋃m
l=1 Jl in A, where Ik’s and Jl’s all

have the designated form, and Ik’s as well as Jl’s are disjoint. Then Ik’s

and Jl’s put together are still disjoint and their union is A ∪ B. Thus by

definition of µ,

µ(A ∪B) =

n∑
k=1

µ(Ik) +

m∑
l=1

µ(Jl) = µ(A) + µ(B).

By induction, it follows that if A1, . . . , An ∈ A are disjoint then

µ
( n⋃
k=1

Ak

)
=

n∑
k=1

µ(Ak).

Step II. For any A,B ∈ A with A ⊂ B, since A and B \ A are disjoint

in A, we have by Step I,

µ(B) = µ
(
A ∪ (B \A)

)
= µ(A) + µ(B \A) ≥ µ(A).

Step III. Let (An)n∈N be a disjoint sequence in A such that A :=⋃∞
n=1An ∈ A. Then by Step II and then Step I, for any n ∈ N, µ(A) ≥

µ
(⋃n

k=1Ak
)

=
∑n

k=1 µ(Ak). Letting n→∞, we obtain

µ(A) ≥
∞∑
n=1

µ(An).

The rest of the proof is devoted to the reverse of this inequality.

Step IV. Let A, A1, . . . , An be in A such that A ⊂ ⋃n
k=1Ak. Put B1 =

A∩A1. For k = 2, . . . , n, put Bk = (Ak ∩A) \⋃k−1
j=1(Aj ∩A). Then Bk’s lie

in A and are disjoint such that
⋃n
k=1Bk =

⋃n
k=1(Ak ∩ A) = A. By Steps I

and II,

µ(A) =

n∑
k=1

µ(Bk) ≤
n∑
k=1

µ(Ak).

Step V. Take any I = (a, b], where a, b ∈ R and a < b. Let In = (an, bn],

n ∈ N, be any disjoint sequence of intervals such that I =
⋃∞
n=1 In. Then

µ(I) =

∞∑
n=1

µ(In).(3.3)
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Indeed, take any 0 < δ < b− a and any ε > 0. Since F is right-continuous,

for each k, we can find δk > 0 such that

F (bk + δk)− F (bk) <
ε

2k
.

Note that [a + δ, b] ⊂ ⋃∞k=1(ak, bk + δk). The Heine-Borel theorem asserts

that we can find finitely many (ak, bk + δk)’s to cover [a + δ, b]. Thus, we

can find N ∈ N such that [a+ δ, b] ⊂ ⋃N
k=1(ak, bk + δk). Thus

(a+ δ, b] ⊂
N⋃
k=1

(ak, bk + δk].

By Step IV,

F (b)− F (a+ δ) =µ
(
(a+ δ, b]

)
≤

N∑
k=1

µ
(
(ak, bk + δk]

)
=

N∑
k=1

(
F (bk + δk)− F (ak)

)
≤
∞∑
k=1

(
F (bk + δk)− F (ak)

)
≤
∞∑
k=1

(
F (bk) +

ε

2k
− F (ak)

)
=

∞∑
k=1

(
F (bk)− F (ak)

)
+

∞∑
k=1

ε

2k

=
∞∑
k=1

µ(Ik) + ε.

Letting ε→ 0 and then δ → 0, using right continuity of F at a, we obtain

µ(I) ≤
∞∑
n=1

µ(In).

In view of Step III, this proves the desired equality.

Step VI. Take any I = (−∞, a] or (a,∞), where a ∈ R. Let (In) be any

disjoint sequence of intervals of the designated form such that I =
⋃∞
n=1 In.

Then (3.3) holds. Let’s prove the case I = (a,∞); the other case can be

proved similarly. For any k ∈ N with k > a, we have

(a, k] = I ∩ (a, k] =

∞⋃
n=1

(
In ∩ (a, k]

)
.

If In∩ (a, k] = ∅, remove it from the union; the final terms in the union may

be finite or countably infinite. Thus in view µ(∅) = 0, we have, by Step I

or Step V, F (k) − F (a) = µ
(
(a, k]

)
=
∑∞

n=1 µ
(
In ∩ (a, k]

)
≤ ∑∞n=1 µ(In).

Letting k →∞ and applying Step III, we obtain the desired equality.
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Step VII. Let I be any interval of the designated form. Let (An)n∈N be

any disjoint sequence in A such that I =
⋃∞
n=1An. Then

µ(I) =
∞∑
n=1

µ(An).

Indeed, for each n ∈ N, write An =
⋃Nn
k=1 In,k, where In,k’s are disjoint

intervals of the designed form. Putting In,k, n ∈ N, 1 ≤ k ≤ Nn, together

yields a new countably infinite collection of disjoint intervals whose union is

clearly I. Thus by Step V, it follows that

µ(I) =
∞∑
n=1

Nn∑
k=1

µ(In,k) =
∞∑
n=1

µ(An).

Final Step. Let A ∈ A and (An)n∈N be a disjoint sequence in A such

that A =
⋃∞
n=1An. Write A =

⋃m
k=1 Ik, where Ik’s are disjoint intervals of

the designated form. For each k, we have Ik = A ∩ Ik =
⋃∞
n=1(An ∩ Ik).

Thus by Step VII, µ(Ik) =
∑∞

n=1 µ(An ∩ Ik). Consequently,

µ(A) =

m∑
k=1

µ(Ik) =

m∑
k=1

∞∑
n=1

µ(An ∩ Ik) =

∞∑
n=1

m∑
k=1

µ(An ∩ Ik) =

∞∑
n=1

µ(An),

where the last equality follows from Step I and An =
⋃m
k=1(An ∩ Ik). �

To sum up, we formulate it as a theorem.

3.4. Theorem. Let F : R → R be an increasing and right-continuous

function. Then there exists a unique measure µ on (R,B) such that

µ
(
(a, b]

)
= F (b)− F (a),(3.4)

for any a, b ∈ R with a < b.

Proof. By Lemmas 3.1 and 3.2, we get a pre-measure µ on A satisfying

(3.4). Let µ be any measure on (R,B) obtained for µ by Theorem 3.3. It

clearly satisfies (3.4) as well since it coincides with µ on A.

Moreover, let µ′ be any measure on (R,B) satisfying (3.4). Then it

coincides with µ on all intervals of the form (a, b], where a, b ∈ R and a < b,

and thus on all intervals of the form (−∞, a] or (a,∞), where a ∈ R, as well

(Exercise 3.4). It follows that µ′ coincides with µ on A. Since (−n, n] ↑ R

and µ
(
(−n, n]

)
= F (n) − F (−n) < ∞ for each n, µ′ must coincide with µ

on B, by the uniqueness part in Theorem 3.3. �

We call µ the Lebesgue-Stieltjes measure associated with F . We may

write it as µF if it is necessary to emphasize F .
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3.5. Remark. Lemma 3.2 shows the sufficiency of assuming right con-

tinuity of F to make µ a pre-measure. The necessity can be demonstrated

easily. Consider (0, 1] =
⋃∞
n=1

(
1

n+1 ,
1
n

]
. If we want µ to be pre-measure,

then we must have

F (1)− F (0) =µ
(
(0, 1]

)
=
∞∑
n=1

µ
(( 1

n+ 1
,

1

n

))
=
∞∑
n=1

(
F
( 1

n

)
− F

( 1

n+ 1

))
= lim

n→∞

n∑
k=1

(
F
(1

k

)
− F

( 1

k + 1

))
= lim
n→∞

(
F (1)− F

( 1

n+ 1

))
=F (1)− F (0+).

Therefore, F (0) = F (0+), i.e., F is right continuous at 0. Right continuity

at other points can be proved similarly.

3. Some properties and examples

3.6. Proposition. Let F : R → R be increasing and right continuous.

Let µ be the Lebesgue-Stieltjes measure associated with F . Then

µ({a}) = F (a)− F (a−),

for any a ∈ R. In particular, µ({a}) = 0 iff F is continuous at a.

Proof. The second assertion is immediate by the first one. The first

assertion follows from direct computation:

µ({a}) = lim
n→∞

µ
((
a− 1

n
, a
])

= lim
n→∞

(
F (a)− F

(
a− 1

n

))
=F (a)− F (a−),

where for the first equality we need to use Exercise 2.9. �

3.7. Corollary. Let F : R → R be increasing and continuous. Let µ

be the Lebesgue-Stieltjes measure associated with F . Then µ(A) = 0 for any

finite or countably infinite set A, and

µ
(
(a, b)

)
= µ

(
(a, b]

)
= µ

(
[a, b)

)
= µ

(
[a, b]

)
for any a, b ∈ R such that a < b.

Proof. For the first assertion, note that such a set can be expressed as

a union of finitely many or countably infinitely many singletons, all of which
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have measure 0 by the preceding proposition. Now apply finite or countable

additivity of µ.

For the second assertion, note that the four intervals differ from each

other by a set of one or two points, which have measure 0 by the first

assertion. Thus the desired equalities follow. �

We now introduce the famous Lebesgue measure.

3.1. Example. Let F (x) = x for any x ∈ R. We write the measure as-

socited with it as m and call it the Lebesgue measure on R. The Lebesgue

measure of an interval equals its “natural” length: for any a, b ∈ R with

a < b,

m
(
(a, b)

)
= m

(
(a, b]

)
= m

(
[a, b)

)
= m

(
[a, b]

)
= b− a.

In this spirit, we may say that a general Lebesgue-Stieltjes measure gives

twisted length of intervals, using a twisted ruler F .

Below is an example that illustrates why we need rigorous mathematics—

when things get complex, intuition just doesn’t work!

3.2. Example. Let (rn)n∈N be an enumeration of all rational numbers.

Consider the set

E =
⋃
n∈N

(
rn −

1

2n
, rn +

1

2n

)
.

Clearly, E ∈ B. Since the rational numbers are dense in R and at every

rational number, we circle an interval, one may suspect that E = R. But

E 6= R! In fact, far from that:

m(E) ≤
∞∑
n=1

m
((
rn −

1

2n
, rn +

1

2n

))
=
∞∑
n=1

2

2n
= 2.

Finally , let’s look at the probability case.

3.8. Proposition. Let F : R → R be increasing and right continuous.

Let µ be the Lebesgue-Stieltjes measure associated with F . Then µ is a

probability measure iff F (∞)− F (−∞) = 1.

It is obvious because µ(R) = F (∞) − F (−∞). Note that if we replace

F with F + c for some constant c ∈ R, the measures constructed will be the

same. Thus in this case, by replacing F with F − F (−∞), we may assume

F (−∞) = 0, F (∞) = 1.
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3.9. Definition. A function F : R → R that is increasing, right con-

tinuous and satisfies F (−∞) = 0 and F (∞) = 1 is called a distribution

function.

3.3. Example. Let a ∈ R be fixed. Suppose F (x) = 0 if x < a and

F (x) = 1 if x ≥ a. Let µ be the Lebesgue-Stieltjes measure associated with

F . Then µ(R) = 1. Moreover, by Proposition 3.6, µ({a}) = F (a)−F (a−) =

1− 0 = 1. It follows that µ(R \ {a}) = µ(R)− µ({a}) = 1− 1 = 0. Thus µ

is just the Diract measure at a.

Exercises

3.1. Show that Proposition 1.3 holds for an algebra A.

3.2. Show that a pre-measure is finitely additive and increasing.

3.3. Show that µ constructed in (3.2) satisfies (3.1) and the countable

sub-additivity.

3.4. Let A be as in Section 2. Show that if two measures on B satisfy

(3.4) then they agree on A.

3.5. Show that every Lebesgue-Stieltjes measure is σ-finite.

3.6. Let µ be a measure on (R,B) such that every bounded interval has

finite measure. Show that there exists a function F : R→ R that is increasing

and right continuous such that µ is the Lebesgue-Stieltjes measure associated

with F . Any two such functions differ by a constant.



EXERCISES 33

3.7. Let µ be the pre-measure for F . Show that for any E ∈ B,

inf
{ ∞∑
n=1

µ(An) : An ∈ A for each n ∈ N, E ⊂
∞⋃
n=1

An

}
= inf

{ ∞∑
n=1

µ(An) : (An)n∈N is a disjoint sequence in A, E ⊂
∞⋃
n=1

An

}
= inf

{ ∞∑
n=1

µ(In) : each In is an interval of the designated form,

E ⊂
∞⋃
n=1

In

}
= inf

{ ∞∑
n=1

µ(In) : (In) is a disjoint sequence of intervals of the designated form,

E ⊂
∞⋃
n=1

In

}
.

3.8. Let

F (x) =


0 if x < −4,

0.2 if − 4 ≤ x < −1,

0.6 if − 1 ≤ x < 3,

1 if x ≥ 3.

Express the associated Lebesgue-Stieltjes as a convex combination of Dirac

measures.





CHAPTER 4

Random Variables

Suppose that the stock price of a company at noon is $50 per share,

and let X be the price tomorrow noon. X should be viewed as a function

defined on Ω, where Ω is the set of all scenarios that are possible at tomorrow

noon. For example, if ω1 is the scenario that the company announces a

technological innovation by tomorrow noon and ω2 is the scenario that an

opponent company announces a technological innovation by tomorrow noon,

then X clearly takes different values at them. Intuitively, X represents the

numerical consequences of the uncertainties of the company’s future. The

sets on which X takes certain values usually have practical meaning and are

of central importance. For example, {ω ∈ Ω : X(ω) ≤ 40} is the event that

the stock price goes down at least $10 per share, or in another word, an

investor holding the stock has a loss of at least $10 per share.

To avoid repetitions, throughout this chapter, Ω stands for an arbitrary

non-empty set Ω and F stands for an arbitrary σ-algebra over it.

1. Definition and characterizations

If a function X defined on Ω stands for numerical consequences of a

random phenomenon that one is studying, then as is alluded earlier, sets of

the form {X ≤ c} are events that have important practical meaning. They

thus should belong to F , the collection of all the events that are under care.

4.1. Definition. A function X : Ω → R is said to be F-measurable,

or simply measurable, if {X ≤ c} ∈ F for every c ∈ R. In probabilistic

terms, we also call a measurable function a random variable.

The simplest example of random variables is indicator functions.

4.1. Example. Let E be a subset of Ω. Define the indicator function

of E, 1E : Ω→ R, by

1E(ω) =

1 if ω ∈ E,
0 if ω 6∈ E.
35
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If 1E is a measurable function, then Ec = {1E ≤ 0} ∈ F , so that E ∈ F .

Conversely, suppose E ∈ F . Then

{1E ≤ c} =


∅ if c < 0,

E if 0 ≤ c < 1,

Ω if c ≥ 1.

Thus {1E ≤ c} ∈ F for any c ∈ R, and 1E is measurable.

This example can be made general.

4.2. Example. Let X be a function on Ω that assumes only finitely

many distinct values, say, c1 < c2 < · · · < cn. For k = 1, . . . , n, put

Ek := {X = ck},

the set where X takes the value ck. Then (Ek)1≤k≤n is a partition of Ω1.

Moreover, one easily verifies that

X = c11E1 + c21E2 + · · ·+ cn1En .(4.1)

If X is measurable, then E1 = {X ≤ c1} ∈ F , and for k = 2, . . . , n,

Ek =
{
X ≤ ck

}
\
{
X ≤ ck−1

}
∈ F .

On the other hand, for any c ∈ R, {X ≤ c} collects all the ω where X takes

a value at most c. Thus

{X ≤ c} =
⋃

k:ck≤c
Ek.

Therefore, if Ek’s are all measurable then X is measurable.

Note that in (4.1), if some ck is zero, one may write off the term ck1Ek
from the expression; e.g., insteading of writing 01Ec + 11E , we simply write

1E . See Exercise 4.1 for an extension of the example to the countably-

infinitely-many-valued case. Such functions will be of critical importance

for future developments, so we give them a name.

4.2. Definition. A measurable function that takes only finitely many

distinct values is called a simple function. In probabilistic terms, a random

variable that takes only finitely many or countably infinitely many distinct

values is called a discrete random variable.

The following proposition provides equivalent forms of measurability.

1That is, Ek’s are disjoint and their union is Ω.
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4.3. Proposition. Let X : Ω → R be a function. The following state-

ments are equivalent:

(a) X is measurable;

(b) {X > c} ∈ F for every c ∈ R;

(c) {X ≥ c} ∈ F for every c ∈ R;

(d) {X < c} ∈ F for every c ∈ R;

(e) {X ∈ B} ∈ F for every B ∈ B.

Proof. Suppose (a) holds. Then for any c ∈ R, {X ≤ c} ∈ F . Thus

since F is a σ-algebra, it follows that

{X > c} = {X ≤ c}c ∈ F .

This proves (a) =⇒ (b). Similarly, (b) =⇒ (c) follows from

{X ≥ c} =
∞⋂
n=1

{
X > c− 1

n

}
.

(c) =⇒ (d) follows from {X < c} = {X ≥ c}c. (e) =⇒ (a) follows from

(−∞, c] ∈ B and

{X ≤ c} =
{
X ∈ (−∞, c]

}
∈ F .

Finally, suppose (d) holds. Let G be the collection of all subsets of R

whose pre-image under X belongs to F . Namely,

G :=
{
A ⊂ R : {X ∈ A} ∈ F

}
.

For every c ∈ R, we have{
X ∈ (−∞, c)

}
= {X < c} ∈ F .

Thus (−∞, c) ∈ G for every c ∈ R. Recall that these intervals generate the

Borel algebra B. Thus if we can show that G is a σ-algebra, then B ⊂ G
(Remark 1.5), and (e) follows. Let’s verify that G is a σ-algebra. Clearly,

{X ∈ R} = Ω ∈ F , implying that R ∈ G. Take any A ∈ G. Then

{X ∈ Ac} = Ω \ {X ∈ A} ∈ F .

Consequently, Ac ∈ G. Finally, let (An)n∈N be any sequence in G. Then{
X ∈

∞⋂
n=1

An

}
=

∞⋂
n=1

{
X ∈ An

}
∈ F .

It follows that
⋂∞
n=1An ∈ G. This proves that G is a σ-algebra. �

4.4. Remark. One may regard any of the other statements in Proposi-

tion 4.3 as definition of measurability.
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The following example provides further intuition for measurability.

4.3. Example. Let {A,B,C} be a partition of Ω, and F = σ({A,B,C}).
Suppose that X : Ω → R is F-measurable. We claim that X must be

constant on each of A,B,C. Suppose otherwise that X takes at least two

different values, say, on A. Then there exists ω1, ω2 ∈ A such that X(ω1) <

X(ω2). We can now tear up A into two parts: A ∩ {X ≤ X(ω1)} and

A ∩ {X > X(ω1)}. They are disjoint, non-empty, and both belong to F
by measurability of F . This is impossible, since every member in F is the

union of some of A,B,C (cf. Exercise 1.3).

The notion of measurability can be extended to multiple dimension.

Recall first the following notation:

{X1 ≤ c1, X2 ≤ c2, . . . , Xd ≤ cd}
∆
=
{
ω ∈ Ω : X1(ω) ≤ c1, X2(ω) ≤ c2, . . . , Xd(ω) ≤ cd

}
=

d⋂
k=1

{
ω ∈ Ω : Xk(ω) ≤ ck

}
=

d⋂
k=1

{
Xk ≤ ck

}
.

4.5. Definition. Let d ∈ N. Let (X1, X2, . . . , Xd) : Ω → Rd be a func-

tion. It is said to be measurable if {X1 ≤ c1, X2 ≤ c2, . . . , Xd ≤ cd} ∈ F for

any c1, . . . , cd ∈ R. In probabilistic terms, we may call it a (d-dimensional)

random vector.

4.6. Proposition. For a function (X1, X2, . . . , Xd) : Ω → Rd, the fol-

lowing are equivalent:

(a) (X1, X2, . . . , Xd) is measurable;

(b) Each Xk, 1 ≤ k ≤ d, is measurable;

(c)
{

(X1, X2, . . . , Xd) ∈ B
}
∈ F for every B ∈ Bd

Proof. One may prove in the following order: (a) =⇒ (c) =⇒ (b) =⇒
(a). For example, suppose (c) holds. For any c ∈ R, since (−∞, c]× Rd−1 ∈
Bd,

{X1 ≤ c} =
{

(X1, X2, . . . , Xd) ∈ (−∞, c]× Rd−1
}
∈ F .

Thus X1 is measurable. Similar arguments work for other Xk’s. Hence,

(c) =⇒ (b). We leave the proof of other implications to the reader. �
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2. Elementary properties

When considering functions on Rd, we usually endow Rd with Bd, and

call a Bd-measurable function h : Rd → R a Borel measurable function, or

simply measurable if no ambiguities could possibly arise.

4.7. Proposition. Let (X1, X2, . . . , Xd) : Ω → Rd and h : Rd → R be

measurable. Then h(X1, X2, . . . , Xd) : Ω→ R is also measurable.

Proof. Take any B ∈ B. By Proposition 4.3, h−1(B) = {h ∈ B} ∈ Bd.
Thus by Proposition 4.6,{

h(X1, X2, . . . , Xd) ∈ B
}

=
{

(X1, X2, . . . , Xd) ∈ h−1(B)
}
∈ F .

By Proposition 4.3 again, h(X1, X2, . . . , Xd) is measurable. �

In applications of this proposition, it happens often that h is continuous.

We thus need the following result.

4.8. Proposition. Continuous functions are Borel-measurable.

This result looks quite expected but its proof is very non-trivial and uses

the notion of open sets. We put the proof in Appendix B.

4.4. Example. Let X : Ω → R be measurable. Then |X|, X+, X−, eX

are measurable. Indeed, take h(t) = |t| for every t ∈ R. Then h is continuous

on R and is thus Borel-measurable by Propositions 4.8. Thus, |X| = h(X)

is measurable by Proposition 4.7. One similarly proves measurability of

the other functions. We can also establish measurability of these functions

without using Proposition 4.7. For example, one verifies that

{X+ ≤ c} =

∅ if c < 0,

{X ≤ c} if c ≥ 0.

The following result demonstrates more power of Proposition 4.7.

4.9. Corollary. Let X,Y : Ω → R be measurable and a, b ∈ R. Then

aX + bY and XY are measurable.

Proof. Define h : R2 → R by h(t, s) = at + bs and simply note that

aX + bY = h(X,Y ). For the product, define h(t, s) = ts. �

4.10. Remark. Even if X,Y are extended-valued, measurability of aX+

bY is still valid as long as aX+bY is well-defined (i.e., (−∞)+∞,∞+(−∞),

(−∞)− (−∞) and ∞−∞ do not appear). But we need to put a bit extra
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care. Let’s show the case where a > 0 but b < 0. Let X1 = X1{−∞<X<∞}
and Y1 = Y 1{−∞<Y <∞}. Basically, X1 knocks X down to 0 when it is ∞
or −∞. It is thus easy to see that

{X1 ≤ c} =

{X ≤ c} \ {X = −∞} if c < 0,

{X ≤ c} ∪ {X =∞} if c ≥ 0.

Thus X1 is measurable. Similarly, so is Y1. Thus aX1 +bY1 is measurable by

Corollary 4.9. Take any c ∈ R. For ω ∈ Ω, if X(ω) 6= ±∞ and Y (ω) 6= ±∞,

then X(ω) = X1(ω) and Y (ω) = Y1(ω), and thus aX(ω)+bY (ω) = aX1(ω)+

bY1(ω). It follows that

{aX + bY ≤ c} ∩ {X 6= ±∞, Y 6= ±∞}
={aX + bY ≤ c,X 6= ±∞, Y 6= ±∞}
={aX1 + bY1 ≤ c,X 6= ±∞, Y 6= ±∞}
={aX1 + bY1 ≤ c} ∩ {X 6= ±∞} ∩ {Y 6= ±∞} ∈ F .

Moreover, if aX + bY ≤ c, and if X = ±∞ or Y = ±∞, then X = −∞ or

Y =∞. Thus

{aX + bY ≤ c} \ {X 6= ±∞, Y 6= ±∞}
={aX + bY ≤ c} ∩

(
{X = ±∞} ∪ {Y 6= ±∞}

)
={X = −∞} ∪ {Y =∞} ∈ F .

Since {aX + bY ≤ c} is the union of the first terms in the two equations

above, it is in F as well. Thus aX + bY is measurable.

4.5. Example. Corollary 4.9 can be proved directly using definition of

measurability as well. Let’s demonstrate it for XY when X,Y ≥ 0. If c ≤ 0,

then {XY < c} = ∅ ∈ F . Now take any c > 0. Take any ω ∈ {XY < c}.
If X(ω) = 0, no problem. If X(ω) > 0, then Y (ω) < c

X(ω) . Take a rational

number r > 0 such that

Y (ω) < r <
c

X(ω)
,

i.e., Y (ω) < r and X(ω) < c
r . From these arguments, one sees that

{XY < c} = {X = 0} ∪
⋃

r>0 rational

(
{Y < r} ∩

{
X <

c

r

})
.

Each of the sets in the right hand side lies in F , and since there are countable

positive rational numbers, the last union is a countable union. Consequently,
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{XY < c} ∈ F . This proves that XY is measurable as desired. We leave

the proofs of other cases to the reader as exercises.

A third approach to Corollary 4.9 is to apply the following result on

measurability of the limit of a sequence of measurable functions and Theo-

rem 4.12; see Exercise 4.11.

4.11. Proposition. Let Xn : Ω → R be measurable for each n ∈ N.

Then supn∈NXn, infn∈NXn, lim supn→∞Xn, and lim infn→∞Xn are all

measurable.

Proof. For every c ∈ R, since supn∈NXn ≤ c iff Xn ≤ c for every

n ∈ N, it follows that{
sup
n∈N

Xn ≤ c
}

=
⋂
n∈N

{Xn ≤ c} ∈ F .

Thus supn∈NXn is measurable. The case of infn∈NXn is left to the reader.

Set Yn = supm≥nXm for n ∈ N. Then every Yn is measurable by the

sup case we just proved. Thus lim supn→∞Xn = infn∈N Yn is measurable.

The case of lim infn→∞Xn is also left to the reader. �

3. Approximation by simple functions

The following result is of central importance in many developments in

what follows. As will be seen soon, it is often used to reduce arguments

from general measurable functions to simple functions.

4.12. Theorem. Let X be a non-negative measurable function on Ω.

Then there exists a sequence (φn)∞n=1 of simple functions such that 0 ≤ φn ↑
X on Ω.

Proof. To illustrate the idea, we first prove the theorem under the

assumption that 0 ≤ X < 1 on Ω. Fix n ∈ N. We cut [0, 1) into 2n small

intervals: [k − 1

2n
,
k

2n

)
, k = 1, 2, . . . , 2n,

and thus cut Ω into 2n subsets:{k − 1

2n
≤ X <

k

2n

}
, k = 1, 2, . . . , 2n.

Now define

φn =
2n∑
k=1

k − 1

2n
1{ k−1

2n
≤X< k

2n

}.
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On the set
{
k−1
2n ≤ X < k

2n

}
, the value of X is floored by k−1

2n and capped

by k
2n—total room of oscillation of X is smaller than k

2n − k−1
2n = 1

2n . Fur-

thermore, on this set, φn takes the floor value of k−1
2n . Thus one sees that if

ω ∈
{
k−1
2n ≤ X < k

2n

}
, then

0 ≤ X(ω)− φn(ω) <
1

2n
.

Since every ω ∈ Ω belongs to such a set, 0 ≤ X − φn < 1
2n everywhere on

Ω. It follows that 0 ≤ φn ≤ X and limn φn = X everywhere on Ω.

We verify that φn ≤ φn+1 everywhere on Ω. Pick any ω ∈ Ω. Say,

ω ∈
{
k−1
2n ≤ X < k

2n

}
for some k = 1, . . . , 2n. Then φn(ω) = k−1

2n . Note

that when defining φn+1, we cut [0, 1) into intervals of the form
[
l−1

2n+1 ,
l

2n+1

)
.

Thus, since k−1
2n = 2k−2

2n+1 and k
2n = 2k

2n+1 , the set
{
k−1
2n ≤ X < k

2n

}
is split

into two sets in the (n+ 1)-th level when defining φn+1:{2k − 2

2n+1
≤ X <

2k − 1

2n+1

}
∪
{2k − 1

2n+1
≤ X <

2k

2n+1

}
.

If ω lies in the first set, then

φn+1(ω) =
2k − 2

2n+1
= φn(ω);

if ω lies in the second set, then

φn+1(ω) =
2k − 1

2n+1
> φn(ω).

Since ω is arbitrary, this proves that φn ≤ φn+1 everywhere on Ω.

Now we prove the theorem in the general case. We cut [0,∞), the range

of X, according to the following scheme:

• [0, 1): cut it into 2n small intervals of equal length 1
2n ,

• [1, 2): cut it into 2n small intervals of equal length 1
2n ,

• · · ·
• [n− 1, n): cut it into 2n small intervals of equal length 1

2n ,

• [n,∞).

Then in total, we have a big interval [n,∞) and n2n small intervals of length
1

2n , which are precisely
[
k−1
2n ,

k
2n

)
, k = 1, . . . , n2n. Now cut Ω accordingly

Ω =
n2n⋃
k=1

{k − 1

2n
≤ X <

k

2n

}
∪
{
X ≥ n

}
,

and set the value of φn on each set as the floor value there. Namely,

φn =

n2n∑
k=1

k − 1

2n
1{ k−1

2n
≤X< k

2n

} + n1{X≥n}.(4.2)
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Take an arbitrary ω ∈ Ω. Pick any n ∈ N. We consider two cases:

Case 1. X(ω) < n.

In this case, X(ω) ∈
[
k−1
2n ,

k
2n

)
for some k = 1, . . . , n2n. Hence,

ω ∈
{
k−1
2n ≤ X < k

2n

}
and φn(ω) = k−1

2n . One sees as before that

φn+1(ω) = 2k−2
2n+1 or 2k−1

2n+1 , implying that φn(ω) ≤ φn+1(ω).

Case 2. X(ω) ≥ n.

In this case, X(ω) ∈ [n,∞), or ω ∈
{
X ≥ n

}
. Clearly, φn(ω) = n,

the floor of [n,∞). When defining φn+1, we deal with
{
X ≥ n

}
more deliberately by splitting it as

{
n ≤ X < n+1

}
∪
{
X ≥ n+1

}
and then cutting the first set further and letting φn+1 take the floor

values on each set. One sees that all these floor values are at least

n. Thus no matter where ω lies, φn+1(ω) ≥ n = φn(ω).

Combining the above two cases, one sees that φn ≤ φn+1 everywhere.

Pick any ω ∈ Ω. For every n > X(ω), when defining φn, ω falls into a

set appearing in the summation part of (4.2). Thus as before, one sees that

0 ≤ X(ω)− φn(ω) <
1

2n
.

Letting n→∞, it follows again that limn φn(ω) = X(ω). �

Exercises

4.1. Let X : Ω → R be a function that assumes countably infinitely

many distinct values. Show that there exist a sequence (ck)k∈N of distinct

real numbers and a disjoint sequence (Ek)k∈N of subsets of Ω such that

X =
∑∞

k=1 ck1Ek . Show that X is measurable iff each Ek is measurable.

4.2. Complete the proof of Proposition 4.6.

4.3. Let An’s and F be as in Exercise 1.3. Show that a function X :

Ω→ R is measurable iff X is constant on each An.

4.4. Complete the proofs in Example 4.4 using Proposition 4.7.

4.5. Complete the proofs in Example 4.4 without using Proposition 4.7.

4.6. Let X,Y : Ω → R be measurable and a, b ∈ R. Directly use defini-

tion of measurability to show that aX and X−Y are measurable. Conclude

that aX + bY is measurable.

4.7. Let X,Y : Ω→ R be measurable. Show that XY is measurable.
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4.8. Let f : Ω → R be measurable and f is nonzero everywhere. Use

definition of measurability to show that 1
f is measurable. Conclude that g

f

is measurable for any measurable function g : Ω→ R.

4.9. Complete the proof of Proposition 4.11.

4.10. Let X : Ω→ R be measurable. Find a sequence (φn)n∈N of simple

functions such that φn −→ X and |φn| ≤ |X| for every n ∈ N on Ω.

4.11. Prove Exercises 4.6 and 4.7 by showing them for simple functions

first and then applying Exercise 4.10 and Proposition 4.11.

4.12. Show that an increasing function X : R→ R is measurable.

4.13. Let X,Xn, n ∈ N be measurable functions on Ω. Show that the

set
{
ω ∈ Ω : (Xn(ω))n converges to X(ω)

}
is measurable.

4.14. Let (An)n∈N be a disjoint sequence of measurable sets. Show that

(1An) converges to 0 on Ω.



CHAPTER 5

Expectations I

Suppose that we are in a gambling game. Let X denote the gain if one

plays the game once. Suppose that with a probability of 1
3 , we win $15,

i.e., X = 15; with a probability of 1
2 , X = 10, and with a probability of 1

6 ,

X = −6. What we “expect” about our future if we decide to play the game

once? Intuitively, our expectation should be the possible gains averaged

by their chances of occurrence, namely, (15)1
3 + (−10)1

2 + (−6)1
6 = −1. In

this chapter, we extend this naive definition of expectations from simple

functions to general random variables.

Throughout this chapter, (Ω,F ,P) stands for a fixed but arbitrary prob-

ability space. Moreover, for the rest of the book, all sets and functions in-

volved are assumed to be measurable, unless specified otherwise.

1. Expectations of simple functions

Imitating the example above, we make the following definition.

5.1. Definition. Let φ be a simple function on Ω, say,

φ =

n∑
k=1

ck1Ek ,(5.1)

where ck’s are all the distinct values that φ assumes (and thus Ek’s are a

partition of Ω). Put

E[φ] :=

n∑
k=1

ckP(Ek),(5.2)

and call it the expectation of φ. Clearly, Ek = {X = ck} since we assume

that ck’s are distinct. Thus we can rewrite E[φ] as1

E[φ] =
n∑
k=1

ckP(X = ck).(5.3)

1We write P(X ∈ B) instead of P({X ∈ B}) for the sake of brevity.

45
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In view of (5.3), we can interpret E[φ] as the “average” value of φ, with

values of φ averaged by their probabilities of occurrence. In view of (5.2),

we can interpret E[φ] as “area”: for each k, φ determines a region of height

ck and width P(Ek), and thus circling an area of ckP(Ek).

We need to relax the conditions in the expression (5.1) for convenience

of computations later. The first relaxation is as follows.

5.2. Remark. Unlike (5.1), we may write

φ =
m∑
l=1

dl1Fl ,(5.4)

where Fl’s are non-empty and still a partition of Ω but we do not require

dl’s to be distinct. For example, the function

21(−∞,1] − 1(1,∞)

can also be written as

21(−∞,−3) + 21[−3,−2] + 21(−2,1] − 1(1,∞).

Clearly, (5.4) is obtained from (5.1) by splitting each Ek into a few Fl’s

with the heights of φ on these Fl’s, dl’s, all equal to ck. Since the probability

of Ek equals the sum of probabilities of the Fl’s that are split from Ek, it is

easy to see that

E[φ] =

m∑
l=1

dlP(Fl).(5.5)

For notational convenience, we may allow some Fl’s to be empty in (5.4).

Note that (5.5) still holds. Indeed, if Fl = ∅, then dl1Fl = 0 on Ω, so that

the term can be removed from the sum in (5.4), and dlP(Fl) = 0, so that

the term can be removed from the sum in (5.5).

The following are fundamental properties of expectations and will be

extended to general random variables later.

5.1. Lemma. Let φ and ψ be two simple functions. The following hold.

(a) E[aφ+ bψ] = aE[φ] + bE[ψ] for any a, b ∈ R;

(b) E[φ] ≤ E[ψ] if φ ≤ ψ on Ω.

Proof. Write φ =
∑n

k=1 ck1Ek , where ck’s are all the distinct values

of φ, and ψ =
∑m

l=1 dl1Fl , where dl’s are all the distinct values of ψ. Note

that the mn sets Ek ∩ Fl’s are disjoint with union Ω and thus constitute a

partition of Ω; see Figure 1 for illustration.
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E1 ∩ F1 E1 ∩ F2 E1 ∩ F3

F1 F2 F3

E1

E2

Figure 1. Double partition

For any k = 1, . . . , n, since Ek =
⋃m
l=1(Ek ∩ Fl), one verifies that 1Ek =∑m

l=1 1Ek∩Fl (Exercise 5.1). Thus it follows that

φ =

n∑
k=1

ck

m∑
l=1

1Ek∩Fl =

n∑
k=1

m∑
l=1

ck1Ek∩Fl .

Similarly,

ψ =
m∑
l=1

dl

n∑
k=1

1Ek∩Fl =
n∑
k=1

m∑
l=1

dl1Ek∩Fl ,

aφ+ bψ =
n∑
k=1

m∑
l=1

(ack + bdl)1Ek∩Fl .

By Remark 5.1, we have

E[aφ+ bψ] =

n∑
k=1

m∑
l=1

(ack + bdl)P(Ek ∩ Fl)

=
n∑
k=1

m∑
l=1

ackP(Ek ∩ Fl) +
n∑
k=1

m∑
l=1

bdlP(Ek ∩ Fl)

=
n∑
k=1

ack

m∑
l=1

P(Ek ∩ Fl) +
m∑
l=1

bdl

n∑
k=1

P(Ek ∩ Fl)

=
n∑
k=1

ackP(Ek) +

m∑
l=1

bdlP(Fl)

=a

n∑
k=1

ckP(Ek) + b

m∑
l=1

dlP(Fl)

=aE[φ] + bE[ψ].

This proves (a). Suppose now that φ ≤ ψ on Ω. For each pair (k, l), where

1 ≤ k ≤ n and 1 ≤ l ≤ m, if Ek ∩ Fl = ∅, then ckP(Ek ∩ Fl) = 0 =
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dlP(Ek ∩ Fl). If Ek ∩ Fl 6= ∅, then since φ = ck and φ = dl on it, ck ≤ dl,

implying that ckP(Ek ∩ Fl) ≤ dlP(Ek ∩ Fl). Thus

E[φ] =

n∑
k=1

m∑
l=1

ckP(Ek ∩ Fl) ≤
n∑
k=1

m∑
l=1

dlP(Ek ∩ Fl) = E[ψ],

by Remark 5.2 again. This proves (b). �

The following remark continues to relax the conditions in the expres-

sion (5.1) to further ease the computation of E[φ].

5.3. Remark. By induction, it follows from Lemma 5.1 that, for any

simple functions φ1, . . . , φn, E[
∑n

k=1 φk] =
∑n

k=1 E[φk]. Thus if we write a

simple function as φ =
∑n

k=1 ck1Ek , where ck’s may not be distinct and Ek’s

may not be disjoint, we still have

E[φ] =

n∑
k=1

E[ck1Ek ] =

n∑
k=1

E
[
ck1Ek + 01Ec

k

]
=

n∑
k=1

(
ckP(Ek) + 0P(Ec

k)
)

=
n∑
k=1

ckP(Ek).

5.2. Lemma. Let φ and φn, n ∈ N, be simple functions such that 0 ≤
φn ↑ φ on Ω. Then E[φn] ↑ E[φ].

Proof. The increasingness of E[φn]’s is immediate by Lemma 5.1(b).

It remains to be shown that supn E[φn] = E[φ].

Let’s assume first that φ is an indicator function, say, φ = 1E . For any

ε ∈ (0, 1), since φn ↑ 1E , recall that

{φn > 1− ε} ↑ {1E > 1− ε}.
The last set is easily seen to be equal to E. By Proposition 2.42,

P(φn > 1− ε) ↑ P(E) = E[1E ].(5.6)

On the set {φn > 1− ε}, φn is at least 1− ε and (1− ε)1{φn>1−ε} is exactly

1−ε; off the set {φn > 1−ε}, φn is at least 0 and (1−ε)1{φn>1−ε} is exactly

0. Thus φn ≥ (1− ε)1{φn>1−ε} everywhere on Ω. By Lemma 5.1(b),

E[φn] ≥ E[(1− ε)1{φn>1−ε}] = (1− ε)P(φn > 1− ε).
This, together with (5.6), implies that

supn E[φn]

1− ε ≥ sup
n

P(φn > 1− ε) = E[1E ].

2This is where countable additivity of P is essentially used.
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Letting ε→ 0, we obtain

sup
n

E[φn] ≥ E[1E ].

Reversely, for every n ∈ N, since φn ≤ 1E , E[φn] ≤ E[1E ] by Lemma 5.1(b)

again. Thus E[1E ] = supn E[φn], as desired.

Now we prove the general case. If φ = 0 on Ω, then there is nothing

to prove, since all the expectations are zero. Otherwise, we can write φ =∑m
l=1 cl1El , where El’s are disjoint and cl > 0 for each l. Fix any l =

1, . . . ,m. We have φn1El ↑n φ1El = cl1El . Thus

φn1El
cl

↑n 1El ,

and by the case we just proved, E
[φn1El

cl

]
↑n E1El ]. By Lemma 5.1(a),

E[φn1El ] ↑n E[cl1El ].

Summing over l = 1, . . . ,m, we get by Lemma 5.1(a),

E
[
φn

m∑
l=1

1El

]
↑n

m∑
l=1

clE[1El ] = E[φ].

We claim that φn
∑m

l=1 1El = φn. Indeed, simply note that
∑m

l=1 1El =

1⋃m
l=1 El

and that outside the set
⋃m
l=1El, φ is zero and thus φn is zero as

well, since 0 ≤ φn ≤ φ. Putting things together, we obtain E[φn] ↑n E[φ]. �

2. Expectations of general functions

We define expectations of general random variables, by approximating

them using simple functions, for which we already have a natural way of

defining expectations, as studied in the previous section.

5.4. Definition. (a) For a non-negative random variable X on Ω,

take3 a sequence (φn)n∈N of simple functions such that 0 ≤ φn ↑ X
on Ω and define the expectation, E[X], of X by

E[X] := lim
n

E[φn] = sup
n

E[φn]4.

(b) For a general random variable X, we define its expectation by

E[X] := E[X+]− E[X−],

if at least one of E[X±] is finite. If E[X±] are both infinite, we say

that the expectation of X is undefined.

3By Theorem 4.12, such a sequence always exists.
4By Lemma 5.1(b), E[φn] ↑, so that limn E[φn] = supn E[φn].
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If E[X] is defined, then E[X] ∈ R iff E[X±] are both finite, E[X] =∞ iff

E[X+] = ∞ and E[X−] < ∞, E[X] = −∞ iff E[X+] < ∞ and E[X−] = ∞.

When E[X] ∈ R, we say that X is integrable .

Clearly, if X ≥ 0 on Ω then E[X] ≥ 0.

There are two issues that need immediate dissolution.

5.5. Remark. (a) For a non-negative random variable, we must

show that our definition of E[X] is independent of the choice of

(φn), i.e., if we take another sequence (ψn) of simple functions such

that 0 ≤ ψn ↑ X on Ω, then we must have supn E[ψn] = supn E[φn].

Indeed, take any simple function ψ such that 0 ≤ ψ ≤ X on Ω.

Since φn∧ψ ↑n X ∧ψ = ψ and each φn∧ψ is simple (Exercise 5.2)

and non-negative, we have by Lemma 5.2,

E[ψ] = sup
n

E[φn ∧ ψ] ≤ sup
n

E[φn].

Thus

sup
{

E[ψ] : 0 ≤ ψ ≤ X,ψ is simple
}
≤ sup

n
E[φn].

The reverse inequality also holds, since each φn is a simple function

satisfying 0 ≤ φn ≤ X and thus lying in the defining set of the sup

in the left hand side. It follows that

sup
n

E[φn] = sup
{

E[ψ] : 0 ≤ ψ ≤ X,ψ is simple
}
.

Clearly, the same arguments, if applied to (ψn), show that supn E[ψn]

is equal to the right hand as well.

(b) For a simple function φ, we now have two methods to define its

expectation: using Definition 5.1 or Definition 5.4. We must show

that they coincide. Let’s temporarily denote the expectation in

Definition 5.1 as E0. If φ ≥ 0, let φn = φ for each n ∈ N, then

E[φ] = sup
n

E0[φn] = E0[φ].

For an arbitrary φ, since φ = φ+−φ− and φ± are both simple and

non-negative, it follows from Lemma 5.1(a),

E0[φ] = E0[φ+]− E0[φ−] = E[φ+]− E[φ−] = E[φ].

5.1. Example. Let Ω = N be endowed with a probability measure P.

For any non-negative random variable X on N, we define a sequence of



2. EXPECTATIONS OF GENERAL FUNCTIONS 51

simple functions as follows. For every n ∈ N,

φn(k) =

X(k) if k ≤ n,
0 if k > n.

That is, φn knocks X to 0 on the set {k ∈ N : k > n}. We can rewrite φn

as φn =
∑n

k=1X(k)1{k}. Thus

E[φn] =
n∑
k=1

X(k)P({k}).

One sees that for each k ∈ N, 0 ≤ φn(k) ↑ X(k). Therefore,

E[X] = sup
n∈N

E[φn] = sup
n

n∑
k=1

X(k)P({k}) =

∞∑
k=1

X(k)P({k}).

For a general random variable X on N, E[X±] =
∑∞

k=1X(k)±P({k}). If

one of the sums is finite, then

E[X] =E[X+]− E[X−] =
∞∑
k=1

X(k)+P({k})−
∞∑
k=1

X(k)−P({k})

=

∞∑
k=1

X(k)P({k})

Moreover, X is integrable iff
∑∞

k=1X(k)+P({k})+
∑∞

k=1X(k)−P({k}) <∞.

Note that
∞∑
k=1

X(k)+P({k}) +
∞∑
k=1

X(k)−P({k}) =
∞∑
k=1

(X(k)+ +X(k)−)P({k})

=

∞∑
k=1

|X(k)|P({k}) = E[|X|].

Thus X is integrable iff E[|X|] < ∞—this fact is true in general (see Exer-

cise 5.5).

We now extend Lemma 5.1 to the general case; the extension of Lemma 5.2

is of fundamental importance and is put to the next section.

5.6. Proposition. Let X,Y be two random variables such that E[X]

and E[Y ] are both defined. The following statements hold.

(a) E[X] ≤ E[Y ] whenever X ≤ Y on Ω.

(b) E[aX] = aE[X] for any a ∈ R.

(c) If E[X]+E[Y ] is defined, then E[X+Y ] is defined, and E[X+Y ] =

E[X] + E[Y ].
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Proof. (a). Let’s assume first that 0 ≤ X ≤ Y . Take a sequence

(φn)n∈N of simple functions such that 0 ≤ φn ↑ X on Ω and a sequence

(ψn)n∈N of simple functions such that 0 ≤ ψn ↑ Y on Ω. Then each φn ∧ψn
is simple and 0 ≤ φn ∧ ψn ↑ X ∧ Y = X. Thus

E[X] = sup
n

E[φn ∧ ψn] ≤ sup
n

E[ψn] = E[Y ].

For general X,Y , note that since X ≤ Y , X+ ≤ Y + and Y − ≤ X−

(Exercise 0.1). Thus by what we just proved, E[X+] ≤ E[Y +] and E[Y −] ≤
E[X−], implying that E[X] = E[X+]− E[X−] ≤ E[Y +]− E[Y −] = E[Y ].

(b). Assume that a ≥ 0. We start with the special case that X ≥ 0.

Take any sequence (φn)n∈N of simple functions such that 0 ≤ φn ↑ X on Ω.

Then each aφn is simple and 0 ≤ aφn ↑ aX on Ω. Thus

E[aX] = lim
n

E[aφn] = lim
n
aE[φn] = a lim

n
E[φn] = aE[X],

where the first and last equalities are definitions of expectation and the

second equality is due to Lemma 5.1(a).

Now let X be general. Since a ≥ 0, direct verification shows that

(aX)± = aX±. Thus E[(aX)±] = E[aX±] = aE[X±], by the special case

we just proved. Since E[X] is defined, E[X±] cannot be both ∞. Hence,

E[(aX)±] cannot be both ∞. It follows that E[aX] is defined and

E[aX] =E[(aX)+]− E[(aX)−] = aE[X+]− aE[X−]

=a(E[X+]− E[X−]) = aE[X].

The case where a < 0 is left to the reader as exercise.

(c). Let’s first consider the special case that X,Y ≥ 0. Take a sequence

(φn)n∈N of simple functions such that 0 ≤ φn ↑ X on Ω and a sequence

(ψn)n∈N of simple functions such that 0 ≤ ψn ↑ Y on Ω. Then each φn +ψn

is simple and 0 ≤ φn + ψn ↑ X + Y . By Lemma 5.1(a),

E[X + Y ] = lim
n

E[φn + ψn] = lim
n

(
E[φn] + E[ψn]

)
= lim

n
E[φn] + lim

n
E[ψn]

=E[X] + E[Y ].

By induction, we can extend this equality as follows: for any X1, . . . , Xn ≥ 0,

E
[ n∑
k=1

Xk

]
=

n∑
k=1

E[Xk].(5.7)
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Consider the general case now. Note that X+ − X− + Y + − Y − =

X + Y = (X + Y )+ − (X + Y )−. Thus

X+ + Y + + (X + Y )− = (X + Y )+ +X− + Y −.

Applying expectations to the above, we have by (5.7),

E[X+] + E[Y +] + E[(X + Y )−] = E[(X + Y )+] + E[X−] + E[Y −].(5.8)

Since some terms might be infinite, we need to put a bit more attention.

We discuss the following cases:

• E[X] =∞ or E[Y ] =∞.

Without loss of generality, assume that E[X] =∞. Then E[X+] =

∞ and E[X−] < ∞. Since E[X] + E[Y ] is defined, it follows that

E[Y ] 6= −∞, which in turn implies that E[Y −] <∞, and

E[X] + E[Y ] =∞.

Recall that (X + Y )− ≤ X−+ Y − (Exercise 0.1). Thus by (a) and

(5.7), we have

E[(X + Y )−] ≤ E[X− + Y −] = E[X−] + E[Y −] <∞.

This proves that E[X + Y ] is defined. Moreover, from (5.8), it

follows that E[(X + Y )+] =∞. Consequently,

E[X + Y ] =∞ = E[X] + E[Y ].

• E[X] = −∞ or E[Y ] = −∞.

Apply (b) and consider −X, −Y and −X − Y .

• E[X] ∈ R and E[Y ] ∈ R.

As in the first case, one obtains E[(X + Y )−] < ∞. (5.8) that

implies all the terms in it are finite. Moving around some terms,

we get E[X + Y ] = E[X] + E[Y ].

�

To include another interesting example, we need the following propo-

sition. We say that two random variables X,Y are almost surely equal,

written as X = Y a.s., if P(X 6= Y ) = 05; that is, X and Y coincide except

on a negligible set. Intuitively, we shall not distinguish almost surely equal

random variables. The following result provides support for this.

5.7. Proposition. If X = 0 a.s., then E[X] = 0.

5The set {X 6= Y } = {X − Y 6= 0} is always measurable since X − Y is measurable.
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Its proof uses a routine for proving many results in real analysis: first

consider simple non-negative functions, then consider general non-negative

functions, and finally consider general functions.

Proof. Let φ ≥ 0 be a simple function such that φ = 0 a.s. We show

that E[φ] = 0. If φ = 0 on Ω, it is clear. Otherwise, write φ =
∑n

k=1 ck1Ek
where ck’s are distinct and ck > 0 for each k = 1, . . . , n. Then Ek = {φ =

ck} ⊂ {φ 6= 0}, implying that P(Ek) = 0, for each k = 1, . . . , n. Therefore,

E[φ] =
∑n

k=1 ckP(Ek) = 0, as desired.

Let Y ≥ 0 be any function such that Y = 0 a.s. Take any simple function

φ such that 0 ≤ φ ≤ Y . Then {φ 6= 0} ⊂ {Y 6= 0} and thus P(φ 6= 0) = 0,

i.e., φ = 0 a.s. By the previous case, E[φ] = 0. Since φ is arbitrary, we have

by the definition of expectation that E[Y ] = 0.

For the general case, note that X± = 0 a.s.(Exercise 5.3). Thus by the

previous case, E[X±] = 0 and E[X] = E[X+]− E[X−] = 0. �

We can similarly define that X ≤ Y a.s. if P(X > Y ) = 0.

5.8. Corollary. If X ≤ Y a.s. and both E[X] and E[Y ] are defined,

then E[X] ≤ E[Y ]. If X = Y a.s. and E[X] is defined, then E[Y ] is defined

and E[Y ] = E[X].

We leave the proof to the reader as an exercise.

5.2. Example. Let ω1 and ω2 be two distinct points in Ω and t ∈ [0, 1].

Let P = tδω1 + (1 − t)δω2 . Let’s compute E[X] for any random variable X.

The set Ω \ {ω1, ω2} has probability 0. This motivates us to consider X on

three pieces of Ω: {ω1}, {ω2}, and Ω \ {ω1, ω2}. We can write X as follows:

X = X(ω1)1{ω1} +X(ω2)1{ω2} +X1Ω\{ω1,ω2}.

Note thatX1Ω\{ω1,ω2} 6= 0 only possibly on Ω\{ω1, ω2}. Thus {X1Ω\{ω1,ω2} 6=
0} ⊂ Ω\{ω1, ω2} and P(X1Ω\{ω1,ω2} 6= 0) = 0. It follows that X1Ω\{ω1,ω2} =

0 a.s. and E[X1Ω\{ω1,ω2}] = 0. Consequently, by Proposition 5.6(c),

E[X] =E[X(ω1)1{ω1}] + E[X(ω2)1{ω2}] + E[X1Ω\{ω1,ω2}]

=X(ω1)P({ω1}) +X(ω2)P({ω2})
=tX(ω1) + (1− t)X(ω2).

See Exercise 5.8 for an extension of this example.
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3. Convergence theorems

We extend Lemma 5.2 to general random variables. We first extend the

notion of almost surety. We say a property is satisfied almost surely on Ω

if the set of points where it is not satisfied has probability 0.

5.9. Theorem (Monotone Convergence Theorem). Let X,Xn, n ∈ N, be

random variables such that Xn ≥ 0 a.s. for every n ∈ N, Xn ≤ Xn+1 a.s.

for every n ∈ N, and X = limnXn a.s.6 Then E[Xn] ↑ E[X].

Using X = limnXn, we can rewrite the conclusion in the theorem as

E[limnXn] = limn E[Xn]. That is, we can change the order of taking expec-

tation and limit, under the assumptions of the theorem.

Proof. We first prove the case where 0 ≤ Xn ↑ X on Ω. For each

n ∈ N, take a sequence (φn,k)k∈N of simple functions such that

0 ≤ φn,k ↑k Xn.

Now for every n ∈ N, put

ψn = max{φm,n : m = 1, . . . , n}.
See Figure 2 for illustration. Clearly, each ψn is simple and non-negative.

φ1,1

φ2,1

φ3,1

...

φ1,2

φ2,2

φ3,2

...

φ1,3

φ2,3

φ3,3

...

· · · −→ X1

· · · −→ X2

· · · −→ X3

...

Figure 2. Double array of simple functions

Since each row is increasing,

ψn+1 = max{φm,n+1 : m = 1, . . . , n+ 1} ≥ max{φm,n+1 : m = 1, . . . , n}
≥max{φm,n : m = 1, . . . , n} = ψn.

Since every φn,k is bounded by Xn and thus by X, ψn ≤ X for every n ∈ N,

implying that limn ψn ≤ X. For any k ∈ N, ψn ≥ φk,n whenever k ≤ n.

Letting n → ∞, it follows that limn ψn ≥ limn φk,n = Xk. Letting k → ∞,

6The set of points of convergence is always measurable; Exercise 4.13.
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it follows that limn ψn ≥ X. Therefore, limn ψn = X. By the definition of

expectation,

E[X] = lim
n

E[ψn].

Finally, note that since each row in Figure 2 is increasing, for any n ∈ N,

ψn = max{φm,n : m = 1, . . . , n} ≤ max{Xm : m = 1, . . . , n} = Xn.

Thus by Proposition 5.6(a), E[ψn] ≤ E[Xn] ≤ E[X]. Using the Squeeze Law,

we have limn E[Xn] = E[X]. The increasingness of E[Xn]’s is also due to

Proposition 5.6(a). The special case is thus proved.

Now we prove the general case. Set

A =
∞⋃
n=1

{Xn < 0} ∪
∞⋃
n=1

{Xn > Xn+1} ∪
{

(Xn)n does not converge to X
}
.

Each of the sets in the right hand side has probability zero. Thus A has

probability zero as well, by Corollary 2.7. We now set Y = X1Ac and

Yn = Xn1Ac for any n ∈ N. One sees that Y = X a.s. and Yn = Xn a.s. for

every n ∈ N. Thus by Corollary 5.8,

E[Y ] = E[X], E[Yn] = E[Xn], for every n ∈ N.(5.9)

Moreover, if ω ∈ A, then Y (ω) = 0 = Yn(ω) for each n ∈ N; if ω ∈ Ac, then

Yn(ω) = Xn(ω) for every n ∈ N, 0 ≤ Xn(ω) ≤ Xn+1(ω) for every n ∈ N, and

limnXn(ω) = X(ω). In either case, one sees that 0 ≤ Yn ↑ Y on Ω. Thus

the proof is complete by (5.9) and the special case we just proved. �

5.10. Corollary (Fatou’s Lemma). If Xn ≥ 0 a.s. for every n ∈ N and

lim infnXn ∈ R on Ω, then E[lim infnXn] ≤ lim infn E[Xn].

Proof. For any n ∈ N, set Yn = infk≥nXk. One sees that Yn ≥ 0 a.s.

for every n ∈ N (why? cf. Exercise 5.17) and Yn ↑ lim infnXn on Ω. Thus

E[lim inf
n

Xn] = sup
n

E[Yn].

Now for every n ∈ N, since Yn ≤ Xk for any k ≥ n, we have by Proposi-

tion 5.6(a),

E[Yn] ≤ E[Xk] for any k ≥ n.
Taking infimum over k, we have E[Yn] ≤ infk≥n E[Xk]. Therefore,

E[lim inf
n

Xn] = sup
n

E[Yn] ≤ sup
n

inf
k≥n

E[Xk] = lim inf
n

E[Xn].

�
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One may compare Theorem 5.9 and Corollary 5.10 with Proposition 2.8

and Corollary 2.4; see Exercise 5.15. See also Exercise 5.21 and 5.23 for the

cases when the limit/liminf takes infinite values.

5.11. Corollary (Dominated Convergence Theorem). Let X∗ ≥ 0 be

integrable. Let X,Xn, n ∈ N be such that |Xn| ≤ X∗ a.s. for every n ∈ N

and Xn −→ X a.s. Show that E[Xn] −→ E[X].

We leave the proof of this corollary to the reader; Exercise 5.13.

Exercises

5.1. Show that if E1, . . . , En are disjoint then 1⋃n
k=1 Ek

=
∑n

k=1 1Ek .

5.2. Show that for two simple functions φ and ψ, φ ∧ ψ is also simple.

5.3. Show that if X = 0 a.s., then X± = 0 a.s.

5.4. Complete the proof of Proposition 5.6.

5.5. Show that X is integrable iff E[|X|] <∞.

5.6. Show that if X is integrable then X1A is integrable for any A ∈ F .

5.7. Prove Corollary 5.8.

5.8. Let (ωn)n∈N be a sequence of distinct points in Ω and let (tn)n∈N

be a sequence of non-negative real numbers such that
∑∞

n=1 tn = 1. Let

P =
∑∞

n=1 tnδωn . Show that for any non-negative function X, E[X] =∑∞
n=1 tnX(ωn).

5.9. Suppose that X0 is integrable and X0 ≤ Xn ↑ X a.s. Then

limn E[Xn] = E[X].

5.10. Suppose that X0 is integrable and X0 ≥ Xn ↓ X a.s. Then

limn E[Xn] = E[X].

5.11. Suppose that X0 is integrable, X0 ≤ Xn a.s. for every n ∈ N, and

lim infnXn ∈ R on Ω. Then E[lim infnXn] ≤ lim infn E[Xn].

5.12. Suppose X0 is integrable, X0 ≥ Xn a.s. for every n ∈ N, and

lim supnXn ∈ R on Ω. Then E[lim supnXn] ≥ lim supn E[Xn].

5.13. Use Exercises 5.11 and 5.12 to prove Corollary 5.11.
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5.14. Let (An) be a sequence of subsets of a set Ω. Show that

lim sup
n

1An = 1lim supn An ,

lim inf
n

1An = 1lim infn An .

Moreover, 1An ↑ 1A iff An ↑ A.

5.15. Use Exercise 5.14 to deduce Proposition 2.8 and Corollary 2.4 from

Theorem 5.9 and Corollary 5.10, respectively.

5.16. Find a sequence (Xn) over some probability space (Ω,F ,P) such

that E[lim infn fn] > lim infn E[fn].

5.17. Let Xn and Yn, n ∈ N, be such that Xn ≥ Yn a.s. for every n ∈ N.

Show that Xn ≥ Yn for all n ∈ N a.s.

5.18. Show that X = Y a.s. iff X ≥ Y a.s. and X ≤ Y a.s.

5.19. Let (An)n∈N be a disjoint sequence of measurable sets such that

µ(Ak ∩Aj) = 0 whenever k 6= j. Show that (1An) converges to 0 a.s.

5.20. Let X,Y be integrable and a, b ∈ R. Show that aX + bY is inte-

grable.

5.21. Let (Xn)n∈N be a sequence of random variables such that Xn ≥ 0

a.s. for every n ∈ N and Xn ≤ Xn+1 a.s. for every n ∈ N. If Xn(ω) ↑ ∞ for

every ω in a set of positive measure, then E[Xn] ↑ ∞.

5.22. If Xn ≥ 0 a.s. for every n ∈ N, then lim infnXn > −∞ a.s.

5.23. If Xn ≥ 0 a.s. for every n ∈ N and lim infnXn = ∞ on a set of

positive measure, then lim infn E[Xn] =∞.



CHAPTER 6

Expectations II

We continue to establish some further properties of expectations. Fix

an arbitrary probability space (Ω,F ,P) in this chapter.

1. Some fundamental inequalities

The first inequality controls P(|X| ≥ ε) in terms of expectation.

6.1. Proposition (Chebyshev’s inequality). Let X be an integrable ran-

dom variable on Ω. For any ε > 0,

P(|X| ≥ ε) ≤ E[|X|]
ε

.

Proof. Apply Proposition 5.6(a) to ε1{|X|≥ε} ≤ |X|. �

6.2. Corollary. If E[|X|] = 0 then X = 0 a.s.

Proof. By Chebyshev’s inequality, P
(
|X| ≥ 1

k

)
= 0 for every k ∈ N.

Thus P(X 6= 0) = P
(⋃∞

k=1

{
|X| ≥ 1

k

})
= 0, by Corollary 2.7. �

The following result will be needed later.

6.3. Corollary. Let X,Y be integrable. Then X ≥ Y a.s. iff E[X1A] ≥
E[Y 1A] for every A ∈ F .

Note that X1A and Y 1A are both integrable (Exercise 5.6).

Proof. The “only if” part is immediate by Corollary 5.8. For the “if”

part, take A = {X < Y }. Then 0 ≥ E[Y 1A]− E[X1A] = E[(Y −X)1A] ≥ 0,

where the last inequality is due to (Y − X)1A ≥ 0 (verify it). Therefore,

E[(Y−X)1A] = 0. By Corollary 6.2, (Y−X)1A = 0 a.s. Since (Y−X)1A > 0

at every point in A, it follows that P(A) = 0, i.e., X ≥ Y a.s. �

The technique of truncating a random variable X to sets where it takes

certain special values is very impotant. For example, it has been used in

the proofs of Theorem 4.12 and Chebyshev’s inequality. We demonstrate

another application of it. See Exercise 6.3 for another good application.

59
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6.1. Example. If E[X2] <∞ then E[|X|] <∞. Indeed, note that

E[|X|] = E
[
|X|1{|X|<1}

]
+ E

[
|X|1{|X|≥1}

]
.

Clearly, E
[
|X|1{|X|<1}

]
≤ E

[
1{|X|<1}

]
≤ 1. Thus the integrability of X

purely depends on |X|1{|X|≥1}, the piece of X where it takes large values.

Note that if ω ∈ {|X| ≥ 1} then |X(ω)| ≤ X(ω)2. Thus |X|1{|X|≥1} ≤
X21{|X|≥1} ≤ X2. It follows that E

[
|X|1{|X|≥1}

]
≤ E[X2] <∞.

We now turn to the famous Hölder’s Inequality and Minskowski’s In-

equality. For a random variable X, its p-norm is given by

‖X‖p :=


(

E
[
|X|p

]) 1
p

if 1 ≤ p <∞,
inf
{
M > 0 : |X| ≤M a.s.

}
if p =∞.

It is easy to see that∥∥|X|∥∥
p

= ‖X‖p and ‖aX‖p = |a|‖X‖p(6.1)

for any a ∈ R. In particular, if 0 < ‖X‖p <∞, then∥∥∥ X

‖X‖p

∥∥∥
p

=
1

‖X‖p
‖X‖p = 1.(6.2)

If 1 < p < ∞, we call p′ such that 1
p + 1

p′ = 1 the conjugate index of p.

Clearly, p′ = p
p−1 ∈ (1,∞) and (p′)′ = p. The conjugate index of p = 1 is

1′ =∞; the conjugate index of p =∞ is ∞′ = 1.

6.4. Proposition (Hölder’s inequality). For any two random variables

X,Y and 1 ≤ p ≤ ∞,

‖XY ‖1 ≤ ‖X‖p‖Y ‖p′ .

Proof. We prove the inequality for 1 < p < ∞; it is left to the reader

when p = 1 or∞. We begin with kicking away the trivial cases. If ‖X‖p = 0,

then X = 0 a.s. by Corollary 6.2. It follows that XY = 0 a.s. and thus

‖XY ‖1 = 0 by Proposition 5.7. Therefore, the inequality holds. Similarly,

if ‖Y ‖p′ = 0, then the inequality holds. Assume now that

‖X‖p > 0, ‖Y ‖p′ > 0.

If ‖X‖p =∞ or ‖Y ‖p′ =∞, the inequality is clear since the right hand side

is ∞. Thus we assume that

‖X‖p <∞, ‖Y ‖p′ <∞.
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Dividing both sides by ‖X‖p‖Y ‖p′ , by (6.1), the desired inequality becomes∥∥∥ |X|‖X‖p
|Y |
‖Y ‖p′

∥∥∥
1
≤ 1.

Thus in view of (6.2), it is enough to prove that if ‖X‖p = 1 = ‖Y ‖p′ and

X,Y ≥ 0, then

E[XY ] ≤ 1.

Let’s prove the last inequality. Put f(t) = ln t on (0,∞). Then f ′′(t) =

−t−2 < 0 on (0,∞) and f is concave, i.e., t lnx+(1−t) ln y ≤ ln
(
tx+(1−t)y

)
for any t ∈ [0, 1] and x, y > 0. It follows that

xty1−t ≤ tx+ (1− t)y

for any t ∈ [0, 1] and x, y ≥ 0. Taking t = 1
p (so that 1− t = 1

p′ ), x = ap and

y = bp
′
, we get the famous Young Inequality:

ab ≤ ap

p
+
bp
′

p′

for any a, b ≥ 0. In particular, at every ω ∈ Ω,

X(ω)Y (ω) ≤ X(ω)p

p
+
Y (ω)p

′

p′
.

Taking expectations we have

E[XY ] ≤ E[Xp]

p
+

E[Y p′ ]

p′
=
‖X‖pp
p

+
‖Y ‖p′p′
p′

=
1

p
+

1

p′
= 1.

This completes the proof. �

When p = 2, Hölder’s Inequality is usually called Cauchy-Schwarz In-

equality.

6.5. Corollary (Minkowski’s Inequality). For any two random vari-

ables X,Y and 1 ≤ p ≤ ∞,∥∥X + Y
∥∥
p
≤ ‖X‖p + ‖Y ‖p.

Proof. We prove the inequality for 1 < p < ∞; it is left to the reader

when p = 1 or ∞. If ‖X‖p + ‖Y ‖p = ∞, there is nothing to prove. Let’s

assume that ‖X‖p + ‖Y ‖p <∞. Note that

|X + Y |p = |X + Y | · |X + Y |p−1 ≤ |X| · |X + Y |p−1 + |Y | · |X + Y |p−1.

Applying Hölder’s Inequality to the last two terms, we obtain

E[|X + Y |p] ≤ ‖X‖p
∥∥|X + Y |p−1

∥∥
p′

+ ‖Y ‖p
∥∥|X + Y |p−1

∥∥
p′
.
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In view of p′ = p
p−1 , we have

∥∥|X + Y |p−1
∥∥
p′

=

(
E
[(
|X + Y |p−1

) p
p−1
]) p−1

p

= ‖X + Y ‖p−1
p .

It follows that

‖X + Y ‖pp = E[|X + Y |p] ≤
(
‖X‖p + ‖Y ‖p

)
‖X + Y ‖p−1

p .

If ‖X + Y ‖p <∞, then diving both sides by ‖X + Y ‖p−1
p yields the desired

inequality.

Let’s now show that ‖X + Y ‖p <∞. Let a, b ≥ 0. Then

(a+ b)p ≤ (2 max{a, b})p = 2p max{ap, bp} ≤ 2p(ap + bp).

Thus

E[|X + Y |p] ≤E[(|X|+ |Y |)p] ≤ 2pE
[
|X|p + |Y |p

]
=2p

(
E
[
|X|p

]
+ E

[
|Y |p

])
= 2p(‖X‖pp + ‖Y ‖pp) <∞.

This completes the proof. �

6.2. Example. Let 1 < p < ∞. Consider Ω = {1, 2, . . . , n} endowed

with the probability P({k}) = 1
n for any k = 1, . . . , n. Then E[X] =

1
n

∑n
k=1X(k) for any function X. Thus Hölder’s Inequality reduces to

1

n

n∑
k=1

|X(k)Y (k)| ≤
(

1

n

n∑
k=1

|X(k)|p
) 1

p
(

1

n

n∑
k=1

|Y (k)|p′
) 1

p′

,

or simply,

n∑
k=1

|X(k)Y (k)| ≤
(

n∑
k=1

|X(k)|p
) 1

p
(

n∑
k=1

|Y (k)|p′
) 1

p′

.(6.3)

Similarly, Minkowski’s Inequality reduces to(
n∑
k=1

|X(k) + Y (k)|p
) 1

p

≤
(

n∑
k=1

|X(k)|p
) 1

p

+

(
n∑
k=1

|Y (k)|p
) 1

p

.(6.4)

It is interesting to observe that the general inequalities can be deduced

from these much simpler reduced forms. Let’s illustrate to deduce Proposi-

tion 6.4 from (6.3). Take any non-negative simple functions φ, ψ on Ω. We
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may write φ =
∑n

k=1 ak1Ek and ψ =
∑n

k=1 bk1Ek . Then by (6.3),

E[φψ] =

n∑
k=1

akbkP(Ek) =

n∑
k=1

akP(Ek)
1
p · bkP(Ek)

1
p′

≤
(

n∑
k=1

apkP(Ek)

) 1
p
(

n∑
k=1

bp
′

k P(Ek)

) 1
p′

= ‖φ‖p‖ψ‖p′ .

Now for general non-negative random variables X,Y , take two sequences

of simple functions such that 0 ≤ φn ↑ X and 0 ≤ ψn ↑ Y . Then 0 ≤
φnψn ↑ XY , φpn ↑ Xp, and ψp

′
n ↑ Y p′ . Thus E[φnψn] ↑ E[XY ], E[φpn] ↑ E[Xp],

and E[ψp
′
n ] ↑ E[Y p′ ]. Writing these terms in norms and letting n → ∞ in

E[φnψn] ≤ ‖φn‖p‖ψn‖p′ , we get E[XY ] ≤ ‖X‖p‖Y ‖p′ .

Put

Lp(Ω,F ,P) := {X : ‖X‖p <∞}.
We may abbreviate it as Lp. It can be shown that Lp is a vector space

for any p ∈ [1,∞]; in fact, a Banach space (Exercise 6.18). If we interpret

norm as “length” of a vector, Minkowski’s inequality is then the triangle

inequality.

2. Indefinite integrals

Let X be a non-negative integrable random variable on Ω. We define

µ(E) = E[X1E ] for every E ∈ F .(6.5)

6.6. Proposition. For a non-negative integrable random variable X, µ

in (6.5) is a finite measure on (Ω,F) such that µ(E) = 0 whenever P(E) = 0.

Proof. Clearly, µ(E) ≥ 0 for any E ∈ F . If P(E) = 0, then 1E = 0 a.s.,

and thus X1E = 0 a.s. It follows that µ(E) = E[X1E ] = 0. In particular,

µ(∅) = 0. Let (En)n∈N be a disjoint sequence in F . Set Yn = X1⋃n
k=1 Ek

for any n ∈ N and Y = X1⋃∞
k=1 Ek

. Then 0 ≤ Yn ↑ Y . Thus by Monotone

Convergence Theorem,

µ
( ∞⋃
k=1

Ek

)
=E[Y ] = lim

n
E[Yn] = lim

n
E[X1⋃n

k=1 Ek
]

= lim
n

E[X
n∑
k=1

1Ek ] = lim
n

n∑
k=1

E[X1Ek ] = lim
n

n∑
k=1

µ(Ek)

=
∞∑
k=1

µ(Ek).
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This proves that µ is a measure. It is finite since µ(Ω) = E[X] <∞. �

Sometimes µ is called the indefinite integral of X.

Surprisingly, the converse of this proposition is also true.

6.7. Theorem (Radon-Nikodym). Let µ be a finite measure on (Ω,F)

such that µ(E) = 0 whenever E ∈ F and P(E) = 0. Then there exists a

non-negative integrable random variable X on Ω satisfying (6.5).

The proof of this theorem is very technical and beyond the scope of this

book; we skip it. The random variable X is called the Radon-Nikodym

derivative of µ with respect to P and is denoted by

dµ

dP
.

It is unique up to a.s. equality. That is, if Y is another non-negative inte-

grable random variable satisfying (6.5), then X = Y a.s. (Exercise 6.20).

3. Lebesgue and Riemann integrals

Let (Ω,F , µ) be a general measure space. We can similarly define ex-

pectations of non-negative simple functions and then extend the definition

to general functions as in Definition 5.4. However, in this case, we rename

expectation as integral and rewrite it as∫
Ω
f(ω)dµ(ω),

or even ∫
Ω
fdµ,

∫
Ω
f,

as long as there is no possible ambiguity. One can effortlessly verify that all

the results in Sections 2 and 3 of Chapter 5 and in Section 1 of this chapter,

except Example 6.1, still hold. Results in Section 2 of this chapter hold for

σ-finite measures (see Exercises 6.21 and 6.22). In non-probability measure

spaces, we rename almost sure to almost everywhere .

6.3. Example. Let µ be the counting measure over N. Then for any

non-negative function f on N,
∫

N fdµ =
∑∞

k=1 f(k). Cf. Example 5.1.

6.4. Example. We illustrate an application of Dominated Convergence

Theorem. Let x, xn, n ∈ N, be real numbers such that xn −→ x. We want

to show that

lim
n

(
1 +

xn
n

)n
= ex.
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Endow Ω = N ∪ {0} with the counting measure. Let M := supn|xn| ∈ R.

Define the following functions on N ∪ {0}:

f∗ : N ∪ {0} → R; k 7→ 1

k!
Mk;

f : N ∪ {0} → R; k 7→ 1

k!
xk;

fn : N ∪ {0} → R; k 7→ 1{k≤n}
n

n

n− 1

n
· · · n− k + 1

n

1

k!
xkn.

One sees that fn is simple and |fn| ≤ f∗ for every n ∈ N and that fn −→ f

on N∪{0}. Since
∫

Ω f
∗dµ = eM <∞, f∗ is integrable. Thus by Dominated

Convergence Theorem,
∫

Ω fn −→
∫

Ω f = ex. Finally, note that(
1 +

xn
n

)n
=

n∑
k=0

(
n

k

)
xkn
nk

=
∞∑
k=0

1{k≤n}
n

n

n− 1

n
· · · n− k + 1

n

1

k!
xkn

=

∫
Ω
fndµ.

We introduce one more convenient notation. For a measurable function

f on Ω and any E ∈ F , we write∫
E
fdµ :=

∫
Ω
f1Edµ,

as long as the latter integral is defined.

We may extend
∫
E fdµ to functions defined only on E. Indeed, for any

function f that is defined only on E, we extend it to a new function on

Ω by setting it equal to f on E and 0 off E. Abusing the notation a bit,

we also write the function as f1E . One sees that f1E is measurable iff

{ω ∈ E : f(ω) < c} ∈ F for every c ∈ R. Now define
∫
E fdµ as above. There

is an alternative way to achieve this extension; see Exercise 6.23.

So far, we’ve only given examples of expectations and integrals over

relatively simple measure spaces, such as counting measures or Dirac’s mea-

sures. Let’s work on R. Let F : R → R be increasing and right continuous,

and let µ be its associated Lebesgue-Stieltjes measure. Instead of writing∫
R fdµ, we write ∫

R
fdF,

and call it the Lebesgue-Stieltjes integral of f with respect to F . There

are two cases where Lebesgue-Stieltjes integrals are relatively computable:

one is that µ is a combination of Diract measures (Exercise 5.8); the other

is that F has a density, which we postpone to Chapter 8.
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Let’s look at the most important case. Recall that if F (x) = x for any

x ∈ R, then the Lebesgue-Stieltjes measure is the Lebesgue measure. The

corresponding integral is called the Lebesgue integral and is written as∫
R
fdm or

∫
R
fdx.

Let f : [a, b] → R be continuous or monotone. Recall that we already have

an integral of f , called the Riemann integral and denoted by∫ b

a
fdx.

On the other hand, as is discussed above, we can extend f to R (the extended

function is Borel-measurable and integrable; Exercise 6.19) and have the

Lebesgue integral of f : ∫
[a,b]

fdx.

For convenience, we use
∫ b
a and

∫
[a,b] to indicate the Riemann and Lebesgue

integrals, respectively.

6.8. Proposition. Let f : [a, b]→ R be continuous or monotone. Then∫
[a,b]

fdx =

∫ b

a
fdx.

Proof. Let’s write the proof for a = 0 and b = 1. For every n ∈ N,

define fn : R→ R by setting it to 0 on (−∞, 0) and [1,∞)1 and to the value

of f at the left endpoint k−1
n over each interval

[
k−1
n , kn

)
, k = 1, . . . , n. See

Figure 1 for illustration. We can write out fn as

fn =
n∑
k=1

f
(k − 1

n

)
1[ k−1

n
, k
n

).
We want to show that fn

a.e.−→ f1[0,1] on R. The convergence is clear on

(−∞, 0) ∪ (1,∞) since all the functions are 0 there. We don’t care about

convergence at x = 0 or 1, since m({0, 1}) = 0. We claim that if x ∈ (0, 1)

is a continuous point of f , then fn(x) −→ f(x). Indeed, take any ε > 0.

Then continuity of f at x implies that there exists a small δ > 0 such that

(x− δ, x+ δ) ⊂ (0, 1) and

|f(x′)− f(x)| < ε for any x′ ∈ (x− δ, x+ δ).

1As one will see, inclusion or exclusion of endpoints does not matter as we only need

to guarantee a.e. convergence so that Monotone Convergence Theorem is applicable; we

choose this way for notational convenience.
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1
n

2
n

3
n 1

fn

Figure 1. Graph of fn

Let n0 = [1
δ ] + 1 ∈ N. For every n ∈ N, since x ∈ (0, 1) ⊂ ⋃n

k=1

[
k−1
n , kn

)
,

there exists a unique k from {1, 2, . . . , n} such that x ∈
[
k−1
n , kn

)
. Thus if

n ≥ n0, ∣∣∣x− k − 1

n

∣∣∣ < k

n
− k − 1

n
=

1

n
≤ 1

n0
< δ,

and consequently,∣∣fn(x)− f(x)
∣∣ =

∣∣∣f(k − 1

n

)
− f(x)

∣∣∣ < ε.

This proves the claim. If f is continuous on [0, 1], then it is immediate that

fn
a.e.−→ f1[0,1] on R. Let f be monotone. Recall from Example 0.1 that the

set of points where f is discontinuous is finite or countably infinite and thus

has Lebesgue measure 0. Therefore, we again getfn
a.e.−→ f1[0,1] on R.

Next, let M := supx∈[0,1]|f(x)|. Since f is continuous or monotone on

[0, 1], M < ∞. Set f∗ = M1[0,1]. Then
∫

R f
∗dx = M and f∗ is integrable.

Moreover, it is clear that |fn| ≤ f∗ on R for every n ∈ N. Thus by Dominated

Convergence Theorem,∫
R
fndx −→

∫
R
f1[0,1]dx =

∫
[0,1]

fdx.

On the other hand, each fn is a simple function and direct computation

gives
∫

R fndx =
∑n

k=1 f(k−1
n ) 1

n , which is a Riemann sum. Since Riemann

sums converge to the Riemann integral, we get the desired equality. �

6.9. Corollary. Let f : [a,∞) → R be non-negative and is either

continuous or monotone. Then∫
[a,∞)

fdx =

∫ ∞
a

fdx := lim
n→∞

∫ n

a
fdx.

We leave the proof to the reader as an exercise.
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Exercises

Exercises 6.1-6.18 are set over an aribitrary probability space (Ω,F ,P).

6.1. Show that if X ∈ L1 then limn E[|X|1{|X|>n}] = 0.

6.2. Show that if X ∈ L1 then limn→∞ nP(|X| > n) = 0.

6.3. Show that X ∈ L1 iff
∑∞

k=1 kP(k − 1 ≤ |X| < k) <∞.

6.4. Suppose that X ∈ L∞. Show that |X| ≤ ‖X‖∞ a.s.

6.5. Deduce Proposition 6.5 from (6.4).

6.6. Prove Hölder’s Inequality and Minkowski’s Inequality for p = 1 and

p =∞.

6.7. Let X ∈ L2. The variance of X is defined by V[X] := E
[(
X −

E[X]
)2]

. Show that V[X] = 0 iff X is a.s. equal to a constant.

6.8. Let X ∈ L2. Show that V [X] = E[X2] −
(
E[X]

)2
. Deduce that∣∣E[X]

∣∣ ≤ ‖X‖2. Deduce that ‖X‖1 ≤ ‖X‖2.

6.9. For X,Y ∈ L2, their covariance is defined by

Cov[X,Y ] = E
[(
X − E[X]

)(
Y − E[Y ]

)]
.

(If the covariance is 0, we say that the two random variables are uncorre-

lated). If V[X],V[Y ] > 0, their correlation is defined by

Cor[X,Y ] =
Cov[X,Y ]√

V[X]V[Y ]

Show that −1 ≤ Cor[X,Y ] ≤ 1. Show that

Cov[X,Y ] = E[XY ]− E[X]E[Y ].

6.10. Show that if 1 ≤ p ≤ ∞ then ‖X‖1 ≤ ‖X‖p ≤ ‖X‖∞.

6.11. Show that if 1 ≤ p ≤ q ≤ ∞ then ‖X‖p ≤ ‖X‖q.

6.12. Let 1 ≤ p <∞. Show that if 0 ≤ Xn ↑ X then ‖Xn‖p ↑ ‖X‖p and

if 0 ≤ Xn ↓ X then ‖Xn‖p ↓ ‖X‖p.

6.13. Let 1 ≤ p ≤ ∞. Let Xn ≥ 0 for any n ∈ N. Show that∥∥∑∞
n=1Xn

∥∥ ≤∑n=1‖Xn‖p.

6.14. Show that Lp is a vector space for any 1 ≤ p ≤ ∞.
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6.15. Let 1 ≤ p ≤ ∞ and (Xn)n∈N be a sequence of random variables

in Lp. Show that if
∑∞

1 ‖Xn‖p < ∞, then
∑∞

n=1|Xn| < ∞ a.s. and there

exists a random variable X ∈ Lp such that X =
∑∞

n=1Xn a.s. and ‖X −∑n
k=1Xk‖p ≤

∑∞
k=n+1‖Xk‖p for every n ∈ N.

6.16. Let 1 ≤ p ≤ ∞. Let (Xn)n∈N be a sequence in Lp that is Cauchy,

i.e., for any ε > 0, there exists n0 ∈ N such that ‖Xn −Xm‖ < ε whenever

n,m ≥ n0. Show that there exists a strictly increasing sequence (nk)k∈N in

N such that ‖Xnk+1
−Xnk‖ ≤ 1

2k
for every k ∈ N.

6.17. Let 1 ≤ p ≤ ∞. Let (Xn)n∈N be a Cauchy sequence in Lp. If

there exist a subsequence (Xnk)k∈N and X such that ‖Xnk − X‖p −→ 0

then ‖Xn −X‖p −→ 0.

6.18. Let 1 ≤ p ≤ ∞. Show that Lp is a Banach space, i.e., for any

Cauchy sequence (Xn) in it, there exists X ∈ Lp such that ‖Xn−X‖p −→ 0.

6.19. Let f : [a, b]→ R be continuous or monotone. Show that f1[a,b] is

Borel-measurable and Lebesgue integrable.

6.20. Show that the Radon-Nikodym derivative is unique up to a.s.

equality.

6.21. Let X be a non-negative measurable function. After replacing P

with a σ-finite measure, show that µ defined by (6.5) is a σ-finite measure.

Moreover, µ is finite if X is integrable.

6.22. Let µ, ν be two σ-finite measures on (Ω,F) such that ν(E) = 0

whenever E ∈ F and µ(E) = 0. Show that there exists a non-negative

measurable function f : Ω→ R such that ν(E) =
∫
E fdµ for any E ∈ F .

6.23. For any non-empty set E ∈ F , recall from Exercise 1.1 that F|E :=

{F : F ∈ F , F ⊂ E} is a σ-algebra over E. Observe that f : E→ R is F|E-

measurable iff f1E is measurable. Let µ be any measure on F . Define µ|E :

F|E → [0,∞] by µ|E(F ) = µ(F ) for any F ∈ F|E . Show that
∫
E fdµ|E =∫

E fdµ.

6.24. Prove Corollary 6.9.





CHAPTER 7

Product Measures

In this chapter, we systematically study how to build higher-dimensional

measures from low-dimensional ones.

1. Construction of product measures

Let (Ω,F ,P) and (Γ,G,Q) be two probability spaces. For A ∈ F and

B ∈ G, A×B is called a measurable rectangle . Let F×G be the σ-algebra

generated by all measurable rectangles, i.e.,

F × G := σ
(
{A×B : A ∈ F , B ∈ G}

)
.

We want to construct a probability measure µ on (Ω× Γ,F × G) satisfying

the following condition:

µ(A×B) = P(A)× Q(B), for any A ∈ F , B ∈ G.

Basically, it means that if we interpret P(A) and Q(B) as the “length” of A

and B, respectively, then we want µ to measure the “area” of A×B.

We introduce two natural approaches for the construction of the desired

measure. For the first approach, let’s use sets in R2 for illustration. Assume

that we know how to measure the length of objects in R, in particular, line

segments. Then we know how to measure the areas of rectangles: set the

area as the product of the length of the two sides. We can then extend the

measurement to more complex objects in R2 by covering the object using

rectangles. See Figure 1 for illustration. When we use smaller and smaller

Figure 1. Cover a disk by rectangles.

71
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rectangles to cover the disk, we can intuitively feel that the total area of

the rectangles in the covering, which we term as the area of the covering,

approximates the “area” of the disk. We put quotation marks around the

word area, because we have not defined the area of the disk yet. A bit

sneaky, we may define the area of the disk as the infimum of the areas of all

rectangular coverings. (In Figure 1, because the disk has very nice shape,

we cover it using finitely many rectangles. For a general set, we should use

countably infinitely many rectangles to cover it.)

The mathematical formulation of this approach of obtaining measure-

ment of complex objects from that of simple ones is actually (3.2). We sketch

the construction explicitly. LetA be the collection of all the unions of finitely

many disjoint measurable rectangles, and for any E =
⋃n
k=1Ak×Bk, where

Ak ×Bk’s are disjoint measurable rectangles, set

µ(E) =
n∑
k=1

P(Ak)Q(Bk).

Then A is an algebra and µ is a pre-measure over A; see Exercises 7.1-7.3.

Applying Theorem 3.3, we get the desired measure µ over σ(A) = F × G.

Clearly, for any A ∈ F and B ∈ G, µ(A× B) = µ(A× B) = P(A)Q(B). In

particular, µ(Ω× Γ) = 1. By (3.2), we actually know the explicit definition

of µ: For any E ∈ F × G,

µ(E) = inf
{ ∞∑
n=1

µ(An) : An ∈ A for each n ∈ N, E ⊂
∞⋃
n=1

An

}
.(7.1)

One can replace sequences in A by sequences of disjoint measurable rectan-

gles in the above formula; see Exercise 7.4.

Now we focus on the second approach. Let E be a non-empty subset of

Ω× Γ. The idea is to reduce the dimension of the set. We do it as follows.

Pick any ω ∈ Ω. Consider the ω-section of E:

ωE :=
{
γ : (ω, γ) ∈ E

}
.

See the left figure in Figure 2. This is a subset of Γ, so we may get its length

as Q(ωE). We can then integrate the length of all sections across Ω using P:

ν(E) =

∫
Ω

Q(ωE)dP(ω).(7.2)

See the right figure in Figure 2.

7.1. Example. Let A ∈ F and B ∈ G. If ω ∈ A, then ωA × B = B;

if ω 6∈ A, then ωA × B = ∅. Thus Q(ωA × B) = Q(B) if ω ∈ A and
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Ω

Γ

ωE

ω

E

Ω

Γ

←→

ω

E

Figure 2. Low-dimensional sections.

Q(ωA×B) = 0 if ω 6∈ A. It follows that Q(ωA×B) = Q(B)1A(ω) and hence

ν(A×B) = P(A)Q(B).

Of course, for a general set E ∈ F ×G, we shall ask whether the set ωE

and the function Q(·E) are always measurable in their appropriate senses,

so that the right hand side of (7.2) is defined. The answer is yes.

7.1. Lemma. Let E be a set in F × G. Then ωE ∈ G for any ω ∈ Ω.

Proof. Let D = {E ⊂ Ω × Γ : ωE ∈ G for every ω ∈ Ω}. We want to

show that F × G ⊂ D. Denote the collection of all measurable rectangles

by P. Then σ(P) = F × G, P ⊂ D by Example 7.1, and it is immediate

verification that P is a π-system. Thus by Dynkin’s π-λ theorem 1.10, it

suffices to show that D is a λ-system over Ω×Γ. We verify it now. Clearly,

being a measurable rectangle, ∅ = ∅ × Γ ∈ D1. Take any E ∈ D. Then for

any ω ∈ Ω, ωE ∈ G. Thus

ω(Ec) ={γ ∈ Γ : (ω, γ) ∈ Ec} = {γ ∈ Γ : (ω, γ) 6∈ E}
=Γ \ {γ ∈ Γ : (ω, γ) ∈ E} = (ωE)c ∈ G.(7.3)

Consequently, Ec ∈ D. Similarly, for any (disjoint) sequence (En)n∈N in D,

it follows from

ω
( ∞⋃
n=1

En

)
=
{
γ ∈ Γ : (ω, γ) ∈

∞⋃
n=1

En

}
=

∞⋃
n=1

{
γ ∈ Γ : (ω, γ) ∈ En

}
=

∞⋃
n=1

ωEn(7.4)

that
⋃∞
n=1En ∈ D. This proves that D is a λ-system over Ω× Γ. �

7.2. Lemma. Q(·E) is F-measurable for any E ∈ F × G.

1The first empty set is a subset of Ω× Γ. The second empty set is a subset of Ω.
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Proof. Let D = {E ∈ F × G : Q(·E) is measurable}. By Example 7.1

again, D contains all measurable rectangles. Thus as before, it suffices to

show that D is a λ-system. We apply the probability Q to the first and last

terms of the formulas in the proof of Lemma 7.1. Then for any E ∈ D,

Q
(ω

(Ec)
)

= Q
(
(ωE)c

)
= 1− Q

(ω
E
)
,

implying that Q
(·

(Ec)
)

is measurable, so that Ec ∈ D. For any disjoint

sequence (En)n∈N in D, note that (ωEn) is a disjoint sequence in G for any

ω ∈ Ω. Thus it follows from

Q
(ω( ∞⋃

n=1

En

))
= Q

( ∞⋃
n=1

ωEn

)
=

∞∑
n=1

Q
(ω
En

)
(7.5)

that Q
(·(⋃∞

n=1En
))

is measurable, so that
⋃∞
n=1En ∈ D. �

7.1. Theorem. For any two probability spaces (Ω,F ,P) and (Γ,G,Q),

there exists a unique measure ν on F × G such that

ν(A×B) = P(A)× Q(B) for any A ∈ F , B ∈ G.(7.6)

Proof. Clearly, if such a ν exists, we have ν(Ω × Γ) = P(Ω)Q(Γ) = 1.

Thus the uniqueness part follows from Theorem 2.9, since the set of all

measurable rectangles is a π-system. For the existence part, we only need

to show that the measure ν in (7.2) is a measure. Indeed, it is clear that

ν(∅) = 0. The countable additivity follows from taking expectations of the

first and last terms in (7.5). This completes the proof. �

Of course, we can define the γ-sections, γE, of a set E ∈ F ×G and then

define a measure of E in a similar fashion as in (7.2). By the uniqueness

part in Theorem 7.1, we must have, for any E ∈ F × G,

µ(E) =

∫
Ω

Q(ωE)dP(ω) =

∫
Γ

P(γE)dQ(γ),(7.7)

where µ is as in (7.1). From now on, we rewrite the measure as P× Q and

call it the product measure of P and Q.

2. Fubini Theorem

We now study integrals with respect to the product measure. The fol-

lowing theorem says that integrating with respect to the product measure

is the same as integrating with respect to the two measures one by one.

7.2. Theorem (Tonelli-Fubini). Let (Ω,F ,P) and (Γ,G,Q) be two prob-

ability spaces.
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(a) Let X : Ω× Γ→ [0,∞] be F × G-measurable. Then∫
Ω×Γ

X(ω, γ)dP× Q(ω, γ) =

∫
Ω

[ ∫
Γ
X(ω, γ)dQ(γ)

]
dP(ω)(7.8)

(b) Let X ∈ L1(Ω×Γ) be such that
∫

ΓX(ω, γ)dQ(γ) is defined for every

ω ∈ Ω. Then
∫

ΓX(·, γ)dQ(γ) ∈ L1(Ω) and (7.8) holds.

At a first glance, one may feel no ideas to prove the theorem. But once

we connect (7.8) to (7.7), the proof of Theorem 7.2 will become transparent

and almost immediate. Take any E ∈ F × G. Note that 1E(ω, γ) = 1 iff

(ω, γ) ∈ E iff γ ∈ ωE iff 1ωE(γ) = 1. Therefore,∫
Γ

1E(ω, γ)dQ(γ) =

∫
Γ

1ωE(γ)dQ(γ) = Q(ωE)

for any ω ∈ Ω. Consequently, with X = 1E , (7.8) becomes

P× Q(E) =

∫
Ω

Q(ωE)dP(ω),

which is precisely (7.7). In other words, (7.8) holds for indicator functions.

The rest of the proof will fall into our general routine: prove it for simple

functions, and then for non-negative functions and for general functions.

However, before proceeding to the proof, we need to show that for each

ω ∈ Ω, X(ω, ·) is G-measurable, so that
∫

ΓX(ω, γ)dQ(γ) is possibly defined,

and also that
∫

ΓX(·, γ)dQ(γ) is F-measurable, so that the double integral∫
Ω

[ ∫
ΓX(ω, γ)dQ(γ)

]
dP(ω) is possibly defined. We include the arguments

for these measurability issues in the proof of Theorem 7.2.

Proof of Theorem 7.2. (a). If X = 1E for some E ∈ F × G, then

as is observed above, 1E(ω, ·) = 1ωE is G-measurable for any ω ∈ Ω,∫
Γ 1E(·, γ)dQ(γ) is F-measurable, and∫

Ω×Γ
1E(ω, γ)dP× Q(ω, γ) =

∫
Ω

[ ∫
Γ

1E(ω, γ)dQ(γ)
]
dP(ω).

Now let φ be any non-negative simple function on Ω × Γ, say, φ =∑k
j=1 cj1Ej , where all cj ’s are non-negative and all Ej ’s lie in F ×G. Recall

that linear combinations of measurable functions are measurable (Corol-

lary 4.9). Thus by the indicator function case, φ(ω, ·) =
∑k

j=1 cj1Ej (ω, ·) is

G-measurable for any ω ∈ Ω,
∫

Γ φ(·, γ)dQ(γ) =
∑k

j=1 cj
∫

Γ 1Ej (·, γ)dQ(γ) is
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F-measurable, where the equality is due to linearity of expectations, and∫
Ω×Γ

φ(ω, γ)dP× Q(ω, γ)

=
k∑
j=1

cj

∫
Ω×Γ

1Ej (ω, γ)dP× Q(ω, γ) =
k∑
j=1

cj

∫
Ω

[ ∫
Γ

1Ej (ω, γ)dQ(γ)
]
dP(ω)

=

∫
Ω

k∑
j=1

cj

[ ∫
Γ

1Ej (ω, γ)dQ(γ)
]
dP(ω) =

∫
Ω

[ ∫
Γ

k∑
j=1

cj1Ej (ω, γ)dQ(γ)
]
dP(ω)

=

∫
Ω

[ ∫
Γ
φ(ω, γ)dQ(γ)

]
dP(ω).

Now let X ≥ 0 be general. By Theorem 4.12, we can take a sequence

(φn)n∈N of simple functions such that 0 ≤ φn ↑ X on Ω × Γ. Recall that

the limit of a sequence of measurable functions is also measurable (Propo-

sition 4.11). Then by the simple function case, since

φn(ω, ·) ↑ X(ω, ·),

X(ω, ·) is G-measurable for any ω ∈ Ω. Taking expectation with respect to

Q, we have, by Monotone Convergence Theorem,∫
Γ
φn(ω, γ)dQ(γ) ↑

∫
Γ
X(ω, γ)dQ(γ)

for any ω ∈ Ω, implying in particular that
∫

ΓX(·, γ)dQ(γ) is F-measurable.

Taking expectation with respect to P and applying Monotone Convergence

Theorem again, we have∫
Ω

[ ∫
Γ
φn(ω, γ)dQ(γ)

]
dP(ω) ↑

∫
Ω

[ ∫
Γ
X(ω, γ)dQ(γ)

]
dP(ω).

On the other hand, by the simple function case,∫
Ω

[ ∫
Γ
φn(ω, γ)dQ(γ)

]
dP(ω)

=

∫
Ω×Γ

φn(ω, γ)dP× Q(ω, γ)

↑
∫

Ω×Γ
X(ω, γ)dP× Q(ω, γ),

where the convergence in the last step is due to Monotone Convergence

Theorem applied to 0 ≤ φn ↑ X over the product space (Ω×Γ,F×G,P×Q).

Combining the last two equations, we finish the proof of (a).
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(b). The proof of this part has no mathematical ideas but only some

technicalities. Let X : Ω × Γ → [−∞,∞] be integrable. Then by the non-

negative case, X(ω, ·) = X+(ω, ·)−X−(ω, ·) is G-measurable for any ω ∈ Ω.

As functions in ω,
∫

ΓX
±(·, γ)dQ(γ) may take infinite values, but their dif-

ference is defined at every point of Ω, since we assume that
∫

ΓX(ω, γ)dQ(γ)

is defined for every ω ∈ Ω, which by the definition of integrals of X(ω, ·)
with respect to Q is equal to∫

Γ
X+(ω, γ)dQ(γ)−

∫
Γ
X−(ω, γ)dQ(γ).

Thus by Remark 4.10 applied to the functions
∫

ΓX
±(·, γ)dQ(γ) on Ω, it

follows that
∫

ΓX(ω, γ)dQ(γ) is F-measurable. Moreover,∫
Ω

[ ∫
Γ
X±(ω, γ)dQ(γ)

]
dP(ω)

≤
∫

Ω

[ ∫
Γ
|X(ω, γ)|dQ(γ)

]
dP(ω) =

∫
Ω×Γ
|X(ω, γ)|dP× Q(ω, γ) <∞,

implying that
∫

ΓX
±(·, γ)dQ(γ) are both integrable. Thus

∫
ΓX(·, γ)dQ(γ) =∫

ΓX
+(·, γ)dQ(γ)−

∫
ΓX

−(·, γ)dQ(γ) is integrable, and∫
Ω

[ ∫
Γ
X(ω, γ)dQ(γ)

]
dP(ω)

=

∫
Ω

[ ∫
Γ
X+(ω, γ)dQ(γ)

]
dP(ω)−

∫
Ω

[ ∫
Γ
X−(ω, γ)dQ(γ)

]
dP(ω)

=

∫
Ω×Γ

X+(ω, γ)dP× Q(ω, γ)−
∫

Ω×Γ
X−(ω, γ)dP× Q(ω, γ)

=

∫
Ω×Γ

X(ω, γ)dP× Q(ω, γ),

where the first equality is due to linearity of expectation with respect to P

and the second equality is due to the non-negative case. �

Of course, one may do the double integral by integrating with respect

to P first and then to Q. Parellel results follow. Comparing the double

integral in this case to that in the previous case, we obtain that for any

F × G-measurable function X : Ω× Γ→ [0,∞],∫
Ω

[ ∫
Γ
X(ω, γ)dQ(γ)

]
dP(ω) =

∫
Γ

[ ∫
Ω
X(ω, γ)dP(ω)

]
dQ(γ).(7.9)

That is, we can change the order of integration in double integrals.

The non-negative case in Theorem 7.2(a) and (7.9) is usually referred

to as Tonelli Theorem, and the general case in Theorem 7.2(b) and (7.9) is

referred to as Fubini Theorem.
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7.3. Remark. The results in Sections 1 and 2 hold for σ-finite measures

spaces. In fact, Lemma 7.2 is the only place that needs additional care. We

leave the verification to the reader as an exercise.

7.2. Example. Let (Ω,F ,P) be a probability space and (Xn)n∈N be a

sequence of non-negative random variables on Ω. Consider N endowed with

the σ-algebra P(N) and the counting measure. The product σ-algebra is

P(N)×F := σ
({
A× E : A ⊂ N, E ∈ F

})
.

Define F : N× Ω→ [0,∞] by F (n, ω) = Xn(ω). For any c ∈ R,

{F ≤ c} =
{

(n, ω) : Xn(ω) ≤ c
}

=

∞⋃
n=1

{n} × {Xn ≤ c} ∈ P(N)×F .

Thus F is P(N)×F-measurable. Applying (7.9), one gets that

∞∑
n=1

E[Xn] = E
[ ∞∑
n=1

Xn

]
.

7.3. Example. Let 1 ≤ p < ∞. Let X ≥ 0 be a random variable on a

probability space (Ω,F ,P). Whenever 0 ≤ t < X(ω)p, we can find a positive

rational number r such that t < r < X(ω)p. Thus it is easy to see that{
(t, ω) ∈ R× Ω : 0 ≤ t < X(ω)p

}
=
⋃
r

{
(t, ω) ∈ R× Ω : 0 ≤ t < r, r < X(ω)p

}
=
⋃
r

[0, r)×
{
ω ∈ Ω : X(ω) > r

1
p

}
∈ B × F .

Therefore, 1{(t,ω)∈R×Ω:0≤t<X(ω)p} is B ×F-measurable. Applying (7.9) with

Q replaced with the Lebesgue measure, one gets that

E[Xp] =

∫
Ω
X(ω)pdP(ω) =

∫
Ω

[ ∫
R

1{(t,ω)∈R×Ω:0≤t<X(ω)p}dt
]
dP(ω)

=

∫
R

[ ∫
Ω

1{(t,ω)∈R×Ω:0≤t<X(ω)p}dP(ω)
]
dt

=

∫
R

[ ∫
Ω

1
{X>t

1
p }

(ω)dP(ω)
]
dt

=

∫
R

1[0,∞)(t)P(X > t
1
p )dt.
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For any t ≥ 0, denote ωX(t) = P(X > t). Then ωX is a decreasing function

on [0,∞). Thus by Corollary 6.9, we have

E[Xp] =

∫ ∞
0

ωX(t
1
p )dt =

∫ ∞
0

ωX(s)psp−1ds,

where the second equality follows from a change of variables t = sp for the

Riemann integrals.

3. Higher-dimensional constructions

We are not satisfied with constructing the product space of only two

probability (or σ-finite) measure spaces. For example, once we know how to

measure the length of objects in R, in addition to knowing how to measure

the area of objects in R2, we also want to know how to measure the volume

of objects in R3. In another word, if we have three probability (or σ-finite)

measure spaces (Ωk,Fk,Pk), k = 1, 2, 3, how can we get their product space?

Of course, we can first get the product space (Ω1 × Ω2,F1 × F2,P1 × P2)

and then cross with the third space to get the following probability space(
Ω1 × Ω2 × Ω3, (F1 ×F2)×F3, (P1 × P2)× P3

)
.

Alternatively, we may cross the last two spaces first and then cross with the

first one to get the following probability space(
Ω1 × Ω2 × Ω3,F1 × (F2 ×F3),P1 × (P2 × P3)

)
.

What is the relationship between these two spaces then? They are identical!

Firstly, one can verify that

(F1×F2)×F3 = F1×(F2×F3) = σ({A×B×C : A ∈ F1, B ∈ F2, C ∈ F3})

(Exercise 7.8), so that the two probability spaces have the same σ-algebra.

Secondly, observe that for any A ∈ F1, B ∈ F2, C ∈ F3,

(P1 × P2)× P3(A×B × C) = P1 × P2(A×B)P3(C) = P1(A)P2(B)P3(C)

and

P1 × (P2 × P3)(A×B × C) = P1(A)P2 × P3(B × C) = P1(A)P2(B)P3(C),

and thus

(P1 × P2)× P3(A×B × C) = P1 × (P2 × P3)(A×B × C).

Since the collection {A × B × C : A ∈ F1, B ∈ F2, C ∈ F3}) is a π-

system generating the σ-algebra, we get (P1×P2)×P3 = P1× (P2×P3), by

Theorem 2.9. That is, the order to get the product space of three probability
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spaces does not matter. In view of this, we may simply denote the product

space as (Ω1 × Ω2 × Ω3,F1 × F2 × F3,P1 × P2 × P3). With the standard

technique of passing from indicator functions to simple functions to non-

negative functions, one can also easily show that, for any F1 × F2 × F3-

measurable function X : Ω1 × Ω2 × Ω3 → [0,∞],∫
Ω1×Ω2×Ω3

X(ω1, ω2, ω3)dP1 × P2 × P3

=

∫
Ω1

[∫
Ω2

[ ∫
Ω3

X(ω1, ω2, ω3)dP3(ω3)
]
dP2(ω2)

]
dP1(ω1)

=

∫
Ω2

[∫
Ω3

[ ∫
Ω1

X(ω1, ω2, ω3)dP1(ω1)
]
dP3(ω3)

]
dP2(ω2),

or in any order one may like to arrange 1, 2, 3. For a F1×F2×F3-measurable

function X that may take negative values, similar results hold as long as the

intermediate integrals are all defined.

In general, whenever we have d probability (or σ-finite) measure spaces

(Ωk,Fk,Pk), k = 1, 2, . . . , d, we can get the product spaces by gluing them

together one by one: Ω1 ×Ω2, (Ω1 ×Ω2)×Ω3,
(
(Ω1 ×Ω2)×Ω3

)
×Ω4, etc,

We denote the final product space

( d∏
k=1

Ωk,
d∏

k=1

Fk,
d∏

k=1

Pk
)
.

Remark that

d∏
k=1

Fk = σ

({ d∏
k=1

Ek : Ek ∈ Fk, k = 1, . . . , d
})

(Exercise 7.7) and that
∏d
k=1 Pk is the only measure on

∏d
k=1Fk such that

d∏
k=1

Pk
( d∏
k=1

Ek

)
=

d∏
k=1

Pk(Ek)

for any E1 ∈ F1, . . . , Ed ∈ Fd. The order of gluing the d-spaces together and

expressing the integral with respect to the product measure as a multiple

integral does not matter.

7.4. Example. Consider
∏d
k=1(R,B,m). Note that

∏d
k=1 B = Bd (Ex-

ercise 7.9). Instead of writing
∏d
k=1 m, we abuse the notation and still write

it as m, and call it the Lebesgue measure on Rd.
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7.5. Example. Let F1, . . . , Fd be distribution functions on R with as-

sociated Lebesgue-Stieltjes measures µ1, . . . , µd. Then we can obtain the

unique measure µ on (Rd,Bd) such that

µ
( d∏
k=1

(ak, bk]
)

=

d∏
k=1

(
Fk(bk)− Fk(ak)

)
for any ak, bk ∈ R with ak < bk, k = 1, . . . , d.

Exercises

7.1. Let A be as in Section 1 and E ∈ A be non-empty. Show that we

can obtain a partition {Ek}1≤k≤n of Ω and a partition {Fj}1≤j≤m of Γ such

that E is the union of some of the Ek × Fj ’s. Show that A is an algebra

over Ω× Γ.

7.2. Let µ be as in Section 1. Suppose that (An ×Bn)n∈N be a disjoint

sequence of measurable rectangles whose union is a measurable rectangle

A×B. Show that for any ω ∈ Ω and γ ∈ Γ,

1A(ω)1B(γ) =

∞∑
n=1

1An(ω)1Bn(γ).

Deduce 1A(ω)Q(B) =
∑∞

n=1 1An(ω)Q(Bn) and P(A)Q(B) =
∑∞

n=1 P(An)Q(Bn).

7.3. Let µ and A be as in Section 1. Show that µ is a pre-measure on

A.

7.4. Let A, µ, µ be as in Section 1. Show that for any E ∈ F × G,

µ(E)

= inf
{ ∞∑
n=1

µ(An) : (An)n∈N is a disjoint sequence in A, E ⊂
∞⋃
n=1

An

}
= inf

{ ∞∑
n=1

µ(Rn) : (Rn)n∈N is a disjoint sequence of measurable rectangles,

E ⊂
∞⋃
n=1

Rn

}
.

7.5. Verify the first equality in (7.3) and the first equality in (7.4).

7.6. Verify that the results in Sections 1 and 2 hold for σ-finite measures

spaces.
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7.7. Suppose F and G are the σ-algebras generated by two collections C
and D, respectively. Show that F × G is generated by C × D := {C × D :

C ∈ C, D ∈ D}. Use induction to extend this result to multiple σ-algebras.

7.8. Use Exercise 7.7 to show that

(F1×F2)×F3 = F1×(F2×F3) = σ({A×B×C : A ∈ F1, B ∈ F2, C ∈ F3}),

7.9. Use Exercise 7.7 to show that Bd1 × Bd2 × · · · × Bdk = Bd1+···+dk .

7.10. Let X,Y be random variables over (Ω,F ,P) and (Γ,G,Q), respec-

tively. Cosnider the function XY : Ω × Γ → [−∞,∞]. Show that XY is

F × G-measurable. If X,Y are real-valued, one can similarly define X − Y .

Show that X − Y is F × G-measurable.

7.11. Prove Example 7.5.

7.12. Let (Ω,F , µ) and (Γ,G, ν) be two σ-finite measure spaces. Let

X : Ω× Γ→ [0,∞] be F × G-measurable. For 1 ≤ p <∞, show that(∫
Γ

(∫
Ω
X(ω, γ)dµ(ω)

)p
dν(γ)

) 1
p

≤
∫

Γ

(∫
Ω
X(ω, γ)pdν(γ)

) 1
p
dµ(ω).

If (Ω,F , µ) is N with the counting measure, the formula reduces to∥∥∥ ∞∑
n=1

Xn

∥∥∥
p
≤
∞∑
n=1

‖Xn‖p,

which is Exercise 6.13. In view of this, the first inequality is called Minkowski

Inequality in integral form.

7.13. Let X be a bounded random variable over (Ω,F ,P). Show that if∫
Ω×Ω|X(ω)−X(ω′)|dP× P(ω, ω′) = 0 then X a.s. equals a constant.



CHAPTER 8

Distributions

Let Ω be the set of all Canadians and let X : Ω→ R be the 2019 income

of Canadians. In most cases, it will not be of economic concern what X(ω)

is for a particular Canadian ω. But rather, it is of great importance to

know, e.g., what is the probability that a randomly selected Canadian’s

2019 income is below $15k, i.e., P (X < 15k), or say, if the middle class

2019 income is $80k, then what is the probability of a randomly selected

Canadian’s 2019 is middle-class or above, i.e., P (X ≥ 80k)? In another

word, we would like to know how X distributes its values?

We have a more intuitive example explaining the meaning of “distribu-

tion”. Say, you throw a fair die. If you get a small number 1, 2, 3, then you

lose $5; if you get a big even number 4, 6, then you win $3; if you get 5, then

you win $1. Let X be your net gain after one toss. Then P(X = −5) = 1
2 ,

P(X = 1) = 1
6 , and P(X = 3) = 1

3 . So we may say that X distributes 1
2 of

its values to −5, 1
6 of its values to 1

6 and 1
3 of its values to 3.

In this chapter, we study distributions in details.

1. Probability distributions

Let X be a random variable over a probability space (Ω,F ,P). Define

FX : R→ [0, 1] by

FX(x) = P(X ≤ x) = P
(
X ∈ (−∞, x]

)
, x ∈ R.

One sees that FX is increasing, right-continuous satisfying that F (∞) = 1

and F (−∞) = 0. Thus by Proposition 3.8, it generates its Lebesgue-Stieltjes

measure on (R,B). It can be easily verified (Exercise 8.1) that the Lebesgue-

Stieltjes measure is given by follows:

PX(B) := P(X ∈ B), B ∈ B.(8.1)

We call PX the probability distribution , or simply distribution , of

X because for any set B ∈ B, PX(B) tells the chance that X distributes its

values to B, or in general, PX tells how X distributes its values. From now

on, PX , instead of P, is usually our focus of study.

83



84 8. DISTRIBUTIONS

We call FX the cumulative distribution function (CDF) of X.

With the new notation of PX , we have

F (x) = PX
(
(−∞, x]

)
, x ∈ R.(8.2)

Being the Lebesgue-Stieltjes measure of FX , PX is determined by FX . Thus

we may refer to FX as the distribution of X as well.

8.1. Definition. Let X be a random variable with CDF F . Its proba-

bility mass function (PMF) f : R→ [0, 1] is defined by

fX(x) = P(X = x) = PX({x}), x ∈ R.

By definition, fX(x) > 0 means precisely that the value x is taken by X

with a positive probability. Recall from Proposition 3.6 that, for any x ∈ R,

fX(x) =PX({x}) = FX(x)− FX(x−);

thus fX(x) > 0 if and only if FX has a jump at x, in which case, the size of

the jump is fX(x).

8.1. Example. LetX be a discrete random variable with values {xk}k∈N,

each of which has a positive probability to be taken (it does not matter if

X only takes finitely many values). Then

fX(x) =

P(X = xk) > 0 if x = xk for some xk,

P(X = x) = 0 x /∈ {xk}k∈N;

and

1 = P(X ∈ R) = P(X = xk for some xk) =

∞∑
k=1

PX(X = xk) =

∞∑
k=1

fX(xk).

Consequently, the CDF FX has jumps precisely at xk, k ∈ N, and the

total jumps are
∑∞

k=1

(
F (xk)− F (xk−)

)
= 1. Moreover, for any B ∈ B,

PX(B) = P(X ∈ B) =
∑

k:xk∈B
f(xk) =

∞∑
k=1

f(xk)δxk(B).(8.3)

That is,

PX =
∞∑
k=1

f(xk)δxk ,

a form of probability measures that we have discussed in Example 2.8. In

particular, the PMF dertermines PX—thus, we refer to the PMF as the

distribution for discrete random variables as well, but of course, the PMF

looks neater and is more workable as will be seen.
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The converses of the above statements are also correct, namely, if the

PMF of a random variable are positive at finitely many or countably infin-

itely many points with a sum of 1, or if the CDF has total jumps equal to

1, or if the probability distribution is of the form in Example 2.8, then it is

discrete (Exercise 8.2).

8.2. Example. Let X be a random variable that takes only two values

0, 1 both with positive probabilities. Then X is said to be binary or is

called a Bernoulli trial . Its distribution is given by

p := fX(1), 1− p = fX(0),

or equivalently,

PX = pδ1 + (1− p)δ0.

In practice, X may count the number of heads when flipping a coin once,

with p the probability of getting a head.

8.3. Example. Let n ∈ N and p ∈ (0, 1). A random variable X that

takes values 0, 1, . . . , n with the PMF

fX(x) =

(
n

x

)
px(1− p)n−x, x = 0, 1, . . . , n,

is called a binomial random variable. Its distribution is called a binomial

distribution , written as Bi(n, p). In practice, X may count the number of

heads when flipping a coin for n times, with p the probability of getting a

head for each flip.

While probability mass functions work well for discrete random vari-

ables, we need to introduce probability density functions for continuous

random variables.

8.2. Definition. A random variable X is said to be continuous if FX

is continuous. X is said to be absolutely continuous if there exists a

function fX : R→ [0,∞) such that

FX(x) =

∫
(−∞,x]

fX(t)dt, x ∈ R;

or more commonly, in this case, we say that X has a probability density

function (PDF) fX .

8.3. Remark. (a) If f1, f2 are both PDFs for a random variable

X, then f1 = f2 m-a.e. (cf. XXX). In fact, in this case, the PDF is

given by fX = (FX)′ m-a.e.
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(b) For a PDF fX ,
∫∞
−∞ f

X(t)dt = 1.

(c) A random variable with a PDF is always continuous (Exercise 8.3).

The converse is not true in general, i.e., a continuous random vari-

able may not have PDFs.

8.4. Example. Suppose that X has PDF fX . Then the distribution of

X is given by

PX(B) =

∫
B
fX(t)dt, B ∈ B.(8.4)

Indeed, the indefinite integral in the right hand side is a probability measure

and coincides with PX for all intervals of the form (−∞, x], x ∈ R. Thus it

coincides with PX for any B ∈ B (Corollary 2.10).

Like PMFs for discrete random variables, PDFs are referred to as the

distributions of absolutely continuous random variables. These two classes

of random variables are most used in reality.

8.5. Example. A random variable X is said to follow the normal dis-

tribution , written as X ∼ N(µ, σ2), if it has density

1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ R,

where µ ∈ R and σ > 0 are fixed constants. When µ = 0 and σ = 1, the

distribution is called standard normal distribution .

(a) If X ∼ N(µ, σ2), then Z := X−µ
σ ∼ N(0, 1). Indeed,

P(Z ≤ z) =P

(
X − µ
σ

≤ z
)

= P(X ≤ µ+ σz)

=

∫ µ+σz

−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx

=

∫ z

−∞

1√
2π
e−

t2

2 dt,

where the last step follows from a change of variable t = x−µ
σ .

(b) Similarly, it is easy to verify that if Z ∼ N(0, 1), thenX := µ+σZ ∼
N(µ, σ2) (Exercise 8.4).

2. The Expectation Formula

The probability distributions PX (in particular, PMFs and PDFs) bring

significant convenience and simplicity for calculating expectations, as it

pushes everything from (Ω,F ,P) to (R,B,PX).



2. THE EXPECTATION FORMULA 87

8.4. Theorem. Let X be any random variable over (Ω,F ,P). Let EX

be the expectation over (R,B) with respect to PX . Let h : R → R be a

Borel-measurable function. Then

E[h(X)] = EX [h],(8.5)

where the expectations either both exist or both do not exist. Furthermore,

if X is discrete with PMF fX , then

E[h(X)] =
∑
xk

h(xk)f
X(xk),(8.6)

where xk’s are the values admitted by X with positive probabilities; if X has

PDF fX , then

E[h(X)] =

∫
R
h(t)fX(t)dt.(8.7)

Proof. Without loss of generality, we assume that h ≥ 0.

Step I: h is an indicator function, say, h = 1B for some B ∈ B. In this

case, 1B(X) = 1 if X ∈ B and 0 otherwise, thus 1B(X) = 1{X∈B}. Hence,

E[1B(X)] = E[1{X∈B}] = P(X ∈ B) = PX(B) = EX [1B].

Step II: h is simple, say, h =
∑n

k=1 ck1Bk . Then by Step I and linearity

of expectations with respect to both E and EX ,

E[h(X)] =
n∑
k=1

ckE[1Bk(X)] =
n∑
k=1

ckE
X [1Bk ] = EX [h].

Step III: h ≥ 0 is general. Take a sequence (φn) of simple functions such

that 0 ≤ φn ↑ h. Then 0 ≤ hn(X) ↑ h(X). Using Step II and applying

Monotone Convergence Theorem with respect to both E and EX , we have

E[h(X)] = lim
n

E[hn(X)] = lim
n

EX [hn] = EX [h].

In particular, E[h(X)] <∞ if and only if EX [h] <∞. This proves (8.5).

The proofs of (8.6) and (8.7) go along similar lines; for h = 1B, they

follow from (8.1) and (8.4), respectively. �

Let’s do some classical examples.
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8.6. Example. Suppose X ∼ Bi(n, p). With h(t) = t for all t ∈ R,

h(X) = X, and

E[X] =
n∑
x=0

x

(
n

x

)
px(1− p)n−x =

n∑
x=1

x

(
n

x

)
px(1− p)n−x

=
n∑
x=1

x
n!

x!(n− x)!
px(1− p)n−x

=np
n∑
x=1

(n− 1)!

(x− 1)![(n− 1)− (x− 1)]!
px−1(1− p)(n−1)−(x−1)

=np

n−1∑
y=0

(n− 1)!

y![(n− 1)− y]!
py(1− p)(n−1)−y

=np,

where the fourth inequality is due to change of variable y = x − 1 and the

last one is due to that the new summands are the PDF of Bi(n− 1, p) and

thus the sum is 1. With h(t) = t2 for all t ∈ R, h(X) = X2, and

E[X2] =
n∑
x=0

x2

(
n

x

)
px(1− p)n−x =

n∑
x=1

x2

(
n

x

)
px(1− p)n−x

=
n∑
x=1

x(x− 1)

(
n

x

)
px(1− p)n−x +

n∑
x=1

x

(
n

x

)
px(1− p)n−x

=
n∑
x=2

x(x− 1)

(
n

x

)
px(1− p)n−x + np

=
n∑
x=2

x(x− 1)
n!

x!(n− x)!
px(1− p)n−x + np

=
n∑
x=2

n!

(x− 2)!(n− x)!
px(1− p)n−x + np

=n(n− 1)p2
n∑
x=2

(n− 2)!

(x− 2)![(n− 2)− (x− 2)]!
px−2(1− p)(n−2)−(x−2) + np

=n(n− 1)p2
n−2∑
y=0

(n− 2)!

y![(n− 2)− y]!
py(1− p)(n−2)−y + np

=n(n− 1)p2 + np.

It follows that

V[X] = E[X2]− (E[X])2 = np(1− p).
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8.7. Example. Suppose X ∼ N(µ, σ2). Then with h(t) = t for all t ∈ R,

h(X) = X, and

E[X] =

∫ ∞
−∞

t
1√
2πσ

e−
(t−µ)2

2σ2 dt =

∫ ∞
−∞

(µ+ σs)
1√
2πσ

e−
s2

2 σds

=µ

∫ ∞
−∞

1√
2πσ

e−
s2

2 ds+

∫ ∞
−∞

s
1√
2πσ

e−
s2

2 ds

=µ+ 0 = µ,

where the second equality is due to change of variable t = µ + σs and we

use the fact that
∫∞
−∞ s

1√
2πσ

e−
s2

2 ds = 0 (Exercise 8.5). With h(t) = t2 for

all t ∈ R, h(X) = X2, and

E[X2] =

∫ ∞
−∞

t2
1√
2πσ

e−
(t−µ)2

2σ2 dt =

∫ ∞
−∞

(µ+ σs)2 1√
2πσ

e−
s2

2 σds

=µ2

∫ ∞
−∞

1√
2πσ

e−
s2

2 ds+ 2µσ

∫ ∞
−∞

s
1√
2πσ

e−
s2

2 ds

+ σ2

∫ ∞
−∞

s2 1√
2πσ

e−
s2

2 ds

=µ2 + σ2.

Therefore,

V[X] = E[X2]− (E[X])2 = σ2.

3. Higher-dimensional analogues

What we have discussed applies to random vectors (Definition 4.5). Let

(X1, . . . , Xd) be a random vector. We define its CDF F (X1,...,Xd) : Rd → R

by

F (X1,...,Xd)(x1, . . . , xd) = P(X1 ≤ x1, . . . , Xd ≤ xd), (x1, . . . , xd) ∈ Rd.

We define its probability distribution P(X1,...,Xd) on (Rd,Bd) by

P(X1,...,Xd)(B) = P
(

(X1, . . . , Xd) ∈ B
)
, B ∈ Bd.

By Corollary 2.10, it is easy to verify that P(X1,...,Xd) is the unique probability

measure on (Rd,Bd) such that, for any (x1, . . . , xd) ∈ Rd,

F (X1,...,Xd)(x1, . . . , xd) = P(X1,...,Xd)
( d∏
k=1

(−∞, xk]
)
.
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A random vector (X1, . . . , Xd) is discrete if it admits finitely many or

countably infinitely many values. We can define its PMF by

f (X1,...,Xd)(x1, . . . , xd) = P(X1 = x1, . . . , Xd = xd), (x1, . . . , xd) ∈ Rd.

Its properties are similar as outlined in Example 8.1. In particular, if

{xk}k∈N are the values in Rd admitted by (X1, . . . , Xd) with positive prob-

abilities, then we have

P(X1,...,Xd)(B) =P
(
(X1, . . . , Xd) ∈ B

)
=

∑
k:xk∈B

f(xk)

=

∞∑
k=1

f(xk)δxk(B).

That is,

P(X1,...,Xd) =
∞∑
k=1

f(xk)δxk ,

Similarly, a random vector (X1, . . . , Xd) is absolutely continuous or has

PDF if there exists a non-negative function f (X1,...,Xd) such that

F (X1,...,Xd)(x1, . . . , xd) =

∫
∏d
k=1(−∞,xk]

f (X1,...,Xd)(t1, . . . , td)d(t1, . . . , td),

for any (x1, . . . , xd) ∈ Rd. Similar properties as in Remark 8.3 hold. In

particular, we have

P(X1,...,Xd)(B) =

∫
B
f (X1,...,Xd)(t1, . . . , td)d(t1, . . . , td), B ∈ Bd.(8.8)

As before, we may term F (X1,...,Xd) and P(X1,...,Xd), as well as the PMF

and PDF whenever appropriate, as the distribution of the random vector

(X1, . . . , Xd).

3.1. Marginal distributions. In Probability Theory, P(X1,...,Xd) is of-

ten called the joint distribution of (X1, . . . , Xd); similarly, the CDFs, PMFs

and PDFs are also termed with the word “joint”. The corresponding distri-

butions, CDFs, PMFs and PDFs for each individual Xk’s are termed with

“marginal”.
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The joint distributions contain the marginal distributions as partial in-

formation. For example, if F (X1,...,Xd) is the joint CDF of (X1, . . . , Xd),

FX1(x1) =P(X1 ∈ (−∞, x1]) = P
(

(X1, X2, . . . , Xd) ∈ (−∞, x1]× Rd−1
)

= lim
n→∞

P
(

(X1, X2, . . . , Xd) ∈ (−∞, x1]×
d∏

k=2

(−∞, n]
)

= lim
n→∞

F (X1,...,Xd)(x1, n, . . . , n),

which we can symbolically write as

F (X1,...,Xd)(x1,∞, . . . ,∞).

So the marginal CDF FX1 is obtained from the joint CDF. For another

example, if f (X1,...,Xd) is the joint density of (X1, . . . , Xd), then by (8.8),

FX1(x1) =P(X1 ∈ (−∞, x1]) = P
(

(X1, X2, . . . , Xd) ∈ (−∞, x1]× Rd−1
)

=

∫
(−∞,x1]×Rd−1

f (X1,...,Xd)(t1, . . . , td)d(t1, . . . , td)

=

∫
(−∞,x1]

dt1

(∫
Rd−1

f (X1,...,Xd)(t1, . . . , td)d(t2, . . . , td)

)
,

where the last equality is due to Fubini Theorem. Thus the PDF of X1 is

obtained from the joint PDF:∫
Rd−1

f (X1,...,Xd)(•, t2, . . . , td)d(t2, . . . , td).

In particular, existence of joint PDF implies that of marginal PDFs.

This method can be extended to find the CDFs of any component of a

random vector. Let’s look at multivariate Gaussian distributions.

8.8. Example. A random vector X is said to be normal or Gaussian if

it has the following density function

(2π)−
d
2 det(Σ)−

1
2 e−

1
2

(x−µ)Σ−1(x−µ)t , x ∈ Rd,

where Σ is a d × d positive definite matrix and µ ∈ Rd. In this case, write

X ∼ Nd(µ,Σ), or simply X ∼ N(µ,Σ).

WriteX1 = (X1, . . . , Xd1) andX2 = (Xd1+1, . . . , Xd), soX = (X1,X2).

Accordingly, write x1 = (x1, . . . , xd1), x2 = (xd1+1, . . . , xd), and

µ = (µ1,µ2), and Σ =

(
Σ11 Σ12

Σ21 Σ22,

)



92 8. DISTRIBUTIONS

where Σ11 is the d1×d1-block in Σ. By symmetry, Σ21 = Σt
12. Then for any

B ∈ Bd1 , we have, by (8.8) and Fubini Theorem,

PX1(B) =PX(B × Rd−d1)

=

∫
B

dx1

∫
Rd−d1

(2π)−
d
2 det(Σ)−

1
2 e−

1
2

(x−µ)Σ−1(x−µ)tdx2.

Setting

b = µ2 + (x1 − µ1)Σ−1
11 Σ12 and A = Σ22 − Σ21Σ−1

11 Σ12,

we have by direct simplifications (Exercise 8.6),

(x− µ)Σ−1(x− µ)t

=(x1 − µ1)Σ−1
11 (x1 − µ1)t + (x2 − b)A−1(x2 − b)t.(8.9)

Plugging this into the previous formula, we have

PX1(B) =

∫
B

(2π)−
d1
2 det(Σ)−

1
2 det(A)

1
2 e−

1
2

(x1−µ1)Σ−1
11 (x1−µ1)tdx1

×
∫

Rd−d1
(2π)−

d−d1
2 det(A)−

1
2 e−

1
2

(x2−b)A−1(x2−b)tdx2.

The second integral is equal to 1 because the integrand is precisely the PDF

of N(b, A). Notice also that (Exercise 8.6)

det(Σ)−1 det(A) = det(Σ11)−1.(8.10)

Thus

PX1(B) =

∫
B

(2π)−
d1
2 det(Σ11)−

1
2 e−

1
2

(x1−µ1)Σ−1
11 (x1−µ1)tdx1.

Therefore, X1 ∼ N(µ1,Σ11). Similarly, one shows that X2 ∼ N(µ2,Σ22).

Other components of X, e.g., (X1, X3, X4), can be handled in a similar

fashion; they are all Gaussian whose parameters are extracted accordingly

from µ and Σ. In particular, if we write Σ = (σjk), then Xk ∼ N(µk, σkk)

for each k = 1, . . . , d. Thus, µk = E[Xk] and σkk = V[Xk].

3.2. The expectation formula. The following theorem generalizes

Theorem 8.4 and can be proved in the identical format.

8.5. Theorem. Let (X1, . . . , Xd) be a random vector over (Ω,F ,P). Let

E(X1,...,Xd) be the expectation over (Rd,Bd) with respect to P(X1,...,Xd). Let

h : Rd → R be a Borel-measurable function. Then

E[h(X1, . . . , Xd)] = E(X1,...,Xd)[h],
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where the expectations either both exist or both do not exist. Furthermore,

if (X1, . . . , Xd) is discrete with PMF f (X1,...,Xd), then

E[h(X1, . . . , Xd)] =
∑
xk

h(xk)f
(X1,...,Xd)(xk),

where xk’s are the values admitted by (X1, . . . , Xd) with positive probabilities;

if (X1, . . . , Xd) has PDF f (X1,...,Xd), then

E[h(X1, . . . , Xd)] =

∫
Rd
h(t1, . . . , td)f

(X1,...,Xd)(t1, . . . , td)d(t1, . . . , td).

8.9. Example. Suppose X ∼ N2(µ,Σ). By the expectation formula, we

have

CoV[X1, X2] =E[(X1 − µ1)(X2 − µ2)]

=

∫
R1

(x1 − µ1)(x2 − µ2)
1

2π
√

det(Σ)
e−

1
2

(x−µ)Σ−1(x−µ)tdx

=

∫
R1

y1y2
1

2π
√

det(Σ)
e−

1
2
yΣ−1ydy.

Write Σ = (σjk). Then

Σ−1 =
1

σ11σ22 − σ2
12

(
σ22 −σ12

−σ12 σ11

)
.

Consider the following change of variable

(t1, t2) = (y1, y2)
1√

σ11σ22 − σ2
12

 √σ22 0

− σ12√
σ22

√
σ11 − σ2

12
σ22

 .

Then (Exercise 8.7)

yΣ−1yt = t21 + t22,(8.11)

y =t
√
σ11σ22 − σ2

12

1

√
σ22

√
σ11 − σ2

12
σ22

√σ11 − σ2
12
σ22

0
σ12√
σ22

√
σ22

(8.12)

=t

(
1√
σ22

√
σ11σ22 − σ2

12 0
σ12√
σ22

√
σ22

)
,

and

dy =
√
σ11σ22 − σ2

12dt.
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Therefore,

CoV[X1, X2] =

∫
R2

( 1√
σ22

√
σ11σ22 − σ2

12t1 +
σ12√
σ22

t2

)
(
√
σ22t2)

× 1

2π
√
σ11σ22 − σ2

12

e−
1
2

(t21+t22)
√
σ11σ22 − σ2

12dt.

Split the parenthesis in the integrand. Note that by symmetry, the integral

of the term containing t1t2 is 0. Thus

CoV[X1, X2] =

∫
R2

σ12t
2
2

1

2π
√
σ11σ22 − σ2

12

e−
1
2

(t21+t22)
√
σ11σ22 − σ2

12dt

=σ12

∫
R

1√
2π
e−

t21
2 dt1

∫
t22

1√
2π
e−

t22
2 dt2

= σ12.

That is, σ12 is precisely the covariance of X1 and X2.

Suppose that X ∼ Nd(µ,Σ), where Σ = (σjk). For any two distinct j, k,

from Example 8.8 we know that

(Xj , Xk) ∼ N

(
(µj , µk),

(
σjj σjk

σkj σkk

))
.

Following this with an application of the above result, we obtain that σjk =

CoV[Xj , Xk].

For a random vector X = (X1, . . . , Xd), we define its mean vector by

E[X] := (E[X1], . . . ,E[Xd])

and its variance matrix by

V[X] :=


CoV[X1, X1] . . . CoV[X1, Xd]

...
. . .

...

CoV[Xd, X1] . . . CoV[Xd, Xd]

 .

The preceding two examples conclude that if X ∼ Nd(µ,Σ), then µ =

E[X] and Σ = V[X]; in particular, Σ is diagonal iff Xk’s are uncorrelated.

Exercises

8.1. Prove that PX in (8.1) is indeed the Lebesgue-Stieltjes measure of

FX .

8.2. Prove the statements in Example 8.1.

8.3. Show that a random variable with a PDF is continuous.
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8.4. Prove Example 8.5(b).

8.5. Show that ∫ ∞
−∞

s
1√
2πσ

e−
s2

2 ds = 0,∫ ∞
−∞

s2 1√
2πσ

e−
s2

2 ds = 1.

8.6. Verify (8.9) and (8.10).

8.7. Verify (8.11) and (8.12).

8.8. Uniform distribution

8.9. Poisson distribution

8.10. Geometric distribution

8.11. Exponential distribution





CHAPTER 9

Independence

There are two notions that draw the essentially different focus between

Probability and Analysis (measure theory): independence and conditioning.

In this chapter, we establish some basic facts about independence. The

two well-known, fundamental results regarding independence: Law of Large

Numbers and Central Limit Theorem, will be studied in the three chapters

that follow. Conditioning will be studied in Chapters 13 and 14.

1. Characterization via distributions

We have long learned that two events A and B are independent if P(A∩
B) = P(A)P(B). Independence of random variables are defined in a similar

fashion: they distribute their values in an independent way.

9.1. Definition. Let X1, . . . , Xd be random variables over (Ω,F ,P).

We say that they are independent if for any Bk ∈ B, k = 1, . . . , d,

P({X1 ∈ B1} ∩ · · · ∩ {Xd ∈ Bd}) = P(X1 ∈ B1)× · · · × P(Xd ∈ Bd).(9.1)

Here the left hand side is often for simplicity written as

P(X1 ∈ B1, · · · , Xd ∈ Bd).

Using the notion of joint distributions in Chapter 8, we can rewrite the

left hand side of (9.1) as

P(X1,...,Xd)

(
d∏

k=1

Bk

)
.

Using the notion of product measures in Chapter 7, we can rewrite the right

hand side as

PX1(B1)× · · · × PXd(Bd) =
( d∏
k=1

PXk
)( d∏

k=1

Bk

)
.

97
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Therefore, X1, . . . , Xd are independent means that, for any setB =
∏d
k=1Bk ∈

Bd,

P(X1,...,Xd)(B) =

(
d∏

k=1

PXk

)
(B),(9.2)

i.e., the two measures P(X1,...,Xd) and
∏d
k=1 PXk coincide on all such sets.

9.2. Theorem. The following are equivalent:

(a) X1, . . . , Xd are independent;

(b) F (X1,...,Xd)(x1, . . . , xd) = FX1(x1)×· · ·×FXd(xd) for any (x1, . . . , xd) ∈
Rd;

(c) F (X1,...,Xd)(x1, . . . , xd) is the product of d non-negative functions

each of which is a function in xk alone, k = 1, . . . , d;

(d) P(X1,...,Xd) =
∏d
k=1 PXk as measures on (Rd,Bd).

Proof. Taking Bk = (−∞, xk] in (9.1), we obtain

F (X1,...,Xd)(x1, . . . , xd)

=P(X1 ≤ x1, . . . , xd ≤ Xd) = P(X1 ∈ (−∞, x1], . . . , Xd ∈ (−∞, xd])

=
d∏

k=1

P(Xk ∈ (−∞, xk]) =
d∏

k=1

P(Xk ≤ xk)

=
d∏

k=1

FXk(xk).

Thus (a) =⇒ (b). (b) can also be translated to that P(X1,...,Xd) and
∏d
k=1 PXk

coincide for all sets of the form
∏d
k=1(−∞, xk], which then, by Corollary 2.10,

implies that P(X1,...,Xd) =
∏d
k=1 PXk as measures on (Rd,Bd). Hence, (b) =⇒

(d). (d) =⇒ (a) is immediate in view of (9.2).

(b) =⇒ (c) is clear. The proof of (c) =⇒ (b) is an elementary play of

functions; we include it for the sake of completeness. Assume that (c) holds,

say, F (X1,...,Xd)(x1, . . . , xd) =
∏d
k=1Gk(xk), where Gk ≥ 0 for each k. Each

Gk cannot be identically 0 (why?). Take x0
k ∈ R such that Gk(x

0
k) > 0 for

k = 2, . . . , d. Then

F (X1,...,Xd)(x1, x
0
2, . . . , x

0
d) = G1(x1)

d∏
k=2

Gk(x
0
k)
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for any x1 ∈ R. Since F (X1,...,Xd) is increasing in x1 (why?), it follows that

G1 is increasing in x1. Similarly, each Gk is increasing in xk. Thus

d∏
k=1

Gk(∞) = lim
n→∞

d∏
k=1

Gk(n) = lim
n→∞

F (X1,...,Xd)(n, . . . , n)

= lim
n→∞

P

(
d⋂

k=1

{Xk ≤ n}
)

= P

(
d⋂

k=1

{Xk ∈ R}
)

= 1.

Recalling how to recover marginal CDFs from the joint CDF from Subsec-

tion 3.1 of Chapter 8, we have

FX1(x1) = lim
n→∞

F (X1,...,Xd)(x1, n, . . . , n) = lim
n→∞

G1(x1)

d∏
k=2

Gk(n)

=G1(x1)

d∏
k=2

Gk(∞) =
G1(x1)

G1(∞)
.

Similarly, one obtains the case for other k’s. This proves (c) =⇒ (b). �

Apparently, Condition (b) is the most convenient one to verify. The

following result extends (b) to PDFs whenever existing.

9.3. Corollary. Let X1, . . . , Xd be random variables.

(a) If they are independent and have PDFs fXk ’s, then they have a

joint PDF which is given by
∏d
k=1 f

Xk ;

(b) If they have a joint PDF1 that is a product of d non-negative func-

tions each of which a function of xk alone, k = 1, . . . , d, then they

are independent.

Proof. (a). For any x1, . . . , xd ∈ R, by independence of Xk’s and The-

orem 9.2(b), we have

F (X1,...,Xd)(x1, . . . , xd) =

d∏
k=1

FXk(xk) =

d∏
k=1

∫
(−∞,xk]

fXk(tk)dtk

=
d∏

k=1

∫
R

1(−∞,xk](tk)f
Xk(tk)dtk =

∫
Rd

d∏
k=1

1(−∞,xk](tk)f
Xk(tk)dt

=

∫
Rd

1∏d
k=1(−∞,xk](t)

d∏
k=1

fXk(tk)dt =

∫
∏d
k=1(−∞,xk]

d∏
k=1

fXk(tk)dt,

1Recall from Section 3 of Chapter 8 that if a random vector has a joint PDF then all

the component random variables automatically have PDFs as well.
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where the fourth equality is due to Fubini Theorem. By the definition of

(joint) PDF,
∏d
k=1 f

Xk(tk) is the PDF of (X1, . . . , Xd). This proves (a).

For (b), say, f (X1,...,Xd)(t1, . . . , td) =
∏d
k=1 gk(tk) for any (x1, . . . , xd) ∈

Rd. Then for any x1, . . . , xd ∈ R, we have

F (X1,...,Xd)(x1, . . . , Xd) =

∫
∏d
k=1(−∞,xk]

f (X1,...,Xd)dt =

∫
∏d
k=1(−∞,xk]

d∏
k=1

gk(tk)dt

=
d∏

k=1

∫
(−∞,xk]

gk(tk)dtk.

For k = 1, . . . , d, write Gk(xk) =
∫

(−∞,xk] g(tk)dtk for xk ∈ R. Then by

Theorem 9.2(c), Xk’s are independent. �

9.4. Remark. The parallel result holds for PMFs and discrete random

variables.

9.1. Example. Suppose that (X1, . . . , Xd) ∼ Nd(µ,Σ). If Σ is diagonal,

then their joint density is

(2π)−
d
2 det(Σ)−

1
2 e−

1
2

(x−µ)Σ−1(x−µ)t

=(2π)−
d
2

(
d∏

k=1

σkk

)− 1
2

e
−

∑d
k=1

(xk−µk)
2

2σkk =
d∏

k=1

1√
2πσkk

e
− (xk−µk)

2

2σkk .

Thus by Corollary 9.3(b), Xk’s are independent. Moreover, recall from

Example 8.8 that Xk ∼ N(µk, σkk) for each k. That is, if X ∼ Nd(µ,Σ)

with Σ diagonal, then Xk’s are independent Gaussians.

The converse is also easily seen to be true by an application of Corol-

lary 9.3(a).

Below is another application of Corollary 9.3(a).

9.2. Example. Let Xk ∼ N(µk, σ
2
k), k = 1, . . . , d, be independent. Put

X :=
∑d

k=1Xk. Let’s try to determine the distribution of X. For conve-

nience, write f(t) = 1√
2π
e−

t2

2 for t ∈ R. By Corollary 9.3(a), the PDF of X
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is
∏d
k=1

1
σk
f(xk−µkσk

). Then by Corollary 8.5, for any x ∈ R,

P(X ≤ x) =E[1{t:∑d
1 ti≤x}

(X)] =

∫
Rd

1{t:∑d
1 ti≤x}

(x)
d∏

k=1

1

σk
f
(xk − µk

σk

)
dx

=

∫
Rd−2

d−2∏
k=1

1

σk
f
(xk − µk

σk

)
d(x1, . . . , xd−2)

·
∫
{(td−1,td):td−1+td≤x−

∑d−2
1 xk}

1

σd−1
f
(xd−1 − µd−1

σd−1

) 1

σd
f
(xd − µd

σd

)
d(xd−1, xd)

=

∫
Rd−2

d−2∏
k=1

1

σk
f
(xk − µk

σk

)
d(x1, . . . , xd−2)

·
∫

R
1{t:t≤x−∑d−2

1 xk}(z)
1√

σ2
d−1 + σ2

d

f
(z − (µd1 + µd)√

σ2
d−1 + σ2

d

)
dz

=

∫
Rd−1

1{(t1,...,td−1):
∑d−1

1 ti≤x}(x1, · · · , xd−2, z)
d−2∏
k=1

1

σk
f
(xk − µk

σk

)
· 1√

σ2
d−1 + σ2

d

f
(z − (µd−1 + µd)√

σ2
d−1 + σ2

d

)
d(x1, · · · , xd−2, z).

Comparing the right hand sides of the second and last equalities, one sees

that the integrands have the same pattern but the latter one has one less

variable. Thus repeating the process, we obtain that

P(X ≤ x) =

∫
R

1{t:t≤x}(z)
1√∑d

1 σ
2
k

f
(z −∑d

1 µk√∑d
1 σ

2
k

)
dz.

It follows that X ∼ N(
∑d

1 µk,
∑d

1 σ
2
k). In particular, the sum is still a normal

distribution!

We include a useful observation.

9.5. Proposition. Let X1, . . . , Xd be independent random variables and

hk : R→ R, k = 1, . . . , d, be Borel measurable functions. Then h1(X1), . . . , hd(Xd)

are also independent.

Proof. Note that {hk(Xk) ∈ Bk} = {Xk ∈ h−1
k (Bk)}. Thus

P
(
h1(X1) ∈ B1, . . . , hd(Xd) ∈ Bd

)
=P
(
X1 ∈ h−1

1 (B1), . . . , Xd ∈ h−1
k (Bd)

)
=

d∏
k=1

P
(
Xk ∈ h−1

k (Bk)
)

=
d∏

k=1

P
(
hk(Xk) ∈ Bk

)
,

which gives independence of hk(Xk)’s. �
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2. Characterization via expectations

So far we have not used Theorem 9.2(d). Below is a very important

application.

9.6. Theorem. Let X1, . . . , Xd be random variables. Then Xk’s are

independent if and only if E[
∏d
k=1 hk(Xk)] =

∏d
k=1 E[hk(Xk)] for any Borel

measurable functions hk : R→ [0,∞], k = 1, . . . , d.

Proof. Taking hk = 1Bk , we immediately obtain the “if” part. Now

suppose that X1, . . . , Xd are independent. Then by Corollary 8.5,

E

[
d∏

k=1

hk(Xk)

]
=

∫
Rd

d∏
k=1

hk(xk)dP(X1,...,Xd)(x1, . . . , xd)

=

∫
Rd

d∏
k=1

hk(xk)d
d∏

k=1

PXk(x1, . . . , xd)

=

d∏
k=1

∫
R
hk(xk)dPXk .

where the second equality is due to Theorem 9.2(d) and the last equality

is due to a repeated application of Fubini Theorem. Of course, to apply

Corollary 8.5, one needs to show that
∏d
k=1 hk as a function on Rd is Borel

measurable (Exercise 9.4). �

9.7. Corollary. Let X1, . . . , Xd be independent random variables and

hk : R → [0,∞], k = 1, . . . , d, be Borel measurable functions. If hk(Xk) ∈
L1, then

∏d
k=1 hk(Xk) ∈ L1 and E[

∏d
k=1 hk(Xk)] =

∏d
k=1 E[hk(Xk)]. If∏d

k=1 hk(Xk) ∈ L1 and each hk(Xk) is not a.s., then hk(Xk) ∈ L1 for each

k = 1, . . . , d.

Proof. For integrability, apply Theorem 9.6 to |hk|; for the second as-

sertion, note that E[|hk(Xk)|] > 0 for each k. For the asserted equality, apply

E[
∏d
k=1 h

±
k (Xk)] =

∏d
k=1 E[h±k (Xk)] and reassemble the terms according to

hk = h+
k − h−k and linearity of expectations. �

9.8. Corollary. Let X and Y be independent integrable random vari-

ables. Then CoV[X,Y ] = 0.
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Proof. By Corollary 9.7, (X − µX)(Y − µY ) = XY − µXY −XµY +

µXµY ∈ L1, so that CoV[X,Y ] is well-defined. Moreover,

CoV[X,Y ] =E[XY − µXY −XµY + µXµY ]

=E[XY ]− µXE[Y ]− E[X]µY + µXµY ]

=E[X]E[Y ]− µXµY − µXµY + µXµY = 0

�

9.9. Corollary. Let X1, . . . , Xd be independent random variables in

L2. Let a1, . . . , ak be real numbers. Then V[
∑d

k=1 akXk] =
∑d

k=1 a
2
kV[Xk].

Proof. Write µk = E[Xk]. We have

V

[
d∑

k=1

akXk

]
=E

[( d∑
k=1

akXk −
d∑

k=1

akµk

)2
]

= E

[( d∑
k=1

ak(Xk − µk)
)2
]

=E

 d∑
k=1

a2
k(Xk − µk)2 +

∑
j 6=k

ajak(Xj − µj)(Xk − µk)


=

d∑
k=1

a2
kV[Xk] +

∑
j 6=k

ajakCov[Xj , Xk] =
d∑

k=1

a2
kV[Xk]

�

3. Independence of random vectors

The notion of independence can be extended from random variables to

random vectors.

9.10. Definition. Let Xk = (Xk1, Xk2, . . . , Xkdk), k = 1, . . . ,m, be

random vectors over (Ω,F ,P). We say that these m random vectors are

independent if for any Bk ∈ Bdk , k = 1, . . . ,m,

P(X1 ∈ B1, . . . ,Xm ∈ Bm) =

m∏
k=1

P(Xk ∈ Bk).

The following results can be proved similarly.

9.11. Proposition. Let Xk be a random vector of dimension dk, k =

1, . . . ,m. Let hk : Rdk → Rd
′
k , k = 1, . . . ,m, be any Borel measurable

functions. Then h1(X1), . . . , hm(Xm) are still independent random vectors.

9.12. Theorem. Let Xk be a random vector of dimension dk, k =

1, . . . ,m. The following are equivalent:
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(a) X1, . . . ,Xm are independent;

(b) F (X1,...,Xm)(x1, . . . ,xm) =
∏m
k=1 F

Xk(xk) for any xk ∈ Rdk , k =

1, . . . ,m;

(c) F (X1,...,Xm)(x1, . . . ,xm) is the product of m non-negative functions

each of which is a function in xk ∈ Rdk alone, k = 1, . . . ,m;

(d) P(X1,...,Xm) =
∏m
k=1 PXk as measures on (R

∑m
k=1 dk ,B

∑m
k=1 dk).

9.13. Corollary. Let Xk be a random vector of dimension dk, k =

1, . . . ,m.

(a) If they are independent and have PDFs fXk ’s, then they have a

joint PDF which is given by
∏m
k=1 f

Xk ;

(b) If they have a joint PDF that is a product of m non-negative func-

tions each of which a function of xk alone, k = 1, . . . ,m, then they

are independent.

9.14. Theorem. Let Xk be a random vector of dimension dk, k =

1, . . . ,m. Then Xk’s are independent if and only if E[
∏m
k=1 hk(Xk)] =∏d

k=1 E[hk(Xk)] for any Borel measurable functions hk : Rdk → [0,∞],

k = 1, . . . ,m.

Finally, we mention the following remark for clarification purposes.

9.15. Remark. (a) Let Xk, k = 1, . . . ,m, be independent random

vectors of dimension dk, respectively. Then the random variables

in Xk, i.e., Xk1, Xk2, . . . , Xkdk , of course may not be independent.

But random variables such as X11, X21, . . . , Xm1 are independent.

Indeed, in Proposition 9.11, taking hk(xk1, . . . , xkdk) = xk1, we

obtain this assertion.

(b) On the other hand, let Xkj , k = 1, . . . ,m, j = 1, . . . , dk, be given

random variables. If Xij ’s are independent, then the random vec-

tors Xk’s are independent too, where Xk := (Xk1, Xk2, . . . , Xkdk),

k = 1, . . . ,m. Indeed, by Theorem 9.2 (b), the CDF of (X1, . . . ,Xm)

is the product of all FXkj , k = 1, . . . ,m, j = 1, . . . , dk. Since

Xkj , j = 1, . . . , dk, are also independent (Exercise 9.1), by The-

orem 9.2 (b) again, the CDF of Xk is the product of FXkj , j =

1, . . . , dk. Thus the CDF of (X1, . . . ,Xm) is the product of the

CDFs FXk , k = 1, . . . ,m. It follows from Theorem 9.12(b) that

X1, . . . ,Xm are independent.
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Exercises

9.1. If X1, . . . , Xd are independent then any few of them are also inde-

pendent.

9.2. Show that∫
{(t1,t2):t1+t2≤x}

1

2πσ1σ2
e
−
[

(x1−µ1)
2

2σ21
+

(x2−µ2)
2

2σ22

]
d(x1, x2)

=

∫ x

−∞

1√
2π(σ2

1 + σ2
2)
e
− (z−µ1−µ2)

2

2(σ21+σ
2
2) dz.

Hint: apply the change of variable:

x1 + x2 = z

x2 = σ2√
σ2
1+σ2

2

w + µ2
, repackage

the terms in the exponent, and use
∫

R
1√

2πσ1
e
− (w−a)2

2σ21 dw = 1 for any a ∈ R.

9.3. Let Z1, . . . , Zd be standard normal distributions. Let a1, . . . , ak be

real numbers. Determine the distribution of
∑d

k=1 akZk.

9.4. Let hk : R→ R, k = 1, . . . , d, be Borel measurable functions. Show

that
∏d
k=1 hk is Borel measurable as a function on Rd.

9.5. Prove Proposition 9.11, Theorem 9.12, Corollary 9.13 and Theo-

rem 9.14.

9.6. Find three random variables X,Y, Z such that they are not inde-

pendent but any two of them are independent.





CHAPTER 10

Law of Large Numbers

This note briefly reviews laws of large numbers, which in a narrow sense

asserts that sample means approximate the population mean as the sample

size gets larger. Several applications of them to statistics will also be dis-

cussed: Monte Carlo methods, Empirical distributions, the Bootstrapping,

and the Moment estimators.

1. Type of convergence

Laws of Large Numbers involve convergence of sequences of random

variables. So far, we have encountered the most important one: almost sure

convergence. Another crucial one is as follows.

10.1. Definition. Let X,Xn, n ∈ N random variables. We say that

(Xn)n∈N converges to X in probability, and write Xn
pr−→ X, if for any

ε > 0, P(|Xn −X| > ε) −→ 0 as n −→∞.

Basically, convergence in probability means that, for any given error

bound ε > 0, as Xn approaches X, the probability of that the error |Xn−X|
exceed ε approaches 0.

10.2. Proposition. If Xn −→ X in norm or a.s., then Xn −→ X in

probability;

2. Law of Large Numbers

2.1. Weak law of large numbers. The term of weak law refers to

convergence in probability in the context of laws of large numbers. We

decompose the proof of weak law into several short lemmas. The first one

provides a typical way to yield convergence in probability.

10.1. Lemma. For a sequence (Xn) of rvs in L2, if V [Xn] −→ 0, then

Xn − E[Xn]
pr−→ 0.

107
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Proof. For any ε > 0, by Chebyshev’s inequality,

P
(∣∣∣Xn − E[Xn]

∣∣∣ > ε
)
≤

E
[(
Xn − E[Xn]

)2]
ε2

=
V [Xn]

ε2
−→ 0.

�

The second one encourages us to do truncations. Two sequences of rvs,

(Xn) and (Yn), are said to be equivalent if
∑∞

n=1 P(Xn 6= Yn) <∞.

10.2. Lemma. (a) If (Xn) and (Yn) are equivalent, then 1
n

∑n
k=1Xk

converges a.s. (resp., in probability) if and only if 1
n

∑n
k=1 Yk con-

verges a.s. (resp., in probability). The limits also coincide in the

case of convergence.

(b) Let (Xn) a sequence of identically distributed, integrable random

variables. Let Yn = Xn1{|Xn|≤n} for each n ∈ N. Then (Xn) and

(Yn) are equivalent.

Proof. ((a)). Assume that (Xn) and (Yn) are equivalent. By Borel-

Cantelli Lemma,

P
(

lim sup
n
{Xn 6= Yn}

)
= 0.

Take any ω ∈
(

lim supn{Xn 6= Yn}
)c

= lim infn{Xn = Yn}. There exists n0,

depending on ω, such that for any n ≥ n0, ω ∈ {Xn = Yn}, i.e., Xn(ω) =

Yn(ω), implying that

lim
n

1

n

n∑
k=1

(Xk(ω)− Yk(ω)) = 0.

These two observations together give that 1
n

∑n
k=1(Xk − Yk) converges to 0

a.s. and thus in probability. The assertions in ((a)) now follow immediately.

((b)) holds because

∞∑
n=1

P(Xn 6= Yn) =

∞∑
n=1

P(|Xn| > n) =

∞∑
n=1

P(|X1| > n) ≤ E[|X1|] <∞.

�

The nice properties of truncated rvs are contained in the next lemma.

10.3. Lemma. Let (Xn)n∈N be a sequence of identically distributed inte-

grable rvs. Let Yn = Xn1{|Xn|≤n} for each n ∈ N. Then

∞∑
n=1

V[Yn]

n2
<∞.
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Consequently,

lim
n→∞

1

n2

n∑
k=1

V [Yk] = 0.

Proof. Let F be the CDF of Xn’s. Then

∞∑
n=1

V [Yn]

n2
≤
∞∑
n=1

E[Y 2
n ]

n2
=
∞∑
n=1

1

n2

∫
{|x|≤n}

x2dF (x) =
∞∑
n=1

1

n2

n∑
k=1

∫
{k−1<|x|≤k}

x2dF (x)

=

∞∑
k=1

∞∑
n=k

1

n2

∫
{k−1<|x|≤k}

x2dF (x) ≤
∞∑
k=1

2

k

∫
{k−1<|x|≤k}

x2dF (x)

≤
∞∑
k=1

2

k

∫
{k−1<|x|≤k}

k|x|dF (x) = 2

∞∑
k=1

∫
{k−1<|x|≤k}

|x|dF (x)

=2E[|X|] <∞.

The second assertion follows from Kronecker’s Lemma below on convergence

of numbers, whose proof can be found in a mathematical analysis textbook

and we omit. �

Lemma (Kronecker). Let (xn)n∈N be a sequence of real numbers, (an)n∈N

be a sequence of positive real numbers increasing to∞. If
∑∞

n=1
xn
an

converges

to a real number, then

1

an

n∑
k=1

xk −→ 0.

We are now ready to present the proof of the weak law of large numbers.

10.3. Theorem (Weak LLN). Let (Xn)n∈N be a sequence of pairwise

independent, identically distributed, integrable rvs. Then

1

n

n∑
k=1

Xk
pr−→ µ,

where µ is the mean of Xi’s.

Proof. Let Yn = Xn1{|Xn|≤n} for each n ∈ N. By Lemma 10.2, it

suffices to prove that

1

n

n∑
k=1

Yk
pr−→ µ.

Moreover,

E[Yn] = E[Xn1{|Xn|≤n}] =

∫
|x|≤n

xdF (x) = E[X11{|X1|≤n}] −→ E[X1] = µ
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by the Dominated Convergence Theorem, where F is the CDF of Xn’s. Thus

1

n

n∑
k=1

E[Yn] −→ µ.

Therefore, it suffices to prove that

Tn :=

∑n
k=1(Yk − E[Yk])

n

pr−→ 0.

Note that Yn’s are also pairwise independent and thus are uncorrelated.

Hence,

V[Tn] =
1

n2
V
[ n∑
k=1

(Yk − E[Yk])
]

=
1

n2

n∑
k=1

V[Yk] −→ 0,

by Lemma 10.3. Thus by Lemma 10.1, Tn = Tn − E[Tn]
pr−→ 0. �

2.2. Strong law of large numbers. The term of strong law refers to

a.s. convergence. Again, we split the proof into several lemmas.

10.4. Lemma. Let (Xn) be a sequence of independent mean-zero rvs in

L2. Put Sn =
∑n

k=1Xk for each n ∈ N. Then for any ε > 0 and n ∈ N,

P
(

max
1≤k≤n

|Sk| > ε
)
≤ V[Sn]

ε2
.

Proof. For each n ∈ N, set Fn = σ(Xk : 1 ≤ k ≤ n). Then

E[Sn+1|Fn] = E[Sn +Xn+1|Fn] = Sn + E[Xn+1|Fn] = Sn,

where we use the fact that since Xn+1 is independent from Fn, E[Xn+1|Fn] =

E[Xn+1] = 0. It follows that {(Sn); (Fn)} is a martingale, and thus {(S2
n); (Fn)}

is a positive submartingale. Thus by Doob’s maximal inequality,

P
(

max
1≤k≤n

|Sk| > ε
)

= P
(

max
1≤k≤n

S2
k > ε2

)
≤ E[S2

n]

ε2
=

V[Sn]

ε2
.

�

10.5. Lemma. Let (Xn) be a sequence of independent mean-zero rvs in

L2. Suppose that
∑∞

n=1 V[Xn] <∞. Then
∑∞

n=1Xn converges a.s.

Proof. For any m ∈ N, take nm ∈ N such that
∞∑

k=nm+1

V[Xk] <
1

m4
.

For any n′ > nm, by Lemma 10.4, we have

P
(

max
nm+1≤k≤n′

|Sk−Snm | >
1

m

)
≤ V

[
Sn′ − Snm

]
1
m2

= m2
∑

nm+1≤k≤n′
V[Xk] <

1

m2
.
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Putting

Am = { max
k≥nm+1

|Sk − Snm | >
1

m
}

and letting n′ →∞ above, we have

P(Am) ≤ 1

2m
,

so that
∑∞

m=1 P(Am) <∞ and thus by Borel-Catenlli Lemma,

P(lim sup
m

Am) = 0.

Now take any ω 6∈ lim supmAm, there exists some m ∈ N such that ω 6∈ Am,

which is equivalent to that |Sk(ω)−Snm(ω)| ≤ 1
m for any k ≥ nm. Therefore,

|Sk(ω)− Sl(ω)| ≤ 2

m
, for any k, l ≥ nm.

This proves that the partial sums of the series
∑∞

n=1 Sn(ω) are Cauchy, and

hence the series is convergent. This completes the proof. �

10.4. Theorem (Strong LLN). Let (Xn)n∈N be a sequence of indepen-

dent, identically distributed, integrable rvs. Then

1

n

n∑
k=1

Xk
a.s.−→ µ,

where µ is the mean of Xi’s.

Proof. Let Yn = Xn1{|Xn|≤n} for each n ∈ N. As in the weak case, it

suffices to prove that

Tn :=

∑n
k=1(Yk − E[Yk])

n

a.s.−→ 0.

By Lemmas 10.3 and 10.5,
∑∞

n=1
Yn−E[Yn]

n converges a.s. By Kronecker’s

Lemma, Tn
a.s.−→ 0. �

3. Monte Carlo Simulations

The SLLN provides a numerical method for computing the expectation

E[X] of a rv via simulations. Recall that a distribution function F : R→ R is

an increasing, right-continuous function such that F (−∞) = 0 and F (∞) =

1. Recall also that there is a bijection between distribution functions and

probability measures on R via:

µ
(
(a, b]

)
= F (b)− F (a).
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We will call a distribution function F of interest a (univariate) pop-

ulation . A random sample drawn from the population F is a sequence

(Xn) of independent rvs all having F as their CDF. A sample drawn from

the population F is a sequence (xn) of real numbers, which is a realization

of a random sample (Xn), namely, there exists ω such that

xn = Xn(ω) for each n.

Suppose that the population mean m :=
∫

R x dF (x) is finite. Let (Xn)

be a random sample drawn from F . Then E[|Xn|] =
∫

R|x|dF (x) < ∞, so

that the SLLN is applicable to the sequence (Xn). Thus, for a sample (xn)

drawn from F , the sample means converge to the population mean1:

1

n

n∑
k=1

xk −→ E[X1] =

∫
R
x dF (x) = m, as n→∞.

In reality, the sample drawn from the population is of course a finite se-

quence, say, x1, x2, . . . , xn, where n is called the sample size . When the

size n is large enough, we have the following approximation:

1

n

n∑
k=1

xk ≈ m.

This algorithm of computing a population parameter using random sampling

is typically referred to as Monte Carlo methods. For example, once we

have a way to generate from F a sample, also called random numbers in

the context of Monte Carlo methods, we can evaluate the population mean

m by 1
n

∑n
k=1 xk as above.

Most computational software contain random number generators for

classical distributions, such as uniform distribution and normal distribu-

tions. For example, x = rand(n, 1) returns n random numbers from the

uniform distribution on (0, 1):

>> x=rand(10,1)

x =

0.1622

0.7943

1Not an accurate assertion, since for any random sample, the convergence may fail on

a set of probability 0. But for all practical purposes, probability-zero events are regarded

as never happening.
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0.3112

0.5285

0.1656

0.6020

0.2630

0.6541

0.6892

0.7482

When n is large, we can see that the sample mean 1
n

∑n
k=1 xk is indeed

close to the population mean µ =
∫

(0,1) xdx = 1
2 . We simulate 5 samples of

size one million and calculate the respective sample means; all of these five

sample means are close to µ = 0.5:

>> y=zeros(5,1);

for k=1:5

x=rand(1000000,1);

y(k)=mean(x);

end

y

y =

0.5002

0.4999

0.5000

0.5001

0.4998

Of course, we can use the Monte Carlo methods to compute population

parameters other than the mean. Suppose that the population F has a

finite second moment, i.e.,
∫

R x
2dF (x) <∞. Let (Xn) be a random sample

drawn from F . Then E[X2
n] =

∫
R x

2dF (x) < ∞, which further implies that

E[|Xn|] <∞ by the Cauchy-Schwartz inequality. Thus the the SLLN applies

to both (Xn) and (X2
n), namely,

1

n

n∑
k=1

Xn
a.s.−→ E[X1] =

∫
R
xdF (x),

1

n

n∑
k=1

X2
n
a.s.−→ E[X2

1 ] =

∫
R
x2dF (x).
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It follows that for a sample (xn),

1

n

n∑
k=1

x2
k −

( 1

n

n∑
k=1

xk

)2
−→ E[X2

1 ]− E[X1]2 = V [X1],

where the far right term is clearly equal to

V [F ] :==

∫
R
x2dF (x)−

(∫
R
xdF (x)

)2
,

called the population variance . Thus V [F ] is evaluated by

1

n

n∑
k=1

x2
k −

( 1

n

n∑
k=1

xk

)2
=

∑n
k=1(xk − x)2

n
,

for some large enough n; here x := 1
n

∑n
k=1 xk is the sample mean.

We can use tricks to generate random numbers to compute more sophis-

ticated probabilistic terms. Say, let’s compute the expectation of

X =
2U

e
√
|Z|
,

where U and Z are independent, U is uniform on (0, 1), and Z is standard

normal. We simulate a sample of size one million for the uniform distribution

and the standard normal, respectively, aggregate them to produce random

numbers for F , where F is the CDF of X, and then take the new sample

mean:

>> u=rand(1000000,1);

z=randn(1000000,1);

x=2.^u./exp(sqrt(abs(z)));

mean(x)

ans =

0.6736

One can run these codes a few times and will see that the answer is stable

around 0.673.

4. Empirical Distributions

In Statistics, one often draws a histogram of data, which shows “distri-

bution” of the data, to infer the distribution of the population. For example,
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the following codes in Matlab simulate 1000 random numbers from the stan-

dard normal distribution and produces the histogram of these numbers with

50 bins, Figure 1.

>> x=randn(1000,1);

>> histogram(x,50)

ylabel(’Relative frequency in each bin’)

One sees that the histogram does demonstrate a shape like the graph of

the density of the standard normal distribution. We now study why this

happens.

In general, suppose that we collect n observations, i.e., a sample of size

n, from the population, which we denote by x1, x2, . . . , xn. In the histogram,

one first cuts the x-axis into several bins. Then the histogram captures the

relative frequencies of observations that belong to each bin (aj , bj ]:

#{k : aj < xk ≤ bj}
n

.

We consider the following function Fn : R→ R defined by

Fn(x) =
#{k : xk ≤ x}

n
, x ∈ R.

Clearly, Fn(x) is the relative frequency of the observations x1, . . . , xn that

belong to the interval (−∞, x]. In this notation, the relative frequency in a

bin (aj , bj ] can be expressed by

Fn(bj)− Fn(aj).
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Thus, the histogram is produced by the values of Fn at the end points of

the bins.

One can easily see that Fn is an increasing, right continuous function

such that Fn(−∞) = 0 and Fn(∞) = 1. That is, Fn is also a distribution

function. It is called the empirical distribution , because it is the distri-

bution of the empirical evidence x1, . . . , xn. The assertion that histograms

can be used to approximate the population distribution is mathematically

equivalent to that whenever n is large enough, Fn(x) is close to F (x) at

every x ∈ R, or

sup
x∈R

∣∣Fn(x)− F (x)
∣∣ is small, whenever n is large.

10.5. Theorem (Central Statistical Theorem). Let (Xn) be a random

sample drawn from the population F . For each n ∈ N and x ∈ R, put

Fn(x) =
1

n

n∑
k=1

1{Xk≤x}.
2

Then

P
(

lim
n

sup
x∈R
|Fn(x)− F (x)| = 0

)
= 1.

That is, out a set of probability 0,
(
Fn(x)

)
converges to F (x), uniformly in

x.

Clearly, at any realization (xn) of (Xn), the two ways of defining Fn(x)

coincide.

Proof. We only provide the proof of the following weaker version. At

every x ∈ R, outside a set of probability, we have Fn(x) −→ F (x). This is

easy! Fix x ∈ R. Since Xn’s are iid, the random variables 1{Xn≤x}’s are iid

too. In fact, their common distribution is as follows:

P
(

1{Xn≤x} = 1
)

= P(Xn ≤ x) = F (x),

and

P
(

1{Xn≤x} = 0
)

= P(Xn > x) = 1− F (x).

Thus by the SLLN,

Fn(x) =
1

n

n∑
k=1

1{Xk≤x}
a.s.−→ E[1{X1≤x}] = P(X1 ≤ x) = F (x).

�

2Note that Fn(x) is in fact a rv depending on the random sample.
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The following are histograms with 100 bins of four simulated samples

from the standard normal distribution of sizes 103, 104, 105, 106, respectively.

(a) n = 103 (b) n = 104

(c) n = 105 (d) n = 106
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CHAPTER 14

Conditional Expectation

Setup. Let (Ω,F ,P) be a fixed probability space. Let G be a given

sub-σ-algebra of F . Denote by L1(Ω,F ,P) the collection of all integrable

random variables over (Ω,F ,P) (without modulo a.s. equality). Random

variables are real-valued.

1. Definition and Basic Properties

1.1.

14.1. Theorem. Let X ∈ L1(Ω,F ,P). Then there exists a random

variable Y such that

(a) Y ∈ L1(Ω,F ,P)

(b) Y is G-measurable,

(c)
∫
A Y dP =

∫
AX dP for any A ∈ G.

The reader may read the Appendix at the end for a proof.

1.2. Suppose Y ∈ L1(Ω,F ,P) and is G-measurable. Then

Y ≥ 0 a.s. ⇐⇒
∫
A
Y ≥ 0 for any A ∈ G.

Indeed, if Y ≥ 0 a.s., then Y 1A ≥ 0 a.s., so that
∫
A Y =

∫
1AY ≥ 0

for any A ∈ G.1 Conversely, suppose
∫
A Y ≥ 0 for any A ∈ G. Since Y

is G-measurable, {Y < 0} ∈ G, so that by assumption, 0 ≤
∫
{Y <0} Y =∫

1{Y <0}Y =
∫
−Y −, where the last equality follows from the identity

1{Y <0}Y = −Y −. Therefore,
∫
Y − ≤ 0, and thus

∫
Y − = 0. Since Y − ≥ 0,

we have Y − = 0 a.s.,2 implying that Y ≥ 0 a.s.

1Use the fact: over (Ω,F ,P), if X1 ≥ X2 a.s., then
∫
X1 ≥

∫
X2, as long as both

integrals are well-defined.
2Use the fact: over (Ω,F ,P), if X ≥ 0 a.s., then X = 0 a.s. iff

∫
X = 0.

125
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1.3. Suppose Y,Z ∈ L1(Ω,F ,P) and Y,Z are G-measurable. Then

Y ≥ Z a.s. ⇐⇒
∫
A
Y ≥

∫
A
Z for any A ∈ G.

Y = Z a.s. ⇐⇒
∫
A
Y =

∫
A
Z for any A ∈ G.

1.4. Any random variable Y satisfying the three conditions in Theo-

rem 14.1 is called a version of conditional expectation of X with respect to

G. By 1.3, any two versions of conditional expectation of X with respect to

G are a.s. equal. For convenience, we now take any such a version and call it

the conditional expectation of X with respect to G, and write it as E[X|G].

Note that E[X|G] is just one version among all the versions.

We first deal with equalities regarding conditional expectations.

1.5. If X ∈ L1(Ω,F ,P) is G-measurable, then E[X|G] = X a.s.

For X itself satisfies the three conditions in Theorem 14.1 and is thus a

version of conditional expectation of X.

1.6. Let X ∈ L1(Ω,F ,P) and G1 ⊂ G2 be two sub-σ-algebras of F .

Then

E
[
E[X|G1]

∣∣∣G2

]
= E[X|G1] = E

[
E[X|G2]

∣∣∣G1

]
a.s..

Since E[X|G1] is G1-, and thus G2-, measurable, the first equality follows

from 1.5. For the second one, note first that E
[
E[X|G2]

∣∣∣G1

]
∈ L1(Ω,F ,P)

and is G1-measurable. Moreover, for any A ∈ G1,∫
A

E
[
E[X|G2]

∣∣∣G1

]
=

∫
A

E[X|G2] =

∫
A
X,

where the first equality follows from definition of E[·|G1] and the second

one follows from definition of E[·|G2] and the fact that A ∈ G2. Thus

E
[
E[X|G2]

∣∣∣G1

]
is also a version of conditional expectation of X wrt G1, so

that E
[
E[X|G2]

∣∣∣G1

]
= E[X|G1] a.s.

1.7. Let X1, X2 ∈ L1(Ω,F ,P) and c, d ∈ R. Then,

E[cX1 + dX2|G] = cE[X1|G] + dE[X2|G] a.s.

Indeed, clearly, cE[X1|G] + dE[X2|G] ∈ L1(Ω,F ,P) and is G-measurable.

Moreover, for any A ∈ G,∫
A

(
cE[X1|G] + dE[X2|G]

)
= c

∫
A

E[X1|G] + d

∫
A

E[X2|G] = c

∫
A
X1 + d

∫
A
X2

=

∫
A

(cX1 + dX2).
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We now deal with two simple inequalities regarding conditional expec-

tations.

1.8. Let X,Y ∈ L1(Ω,F ,P) be such that Y is G-measurable. By 1.3

and definition of conditional expectation,

E[X|G] ≥ Y a.s. ⇐⇒
∫
A
X ≥

∫
A
Y for any A ∈ G.

1.9. Let X1, X2 ∈ L1(Ω,F ,P) and X1 ≥ X2 a.s. Then by 1.3 and

definition of conditional expectation,

E[X1|G] ≥ E[X2|G] a.s.

2. Jensen’s inequality

2.1. Conditional form.

14.2. Theorem. Let X ∈ L1(Ω,F ,P). Let Φ : R → R be a convex

function such that Φ(X) ∈ L1(Ω,F ,P).3 Then

Φ
(
E[X|G]

)
≤ E

[
Φ(X)

∣∣G] a.s.

Proof. We use the fact that there exist at most countably many lines

ln(x) = anx+bn such that Φ(x) = supn ln(x) for any x ∈ R.4 For any n ∈ N,

since Φ(X) ≥ ln(X),

E
[
Φ(X)

∣∣G] ≥ E
[
ln(X)

∣∣G] = ln
(
E[X|G]

)
a.s.

Let An =
{

E
[
Φ(X)

∣∣G] < ln
(
E[X|G]

)}
. Then P(∪nAn) = 0.5 For any

ω ∈ Ac, we have

E[Φ(X)|G](ω) ≥ sup
n
ln

(
E[X|G](ω)

)
= Φ

(
E[X|G](ω)

)
.

�

3Note that Φ is continuous and thus Φ(X) is F-measurable. Similarly, Φ(E[X|G]) is

G-measurable.
4Put Φ∗(y) = supx∈R(xy−Φ(x)) for any y ∈ R. Recall that Φ(x) = supy∈R(xy−Φ∗(y))

for any x ∈ R. Note that Φ∗, possibly taking ∞, is convex on R. Thus I :=
{
y ∈ R :

Φ∗(y) < ∞
}

is a convex set in R, and is thus an interval if not a singleton. Write

I = (a, b)∪E where E consists of possible endpoints of (a, b) that lie in I. Let {yn}n≥1 be

a countable set that contains E and a dense subset of (a, b). Since Φ∗ is convex and finite on

(a, b), it is continuous there. One can now easily verify that Φ(x) = supn≥1(xyn−Φ∗(yn)).

The desired lines are given by ln(x) = xyn − Φ∗(yn).
5This is why we insist on at most countably many lines.
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2.2. Unconditional form. Putting G = {∅,Ω} in the previous theo-

rem, one obtains the unconditional form of Jensen’s inequality:

Φ(E[X]) ≤ E[Φ(X)].

2.3. Let 1 ≤ p < ∞. Let Φ(t) = |t|p. Then Φ is convex6, so that∣∣∣E[X|G]
∣∣∣p ≤ E

[
|X|p

∣∣G], implying
∣∣E[X|G]

∣∣ ≤ (E[|X|p∣∣G]) 1
p . Replacing X

with |X|, one has

E
[
|X|
∣∣G] ≤ (E

[
|X|p

∣∣G]) 1
p
,(14.1)

E
[
|X|
]
≤
(

E
[
|X|p

]) 1
p
.

Taking the expectation of the p-th power of both sides of (14.1), we have∥∥∥E
[
|X|
∣∣G]∥∥∥

p
≤
(

E
[
E
[
|X|p

∣∣G]])1/p
=
(
E[|X|p]

) 1
p = ‖X‖p.

3. Convergence theorems

3.1. Conditional MCT. Suppose 0 ≤ Xn ↑ X a.s. andX ∈ L1(Ω,F ,P).

Then

E[Xn|G] ↑ E[X|G] a.s.

Indeed, let Y = supn E[Xn|G]. Then Y is G-measurable. Put A =

∪n
{

E[Xn+1|G] < E[Xn|G]
}

. Then P(A) = 0, and E[Xn|G] ↑ Y on Ac, so

that by the unconditional MCT,∫
Y = lim

n

∫
E[Xn|G] = lim

n

∫
Xn =

∫
X =

∫
E[X|G].

Put B = ∪n
{
E[Xn|G] > E[X|G]

}
. Then P(B) = 0, and E[Xn|G] ≤ E[X|G]

on B for each n, so that Y ≤ E[X|G] outside B. It follows that Y = E[X|G]

a.s.7

3.2. Conditional Fatou. Suppose Xn ≥ 0 a.s. and Xn ∈ L1(Ω,F ,P)

for each n ∈ N. Then

E[lim inf
n

Xn|G] ≤ lim inf
n

E[Xn|G] a.s.

3.3. Conditional DCT. Suppose Xn
X−→ a.s. Suppose|Xn| ≤ X0 a.s.

for all n ∈ N and some X0 ∈ L1(Ω,F ,P). Then

E[Xn|G]→ E[X|G] a.s. and in L1(Ω,F ,P).

6Use the fact: if Φ′ exists everywhere and is increasing, then Φ is convex.
7Use the fact: if X1 ≤ X2 a.s. and

∫
X1 =

∫
X2 ∈ R, then X1 = X2 a.s.
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3.4. Let X,Y ∈ L1(Ω,F ,P) be such that Y is G-measurable. Then

XY ∈ L1(Ω,F ,P) iff Y E[|X||G] ∈ L1(Ω,F ,P). In this case,

E[XY |G] = Y E[X|G] a.s.(14.2)

Indeed, by splitting X = X+−X− and Y = Y +−Y −, one may assume

that X,Y ≥ 0.

Suppose first that XY ∈ L1(Ω,F ,P). Pick any A ∈ G. For any B ∈ G,∫
B

E[X1A|G] =

∫
B

1AX =

∫
A∩B

X =

∫
A∩B

E[X|G] =

∫
B

1AE[X|G],

where the third equality is due to A ∩ B ∈ G. Thus E[X1A|G] = 1AE[X|G]

a.s., that is, (14.2) holds when Y = 1A. Thus it also holds when Y is

G-simple. Now since Y is G-measurable, we can take a sequence (Yn) of

G-simple functions such that 0 ≤ Yn ↑ Y , so that 0 ≤ XYn ↑ XY . By

Conditional MCT,

E[XY |G] = lim
n

E[XYn|G] = lim
n
YnE[X|G] = Y E[X|G] a.s.

In particular, Y E[X|G] ∈ L1(Ω,F ,P). Conversely, assume that Y E[X|G] ∈
L1(Ω,F ,P). Let (Yn) be as before. Then by the unconditional MCT,∫

Y E[X|G] = lim
n

∫
YnE[X|G] = lim

n

∫
E[XYn|G] = lim

n

∫
XYn =

∫
XY,

so that XY ∈ L1(Ω,F ,P).

3.5. LetX,Y ∈ L1(Ω,F ,P). ThenXE[|Y ||G] ∈ L1(Ω,F ,P) iff E[|X||G]E[|Y ||G] ∈
L1(Ω,F ,P) iff Y E[|X||G] ∈ L1(Ω,F ,P). In this case,

E
[
XE[Y |G]

]
= E

[
Y E[X|G]

]
= E

[
E[X|G]E[Y |G]

]
.

Indeed, by 3.4,∫
XE[Y |G] =

∫
E
[
XE[Y |G]

∣∣∣G] =

∫
E[X|G]E[Y |G].

For brevity, it is conventional to suppress the explicit indication

of “a.s.” when dealing with conditional expectations; for example,

one may drop all the “a.s.” in the previous sections. But the

reader should be aware of its existence, particularly when possible

ambiguity arises and such suppression is inappropriate.

Exercises





A. Outer measures

To be specific, the process will construct an outer measure from the

pre-measure and then construct a measure from the outer measure:

Pre-measure

��

Outer measure

��

Measure

B. Open sets

131


	Notation and Terminology
	Chapter 1. Measurable Sets
	Chapter 2. Measures
	Chapter 3. Lebesgue-Stieltjes Measures
	Chapter 4. Random Variables
	Chapter 5. Expectations I
	Chapter 6. Expectations II
	Chapter 7. Product Measures
	Chapter 8. Distributions
	Chapter 9. Independence
	Chapter 10. Law of Large Numbers
	Chapter 11. Characteristic Functions
	Chapter 12. Central Limit Theorem
	Chapter 13. Conditional Distribution
	Chapter 14. Conditional Expectation
	

