COMP 1005/1405 * Summer 2021

Assignment 3

Connect Four (Lists of Lists)

Due: Friday June 4™ at 2:00pm

Submit a single zip file called A3. zip.
The assignment has 10 marks.

Notes: It is essential that you use the built-in, default, archiving program to create this zip file. If
we cannot easily open your zip file and extract the python files from it then we cannot grade
your assignment. Other file formats, such as rar, 7zip, etc, will not be accepted.

Windows: Highlight (select with ctrl-click) all of your files for submission. Right-click and select
“Send to” and then “Compressed (zipped) folder”. Change the name of the new folder “A3.zip”.

MacOS: Highlight (select with shift-click) all of your files for submission in Finder. Right-click on
one of the files and select “compress N items...” where N is the number of files you have
selected. Rename the “Archive.zip” file “A3.zip”.

Linux: use the zip program.

After submitting your A3.zip file to brightspace, be sure that you download it and
A then unzip it to be certain that what you have submitted is what you wanted to

submit. This also checks that your zip file is not corrupted and can be unzipped.
Please note that reasons similar in nature to “I submitted the wrong files” or “/ didn’t know the
zip file was corrupt” will not be accepted as an excuse after the due date.

Submit early and often. Brightspace will save your latest submission. | would highly suggest that
you submit as soon as you have one question done and keep re-submitting each time you add
another problem (or partial problem).

COMP 1005/1405 * Summer 2021

In this assignment, you will implement the game connect four. If you are not familiar with the
game, please see https://en.wikipedia.org/wiki/Connect Four

Briefly, connect four is a two-player game where players (red and black) alternate taking turns
(making moves). The game is played with a 2-dimensional grid (typically 6 rows and 7 columns)
and a player takes a turn by “dropping” a checker in a column that has a free spot in it. The
checker drops down as far as it can (stopping when it reaches lowest free space available in
that column; being stopped by either another checker or the bottom of the game). A player wins
the game if they can position four of their checkers consecutively in either a row, a column or
diagonally. If the entire grid is filled up and there is no winner then the game ends in a tie.

You are NOT allowed to import any modules in your connect4.py file. In your c4game.py
program, you will import your connect4 module but are NOT allowed to import anything
else.

P1: The Game Board (Grid) [7 marks]

Save all your functions from this part in a file called connect4. py.

The game will take place in a 2-dimensional grid. A typical game has 6 rows and 7 columns
giving 42 possible places, which we will call locations, for the pieces, called checkers, to be
and a maximum of 42 moves (21 for each player). You will use a 2-dimensional list (list of lists)
to represent the game grid. The inner lists will store strings. Each string must be one of 'red’,
"black' or "empty"'. If grid[2][4] == 'red', then a red checker is row 2 and column 4. Columns
and rows are labeled staring with ZERO, so grid[2][4] corresponds to the 3™ row and the 5"
column.

column O is the left-most column of the game and row 0 is the top-most row of the game.

Make a function called makeGrid(nRows, nCols) that takes two integers as input and outputs
(returns) a 2-dimensional list that is an empty game consisting of nRows rows and nCols
columns. All nCols strings in each row must be the string 'empty'. For example,

>>> makeGrid(5,4)

[['empty', ‘empty', ‘'empty', 'empty'], ['empty', ‘empty', ‘empty', ‘empty'],
["empty', ‘empty', ‘empty', 'empty'], ['empty', ‘empty', ‘empty', ‘empty'],
["empty', 'empty', ‘'empty', 'empty']]

https://en.wikipedia.org/wiki/Connect_Four

COMP 1005/1405 * Summer 2021

The function will always be called with inputs satisfying 4 < nRows < 10 and 4 < nCols < 10.

Next, make a boolean function called play(grid, column, checker). The function tries to
play the checker (either ‘red’ or ‘black’) in the specified column of the grid. If column is valid (i.e.,
it is in the right range) and there is room to play another checker in that column of the grid, then
the function should modify the grid to add the checker in the given column and return True.
Otherwise, it returns False. For example,

>>> grid = makeGrid(4,4)

>>> play(grid, 1, ‘red’)

True

>>> play(grid, 5, ‘red’)

False

>>> print(grid)

[["empty', 'empty', ‘'empty', 'empty'], ['empty', ‘empty', ‘'empty’', 'empty'],
["empty', 'empty', 'empty', ‘empty'], ['empty', 'red', ‘empty', 'empty']]

Next, make a function called win(grid, column) that returns a string. The function checks if a
player has won the game (four checkers of the same colour in a row, column or diagonal) or not.
The specified column is the last column in which the piece was played in the game (this should
make it easier to check if that last play was a winning play). If a player has won the game then
the function returns the checker name ('red' or 'black') that won. Otherwise, it returns
"empty'. To make the function more robust, it should also return 'empty" if the input column is
out of the valid range of columns or if there is no piece played in the specified column.

Next, make a function called toString(grid) that returns a string representation of the game.

The checker ‘red’ will be represented by an ‘X’, the checker ‘black’ will be represented by an ‘O’
and empty locations will be represented by a single space (" "). The string must contain newline
characters, border characters (|' pipes, '-' dashes and '+' pluses) and labels (humbering) of the
rows and columns. The format of the output string should follow this example:

>>> grid = makeGrid(4,5)
>>> play(grid, 1, ‘red’)
True

>>> play(grid, 1, ¢‘black’)
True

>>> play(grid, 3, ‘red’)
True

COMP 1005/1405 * Summer 2021

>>> print(toString(grid))

| |o
I |1
| o |2
| X X |3
+--=-=- +
01234

Put all FOUR functions in a file called connect4.py.

P2: Connect Four Game [2 marks]

Write a program (in a file called c4game.py) that lets two players play a game of connect four.

Program

Your program will be driven by a main () function. Be sure to include a main guard (if
statement) in your file. The program will proceed as follows:

1. The users are asked for the size of the game to play in a single question. The expected
input should something like “4,6” to play a game with 4 rows and 6 columns. There can
be any amount of whitespace around the numbers and the comma when the user enters
this. So “4, 6”,“4 , 6” and “4,6” are all valid. If the users enter ‘quit’ then the program
ends with a parting message like “Thanks for playing”. The user will NEVER enter
anything other a valid row,column combination or quit.

2. The program checks if there are empty locations in the game grid. If the grid is full, it
outputs a message “the game is a tie” and then repeated step 1. If there is at least one
empty location, then proceed to step 3.

3. The program asks ‘red’ which column to play (remember column labels start with 0) and
then tries to play a red checker in the given column.

a. If this is successful, the grid is shown and then the program checks if the last
move was a winning move. If it was a winning move the game ends with an
appropriate message (‘Red wins the game after M moves’) and the program
goes back to step 1. If was not a winning move, the program proceeds to step 4.

b. If this is unsuccessful, a message is displayed (that it was an invalid move) and
we retry step 3.

c. Ifthe user entered ‘quit’ then the program terminates with a parting message like
“Thanks for playing”.

COMP 1005/1405 * Summer 2021

4. The program checks if there are empty locations in the game grid. If the grid is full, it
outputs a message “The game is a tie” and then repeated step 1. If there is at least one
empty location, then proceed to step 5.

5. The program asks ‘black’ which column to play (remember column labels start with 0)
and then tries to play a black checker in the given column.

a. If this is successful, the grid is shown and then the program checks if the last
move was a winning move. If it was a winning move the game ends with an
appropriate message (‘Black wins the game after M moves’) and the program
goes back to step 1. If it was not a winning move, we proceed to step 6.

b. If this is unsuccessful, a message is displayed (that it was an invalid move) and
we retry step 5.

c. Ifthe users enter ‘quit’ then the program terminates with a parting message like
“Thanks for playing”.

6. Go back and repeat step 2.

In the above description, M is the total number of valid moves that have been played in the
given game. The minimum number that this can be for a valid game is 7 (when red wins after its
first 4 moves).

A sample run of the game is as follows: (User input is shown highlighted light yellow; your game
will NOT show this highlighting; it is just there for illustrative purposes).

Please enter the size of the game you want to play: 4, 5

Where does red (X) want to play? 4
\ |0
\ 1
\ |2

Where does black (0O) want to play? 4
\ |0
\ 1
\ ol2
\ X|3

Where does red (X) want to play? 7
That is not a valid move.

COMP 1005/1405 * Summer 2021

Where does red (X) want to play? 1
\ 10
\ 1
\ 0l2

Where does black (0) want to play? 4
\ |0
\ Ol
\ ol2
| X X|3

Where does red (X) want to play? 2
\ |0
\ ol1l
\ ol2
| XX X|3

Where does black (0) want to play? O
\ |0
\ ol1l
\ ol2
|OXX X |3

Where does red (X) want to play? 3
\ |0
\ ol1
\ ol2
| OXXXX |3

01234
Red wins after 7 moves

Please enter the size of the game you want to play: quit
Thanks for playing

Recap [A3.zip]

Submit a single zip file called A3 . zip. Your zip file should have TWO files in it.
e connect4.py
e cdgame.py

