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Abstract 
 

This paper investigates the concept of vector autoregression (VAR) and cointegration using a 

bivariate model of global oil prices and headline Consumer Price Index (CPI) in South Africa. The 

study aims to determine how much of inflation is driven by oil prices. Particular attention is 

paid to the theoretical underpinnings of cointergration analysis and the application of STATA 

software to undertake such analysis and perform test statistics. Contrary to the popular myth 

that a rise in global oil prices fuels inflation, this study has observed that global oil prices are 

not the drivers of inflation in South Africa. In this way, other macroeconomic indicators and 

policy developments need to be integrated in analyzing the determinants of South African 

inflation. 
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1. Introduction 
 

Oil prices are a key driver of economic activities, with high prices perceived as being 

unfavorable for global economic growth. Popular myth is that high oil prices are generally 

associated with high consumer prices. The linkage between oil prices and CPI is especially 

important for the South African economy for two reasons. Firstly, in terms of income, South 

Africa is one of the most unequal countries in the world with a Gini coefficient of 63.1 in 20091. 

This means that inflation disproportionately affect larger sectors of the population that do not 

have enough income to keep up with rising prices. Further, South Africa is an oil importing 

country and as such it is exposed to external shocks of rising oil prices. For these reasons, it is 

important to determine the role of imported inflation (via rising global oil prices) in the 

economy. 

Many studies have used the concept of VAR and cointegration to investigate the link between 

oil prices and inflation. For example, Cologni and Manera (2005) used a structural cointegrated 

VAR model to study the effects of oil price shocks on output and prices in G-7 countries. Their 

key finding was that for most of the countries considered, there seems to be an impact of 

unexpected oil price shocks on interest rates, suggesting a contractionary monetary policy 

response directed to fight inflation.  

Çelik and Akgül (2011) studied the relationship between CPI and oil prices in Turkey using the 

Vector Error Correction Model (VECM). Their study revealed that a 1% increase in fuel prices 

caused the CPI to rise by 1.26% with an approximate one year lag.  

Ansar and Asaghar (2013) analyzed the impact of oil prices on stock exchange and CPI in 
Pakistan and concluded that there was no strong relationship between oil prices, CPI and KSE-
100 Index.   
 
LeBlanc and Chinn (2004) estimated the effects of oil price changes on inflation for the United 

States, United Kingdom, France, Germany and Japan using an augmented Phillips curve 

framework. Their study found that oil price increases of as much as 10 % will lead to direct 

inflationary increases of about 0.1-0.8 % in the U.S. and the E.U, which showed a modest 

response. 

Cunado and Perezde (2003) analyzed the effect of oil prices on inflation and industrial 
manufacturing for several European countries for the period of 1960 to 1999. Their findings 
were that there is an asymmetric effect of oil price on production and inflation. Their findings 
suggest that there are expected differences in countries’ responses to changes in global oil 

                                                      
1
 The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, 

expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, 
while an index of 100 implies perfect inequality (http://data.worldbank.org/indicator/SI.POV.GINI). 
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prices depending on their macroeconomic status, whether the country is an oil importer or 
exporter, and the monetary policies adopted by a given country in response to global oil prices 
and other trends like exchange rate variations. 
 
Niyimbanira (2013) has analyzed the relationship between oil prices and inflation in South 
Africa. The difference between his work and ours is that in his paper he modeled inflation has 
the dependant variable which is driven by oil prices. However, our approach firstly uses 
headline CPI and not inflation. Secondly, our approach tests the myth that high oil prices drive 
up prices in the economy, such that oil prices are the dependant variables in our analysis. In this 
way, there is no need to conduct an Engle Granger causality test.  
 
Our approach is also supported by the work of Lescaroux and Mignon (2008) who noted that 
concerning the short term analysis, results indicate that when causality exists between oil 
prices and other macroeconomic variables, it generally runs from oil prices to the other 
considered variables. 
 
Using the uncorrected or headline CPI and oil prices carries a risk of endogeneity. However,  the 
direct link between oil price inflation and headline CPI is mainly through the price of petrol and 
this accounts for only 4.07% of the total CPI according to the CPI country weights of 2008 
(Statistics South Africa, 2008)2. Further, cointegration analysis removes endogeneity and 
autocorrelation as we will discuss later. 
 
Our analysis investigate the theoretical foundations of VAR processes and cointegration and 

their economic interpretation using the South African CPI monthly data from May 1987- 2013 

and global oil prices for the same period.3 Our study approach specifically highlight the STATA 

commands used in such analysis and supported by the theoretical foundations of the analytical 

framework, STATA language and test statistics used4. 

                                                      
2
 The complete contribution of goods and services to the CPI are as follows: Food and non alcoholic beverages 

20.6%, alcoholic beverages and tobacco 6.26%, clothing and footwear 4.98%, housing and utilities 11.03%, 
household contents, equipment and maintenance 6.92%, health 1.67%, transport 20.04%, communication 3.52%, 
recreation and culture 4.43%, education 2.43%, restaurants and hotels 3.14% and miscellaneous goods and 
services 14.98%. 
3
 In January 2013, Statistics SA revised the basket of goods and services used to measure CPI, in order to measure 

consumer inflation more precisely. Among these changes are: food prices were gathered from rural areas, the 
fixed fruit basket was altered to a seasonal one, reduced weightings of automobiles, furniture and appliances 
whose prices have been falling in previous years, and increased weight was given to petrol, transport costs, 
electricity, education and medical insurance (Dhliwayo, 2013) 
4
 STATA statistical software is a complete, integrated statistical software package that is user friendly and readily 

available for purchase. It is versatile and has many techniques for data analysis for a wide range of fields. In 
economics it can be used to analyze for example survival models, panel data, generalized estimating equations, 
multilevel mixed models, models with sample selection, ARCH and GARCH, OLS, logit/probit regressions 
ANOVA/MANOVA, ARIMA and others. The software also facilitates the presentation of summary results in clear 
tabulated forms with strong graphical capabilities. 
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The rest of the paper is organized as follows; section 2 presents the modeling approach and 

tests for unit root. In section 3 we test for cointegration in the bivariate model and discuss the 

results. Section 4 presents the VECM estimates and discusses their implications while section 5 

concludes. 

2. Modeling approach 
 

Before working with our bivariate model we have to test the variables for unit root. Following 

Hendry and Juselius (2000), data can be unit root i.e. integrated of degree 1 (denoted as I(1)). 

Such data cannot be used to investigate relationships between the variables because of 

spurious regression and OLS estimates become invalid.  

However, data showing such properties can be made stationary by first differencing. If a series 
is such that its first difference is stationary (and has positive spectrum at zero frequency) then 
the series has an exact (or pure) unit root (Granger and Swanson, 1996).  
 
The test for unit root starts with Equation 1 below, which is an autoregressive process of degree 

one, denoted as AR(1) process.              

(1) 

 

With;                
From this equation it can be shown that subtracting    (as data) on both sides will result in a 

stationary process even though    is non stationary, i.e.                  
(2) 

Therefore;                 
Such differencing can be extended to twice-integrated series i.e. I(2), in which case it must be 

differenced twice to deliver a stationary process etc.  

It is visually difficult to predict the nature of variables in an economic process i.e. whether they 

are stationary or not. Figure 1 below is a plot of monthly data of oil prices and CPI for the South 
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African economy from 1987 to 2013 (changed to natural logarithm) with 309 observations and 

their first difference.  

The oil prices data has been obtained from Europe Brent Spot Price FOB (Dollars per Barrel) 

(http://tonto.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=RBRTE&f=M).  

The headline CPI has been obtained from statistics South Africa, available at 

www.statssa.gov.za.  

Figure 1: Monthly data of oil prices and consumer price index for the South African economy 

from 1987 to 2013 and their first difference 

 

  

It is not obvious from the graphs if the processes are unit root or follow a random walk. To 

determine their true nature requires the application of the relevant statistical analytical tools. 

As mentioned above, taking first difference should result in stationary processes but still this 
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stationary cannot be determined from the graphs of the first differences above. We therefore 

need to undertake a formal test for unit root of the data, which we do next.   

2.1 Testing for unit root 

A test whether variable has a unit root (random walk) was developed by Dickey and Fuller 

(1979). The null hypothesis for this test is that the variable under analysis has a unit root.  

To develop this test, we repeat the simple AR(1) model shown in Equation 1 above but 

including a constant term α , time trend    and a coefficient  , all that is important in the  test 

statistics to be developed. This extended model is shown in Equation 3 below:                  

(3) 

With    as described previously. 

The regression in Equation 3 can also be extended to remove possibilities of serial correlation in 

the lagged variables by taking p lagged differences and fitting a model as shown in Equation 4 

below5:                                             

 

(4) 

In STATA, these lags are specified in the lags(p) command. Equation 4 above is the augmented 

Dickey-Fuller regression. 

STATA command6 facilitates putting constraints on the augmented Dickey-Fuller regression. The 

noconstant option eliminates α while the trend option includes the time trend   . Equations 3 

and 4 means that testing if β=0 is the same as testing if    , or that     is a unit root process. 

Four possibilities can arise depending on constraints placed on the constant and time trend and 

these possibilities are summarized in Table 17: 

                                                      
5
 This is the Augmented Dickey Fuller Regression that is used to test for unit root 

6
 STATA commands will be shown in italics and underlined to differentiate them from the main text. 

7 The critical values of the Dickey Fuller test are adapted from tables in Fuller (1996) reported as one-sided critical 

values, with the p-values for the test of    against the one-sided       , which is equivalent to    , while 

MacKinnon (1994) reports the p-values on the basis of a regression surface.  
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Table 1: Constrains on constant and time trend in augmented Dickey-Fuller unit root test  

Possibilities Process under    Regression 

restrictions 

dfuller option 

1 Random walk 
without drift 

α=0,  =0 noconstant (default) 

2 Random walk 
without drift 

 =0 drift 

3 Random walk with 
drift 

 =0 trend 

4 Random walk with 
or without drift 

none  

 

The choice of which constraint to choose depends on economic theory and trending behavior 

of the data. For example, if the data shows an increasing time trend, then case four may be 

preferred.  

Visual inspection of the data in Figure 1 shows a clear upward trend for both the oil prices and 

the CPI. Because of this we will therefore use the trend option with dfuller to include a constant 

and a time trend in the augmented Dickey-Fuller regression. 

          2.2 Selecting the number of lags 

The need for the lags arises because values in the past affect today’s values for a given variable. 
This is to say the variable in question is persistent. There are various methods to determine 
how many lags to use. The two most commonly encountered in time series analysis are the 
Akaike Information Criterion (AIC) and the Schwarz' Bayesian Information Criterion (SBIC). 
These rules choose lag length p to minimize: log(SSR(p)/n) + (p + 1)C(n)/n, where SSR(p) is the 
sum or squared residuals for the VAR with p lags and n is the number of observations, with C(n) 

= 2 for AIC and C(n) = log(n) for SBIC.  

STATA varsoc command facilitates the calculation of these lags for the various selection 
criterions. varsoc reports the final prediction error (FPE), Akaike’s information criterion (AIC), 
Schwarz’s Bayesian information criterion (SBIC), the Hannan Quinn Information Criterion 
(HQIC), the log likelihood (LL) and likelihood-ratio (LR)8. 

                                                      
8
                             , where T is the number of observations and K is the number of equations 

and     is the maximum likelihood estimate of                                  , where p is the number of lags.                    , where    is the average number of parameters over the K equations.                 .  
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Therefore to determine the number of lags to use in our bivariate model we run the varsoc 

command and the results are shown in Table 2 below. 

Table 2: Number of lags for a VAR of oil prices and CPI 

The results reported in Table 2 above shows that the maximum number of lags to include for a 

VAR in oil prices is 2, as all the selection criterion show significant values at this lag. For the CPI, 

the maximum number of VAR lags is 3 as determined by significant levels of LR, HQIC and SBIC. 

Having determined the number of lags to use in the VAR we then run the Augmented Dickey-

Fuller test to determine if the two processes are unit root. For the Dickey-Fuller test, if the test 

statistics is smaller (larger) that the critical values we do not reject (reject) the null hypothesis 

of unit root in the data.  

Computation of the unit root test statistics starts from the Augmented Dickey-Fuller expression 

as shown in Equation 4 above, i.e. 

 

                                                                                                                                                                                   .                            , where   is the total number of parameters in the model. 

    Exogenous:  _cons
   Endogenous:  LogOilPrice
                                                                               
     4    580.074  .15884    1  0.690  .001416  -3.72216  -3.69801  -3.66175   
     3    579.994  .36899    1  0.544  .001407  -3.72812   -3.7088  -3.67979   
     2     579.81   23.44*   1  0.000    .0014*  -3.7334*  -3.7189* -3.69715*  
     1     568.09  1282.8    1  0.000  .001501  -3.66401  -3.65435  -3.63985   
     0   -73.3034                      .094709   .480928   .485758    .49301   
                                                                               
   lag      LL      LR      df    p      FPE       AIC      HQIC      SBIC     
                                                                               
   Sample:  1987m9 - 2013m5                     Number of obs      =       309
   Selection-order criteria

. varsoc  LogOilPrice

    Exogenous:  _cons
   Endogenous:  LogCPI
                                                                               
     4    1462.88   3.253    1  0.071  4.7e-06* -9.43609* -9.41193  -9.37568   
     3    1461.25  8.6732*   1  0.003  4.7e-06  -9.43203  -9.41271*  -9.3837*  
     2    1456.91  12.307    1  0.000  4.8e-06  -9.41044  -9.39594  -9.37419   
     1    1450.76  2866.1    1  0.000  5.0e-06  -9.37708  -9.36742  -9.35292   
     0    17.7336                       .05254  -.108308  -.103478  -.096226   
                                                                               
   lag      LL      LR      df    p      FPE       AIC      HQIC      SBIC     
                                                                               
   Sample:  1987m9 - 2013m5                     Number of obs      =       309
   Selection-order criteria

. varsoc  LogCPI
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The test statistic for         is given by           , where     is the standard error of   . 
STATA selects the augmented Dickey-Fuller test from a drop down menu. The results for unit 

root test for oil prices and CPI are shown in Table 3 below: 

Table 3: Augmented Dickey-Fuller test for unit root test of oil prices and CPI 

The results reported in Table 3 above show that oil prices follow a unit root process while CPI is 

a stationary process. This was not apparent from the graphical plot of the two processes as 

shown in Figure 1 above, and statistical analysis was necessary to determine stationary 

conditions of the two time series variables under analysis. 

3.  Testing for Cointegration 

In a bivariate model with    and     variables, there exist a β such that        is I(0) even 

though     and     are non stationary processes. This means the two variables are cointegrated 

or have a stationary long run relationship even though individually they are stochastic. 

Investigation of such processes can starts with the concept of VAR. 

Generally, a VAR model with p lags can be represented as shown in Equation 5 below, which is 

an extension of Equation 3: 

MacKinnon approximate p-value for Z(t) = 0.7652
                                                                              
 Z(t)             -0.967            -3.455            -2.878            -2.570
                                                                              
               Statistic           Value             Value             Value
                  Test         1% Critical       5% Critical      10% Critical
                                          Interpolated Dickey-Fuller          

Augmented Dickey-Fuller test for unit root         Number of obs   =       310

. dfuller LogOilPrice, lags(2)

MacKinnon approximate p-value for Z(t) = 0.0008
                                                                              
 Z(t)             -4.151            -3.455            -2.878            -2.570
                                                                              
               Statistic           Value             Value             Value
                  Test         1% Critical       5% Critical      10% Critical
                                          Interpolated Dickey-Fuller          

Augmented Dickey-Fuller test for unit root         Number of obs   =       309

. dfuller LogCPI, lags(3)
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(5) 

In the above equation,    is an kx1 vector of I(1) variables    is an kx1 vector of deterministic variable   ( =1… p) is an kxk and   is an kxn matrix of coefficients to be determined for a given data set    is an kx1 vector of identically and normally distributed errors with mean of zero and non-

diagonal covariance matrix, ∑. 

Given that the variables are cointegrated, equation 5 can be represented by an equilibrium 

correction model shown in Equation 6 below, which is an extension of Equation 4 discussed 

previously: 

                       
            

(6) 

Economic importance is placed on the   and    coefficients.   is an kxr matrix of cointegrating 

vectors that explain the  long-run relationship of the variables.   is also an kxr matrix that 

explains long run disequilibrium of the variables.    are coefficients that estimate short-run 

shock effects on     and these explain the  differences between the short-run and long-run 

responses. It is important to note that for cointegration to exist, matrices   and   should have 

reduced rank r, where r<k. The identification of the cointegrating vectors in STATA uses 

maximum likelihood (ML) method developed by Johansen (1988, 1991, and 1995).    and     are the deterministic trend components which can be written as;         

(7)           

(8) 

Where   and   are rx1 vectors of parameters.   and   are also kx1 vectors of parameters.   is 

orthogonal to    and   is orthogonal to     such that        and         
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Following this motivation, equation (6) can be written as VECM shown below;  

                                     
    

(9) 

There are 5 possibilities that the trend terms in equation (9) can take and they are the 

following; 

Possibility 1: unconstrained trend 

If there are no constraints on the trend parameters, this means that there exist quadratic 

trends in the levels of the variables but cointegrating equations are still stationary.  

Possibility 2: constrained trend,   = 0 

Setting   = 0, means that there are only linear trends in the levels of the data, with no quadratic 

expressions. Cointegrating equations are still trend stationary. 

Possibility 3: unconstrained constant   = 0 and  =0 

Setting   = 0 and  =0 eliminates quadratic trends in the level variables and cointegrating 

variables are stationary around the constant means.  However, since   is not zero, this model 

still places a linear time trend in the levels of the data. 

Possibility 4: constrained constant,   = 0,  =0 and      

Inclusion of     eliminates all linear time trends in the levels of the data. Cointegrating 

equations are still stationary around a constant mean with no other trends.  

Possibility 5: constrained trend   = 0,  =0,     and μ=0  

This model eliminates all means or trends i.e. reduce them to zero. Cointegrating equations are 

stationary around a mean of zero.  

In the determination of cointegration or long run relationship in our bivariate model, we still 

need to determine the number of lags to be included in the VECM, as it was the case for the 

VAR discussed previously.  

Again in working with STATA we apply the varsoc commands to statistically select the number 

of lags of a VECM model, as is built on a paper by Tsay (1984) and Paulsen (1984).   

The STATA output from running a varsoc command is shown in Table 4 below; 



12 
 

   Table 4: Lag determination of VECM of Oil Prices and CPI in South Africa 

varsoc  LogOilPrice LogCPI 

The results above show that the HQIC, SBIC and the LR test all chose two lags. This means our 

oil prices and CPI bivariate model will be explained by two lags.  

Once we have determined the number of lags, our next task is to test for cointegration amongst 

the variables. 

STATA has inbuilt test for cointegration. This test is performed via the vecrank command. The 

command vecrank produces statistics used to determine the number of cointegrating equations 

in a VECM i.e., is used to determine the value of r. 

The vecrank command solves for the rank of the model using three methods which are the 

Johansen’s static method, the maximum eigenvalue statistic method and lastly the choice of r 

to minimize an information criterion. All these methods are based on Johansen’s maximum 
likelihood (ML) estimator of the parameters of a cointegrating VECM.  

The ML estimator is based on papers by Anderson (1984) and Johansen (1995) who derived the 

ML estimator for the parameters and LR test for inference on r. These LR tests are known as the 

trace statistics and the maximum-eigenvalue statistic. For the trace statistics as derived in 

Johansen (1995)9, large values are evidence against the null hypothesis that there are r or fewer 

cointegrating relations in the VECM.  

For the eigenvalue statistics, letting   ,…    be k eigenvalues used in computing the log 

likelihood at the optimum and assuming that these eigenvalues are sorted from largest    to 

smallest it follows that if there are r<k cointegrating equations, α and β have rank r and the rest 

of the eigenvalues beyond r, i.e.     ,…    are zero. 

                                                      
9 Johansen (1995) derives the distribution of the trace statistics as =                      where T is the number 

of observations and the     are the estimated eigenvalues. 

    Exogenous:  _cons
   Endogenous:  LogOilPrice LogCPI
                                                                               
     4    2059.37  9.1461    4  0.058  6.3e-09* -13.2128* -13.1258  -12.9953   
     3     2054.8  8.5606    4  0.073  6.3e-09  -13.2091  -13.1414  -13.0399   
     2    2050.52  32.394*   4  0.000  6.3e-09  -13.2072  -13.1589* -13.0864*  
     1    2034.32  3864.8    4  0.000  6.8e-09  -13.1283  -13.0993  -13.0558   
     0    101.902                      .001796  -.646617  -.636956  -.622453   
                                                                               
   lag      LL      LR      df    p      FPE       AIC      HQIC      SBIC     
                                                                               
   Sample:  1987m9 - 2013m5                     Number of obs      =       309
   Selection-order criteria
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The test for cointegration therefore is based on the log likelihood findings in the model. The 

null hypothesis is that the log likelihood of the unconstrained model including the cointegrating 

equations is not significantly different from the log likelihood of the constrained model that 

does not include the cointegrating equations. It the two models are significantly different then 

we reject the null hypothesis and conclude that there is statistical evidence of cointegration 

amongst the variables. In other words, the test begins from r=0 where there is no cointegration 

amongst the variables and accepts the first null hypothesis that is not rejected. 

The results of the vecrank command are shown in Table 5 below: 

Table 5: Johansen test for Cointegration in oil prices and CPI in South Africa 

vecrank  LogOilPrice LogCPI         

The header produces information about the sample, the trend specification, and the number of 

lags included in the model. The main table contains a separate row for each possible value of r, 

the number of cointegrating equations. In our model, when r=2, all variables in the model are 

stationary. 

In the above table, the trace statistics at r=0 of 54.4031 exceeds its critical value of 15.41, we 

reject the null hypothesis of no cointegrating equations. The trace statistics at r=1 of 3.5049 is 

less than the critical value of 3.76; we cannot reject the null hypothesis that there is one 

cointegration relationship between oil prices and CPI in South Africa. 

As discussed above, another alternative to the determination of the rank of the model is the 

use of LR test that there are r+1 cointergrating equations, which is the maximum eigenvalue 

test statistics. The results of this test are shown in Table 6 below:  

 

 

 

                                                                               
    2      10      2064.5249     0.01121
    1      9       2062.7725     0.15097      3.5049*    3.76
    0      6       2037.3234           .     54.4031    15.41
  rank    parms       LL       eigenvalue  statistic    value
maximum                                      trace    critical
                                                         5%
                                                                               
Sample:  1987m7 - 2013m5                                         Lags =       2
Trend: constant                                         Number of obs =     311
                       Johansen tests for cointegration                        
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Table 6: Alternative test for cointegration in oil prices and CPI in South Africa 

The above output also confirms the number of rank to be 1 in the model at both 5% and 1% 

level. After determining that there is indeed a long run cointegration relationship between the 

prices of oil and CPI, the next step is to collect the VECM estimates. 

To find out if we have correctly specified the number of cointegrating equations, we use the 

vecstable command. The companion matrix of a VECM with m endogenous variables and r 

cointegrating equations has m-r unit eigenvalues. The results of the stability conditions are 

shown in Table 7 and Figure 2 below: 

 

Table 7: Stability test for the cointegration relationship between oil prices and CPI 

 

 

 

 

                                                                               
    2      22      2057.7957     0.00866
    1      21       2056.456     0.06767      2.6794       3.76         6.65
    0      18      2045.6655                 21.5810      14.07        18.63
  rank    parms       LL       eigenvalue  statistic      value        value
maximum                                       max      5% critical  1% critical
                                                                               
Sample:  1987m10 - 2013m5                                        Lags =       5
Trend: constant                                         Number of obs =     308
                       Johansen tests for cointegration                        

. vecrank  LogOilPrice LogCPI, lags(5) max levela notrace

   The VECM specification imposes a unit modulus.
                                            
      .1582474                   .158247    
      .2550938                   .255094    
      .9797972                   .979797    
             1                         1    
                                            
           Eigenvalue            Modulus    
                                            
   Eigenvalue stability condition
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Figure 2: Stability test for the cointegration relationship between oil prices and CPI 

 

 

Our results show that 2 eigenvalues are strictly less that one, thus confirming stability of our 

bivariate model. 

 

4.  Estimation of the VECM parameters 

For population of the VECM cointegration estimates, we use STATA vec command. vec simply 
runs a VAR of the cointegrated variables using Johansen’s (1995) maximum likelihood method 
as discussed above. From Equation 6 above, our estimates of interest are the matrix β which 
contain the cointegrating parameters, α which is the adjustment coefficient and the short run 
coefficients,  . 
 
The STATA vec command output is shown in Table 7 below: 

 

 

 

-1
-.

5
0

.5
1

Im
a
g

in
a
ry

-1 -.5 0 .5 1
Real

The VECM specification imposes 1 unit modulus

Roots of the companion matrix



16 
 

Table 7: VECM estimates for oil prices and CPI in South Africa 

vec  LogOilPrice LogCPI 

The short run estimates are read from the first part of Table 7 above. The two coefficients on 

L._ce1 make up the long run disequilibrium adjustment matrix α for our model. The second part 

of the Table presents the β parameters of the cointegrating vector. The short run coefficients 

                                                                              
       _cons     2.236263          .        .       .            .           .
      LogCPI    -2.400303   .2077279   -11.56   0.000    -2.807442   -1.993164
 LogOilPrice            1          .        .       .            .           .
_ce1          
                                                                              
        beta        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              
                 Johansen normalization restriction imposed

Identification:  beta is exactly identified

                                           
_ce1                  1   133.5188   0.0000
                                           
Equation           Parms    chi2     P>chi2

Cointegrating equations

                                                                              
       _cons     .0030185   .0002464    12.25   0.000     .0025356    .0035014
              
         LD.     .1383145   .0566164     2.44   0.015     .0273484    .2492805
      LogCPI  
              
         LD.     .0050637   .0031641     1.60   0.110    -.0011377    .0112651
 LogOilPrice  
              
         L1.     .0025802   .0003687     7.00   0.000     .0018575    .0033029
        _ce1  
D_LogCPI      
                                                                              
       _cons     .0009504   .0042948     0.22   0.825    -.0074672    .0093681
              
         LD.    -.4574795   .9869151    -0.46   0.643    -2.391798    1.476839
      LogCPI  
              
         LD.     .2692116   .0551547     4.88   0.000     .1611104    .3773127
 LogOilPrice  
              
         L1.    -.0081944   .0064279    -1.27   0.202    -.0207928     .004404
        _ce1  
D_LogOilPr~e  
                                                                              
                    Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

                                                                
D_LogCPI              4     .002129   0.6687   619.5162   0.0000
D_LogOilPrice         4     .037114   0.0824   27.58133   0.0000
                                                                
Equation           Parms      RMSE     R-sq      chi2     P>chi2

Det(Sigma_ml)  =  5.94e-09                         SBIC            = -13.09931
Log likelihood =  2062.772                         HQIC            = -13.16428
                                                   AIC             = -13.20754
Sample:  1987m7 - 2013m5                           No. of obs      =       311

Vector error-correction model
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contained in   are collected from the row coefficients of the lagged differences (LD) and the 

constant matrix is read from the row of constants (_cons) in the first part of the table.  

The matrix estimates are summaries below:   = (-0.00819, 0.00258)   = (1, -2.4)   = (0.00095, 0.003019) 

and                                   

 

The assumption that the errors are independently, identically and normally distributed with 

zero mean and finite variance allows for the derivation of the likelihood function. If the errors 

do not come from a normal distribution but are just independently and identically distributed 

with zero mean and finite variance, the parameter estimates are still consistent, but they are 

not efficient. We use vecnorm command to test the null hypothesis that the errors are normally 

distributed and the results are shown in Table 9 below: 

Table 9: Test for distribution of the error terms of the bivariate oil and CPI model 

  

The results above show that the errors are not normally distributed but show some evidence of 

skewness and kurtosis. 

                                                            
                   ALL             64.667   2    0.00000    
              D_LogCPI    3.8518    9.402   1    0.00217    
         D_LogOilPrice    5.0652   55.266   1    0.00000    
                                                            
              Equation   Kurtosis   chi2   df  Prob > chi2  
                                                            
   Kurtosis test

                                                            
                   ALL             16.113   2    0.00032    
              D_LogCPI    .55487   15.958   1    0.00006    
         D_LogOilPrice    .05454    0.154   1    0.69455    
                                                            
              Equation   Skewness   chi2   df  Prob > chi2  
                                                            
   Skewness test

                                                            
                   ALL             80.780   4    0.00000    
              D_LogCPI             25.360   2    0.00000    
         D_LogOilPrice             55.420   2    0.00000    
                                                            
              Equation              chi2   df  Prob > chi2  
                                                            
   Jarque-Bera test
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As alluded to earlier, one of the problems in statistics is autocorrelation amongst the variables. 

However, autocorrelation is not a problem in cointegration analysis in that, beginning with a 

simple OLS estimation of an AR(1) process,             

Where    are independently and identically distributed as N (0, σ2  and       the OLS 

estimate of n time series observations, the autocorrelation parameter   is given by: 

 

                        

 

If |ρ|<1, then                     

 

For the data to have unit root it must be that ρ=1 so that the variance of the distribution is zero. 

However, in cointegration analysis, the data used has been corrected for unit root processes 

and therefore autocorrelation. This means that even though the CPI used in our data also 

contain the price of transport fuel, which is expected to have strong correlation to the price of 

oil, the removal of unit root and also autocorrelation in long run cointegration analysis removes 

this problem. This means our estimates of the cointegration relationship between oil prices and 

CPI based on our data are valid.  

The adjustment parameters in general are small, implying a slow correction to equilibrium. The 

adjustment parameter on the CPI is small but significant, meaning that the CPI does not adjust 

contemporaneously to changes in the prices of oil as expected. The estimate of the coefficient 

for the CPI is 0.00258, meaning when the price of oil is high, the consumer price index slowly 

adjust upwards to match the oil prices, while the oil price attempts to adjust down, probably 

due to high commodity prices and reduced consumer demand thus leading to reduced demand 

for oil. Oil prices are not the only drivers of CPI but also other factors like exchange rate 

fluctuations and production cost like labor, electricity and land rent. 

The long run relationship between oil prices (OP) and CPI is summarized in the equation below: 

OP=-2.4CPI + 2.2 
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The long run relationship between oil prices and CPI is surprising in that it predicts that a 1% 

increase in the price of oil is associated with a 2.4% decrease in the CPI. However, this supports 

the observation the CPI is not only driven by oil prices but by other internal developments in 

the country. To better understand the relationship, other macroeconomic variables like the 

exchange rate and interest rate should be factored in.  

It is known that when there is inflationary pressure monetary policy tend to increase interest 

rates to decrease demand, which may deflate the increase in prices. As observed by Tresor 

Economics (2012), oil price increases can also feed expectations of monetary tightening, which 

could reinforce the negative impact of the higher price of oil on aggregate supply and demand. 

Other studies also support the observation that oil prices are not the sole drivers of inflation in 

the economy. Responses to oil price shocks are also country specific depending on internal 

variables that drive consumer demand. 

Due to anti-inflationary tendencies, monetary authorities generally adopt contractionary policy 

after the impact of oil shocks, and this is a possible reason behind deepening of economic 

recession (Kuo-Wei and Yi-heng, 2011) and thus the need to also factor in GDP and 

employment rates in such analysis. 

Blomberg and Harris (1995) observed that commodity prices should remain a secondary 
indicator of future inflation. Inflation hawks might more profitably focus on the unemployment 
rate and other indicators for signs of future inflation. 
 
The implication for empirical work is that commodity prices’ influence on consumer prices may 
not be captured adequately by mechanical pass-through effects from the commodity market to 
the final goods market and a richer, monetary-based characterization and modeling of their 
relationship is required (Brown and Cronin, 2007).  
 

Further, oil prices could be associated with a weaker dollar, on which the price of oil is 

denominated. This could lead to a relatively strong Rand thus resulting in reduced inflation. This 

means that other macroeconomic indicators like the exchange rate should be included in the 

analysis of determinants of inflation. This observation is also supported by Thrung and Vinh 

(2011) who noted that Vietnamese economic activity is influenced more by changes of value of 

the Vietnamese currency than the fluctuations of oil prices. 

 
As noted by Jordan (2011), rising oil prices in isolation are not recessionary (technically, they 

are not even inflationary, but rather represent a relative price increase). This therefore means 

that headline CPI is as a result of a cocktail of internal and external policies and shock rather 

that oil prices alone.   
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5.  Conclusion 

This paper has investigated the long run relationship between global oil prices and the headline 

consumer price index in South Africa using STATA software. The paper has highlighted the 

flexibility and ease of using this software for cointegration analysis supported by the theoretical 

foundations of such analysis. It has also shown that there is a long run relationship between 

global oil prices and headline consumer price index in the country. Contrary to belief that oil 

prices drive up inflation, the paper has shown that in fact in the long run, increase in prices 

decrease inflation in South Africa. The analysis of the relationship between oil prices and 

inflation should therefore factor in other macroeconomic indicators like GDP, employment, 

exchange rate variations and interest rates for it to be conclusive. 
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