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Abstract

This paper investigates the concept of vector autoregression (VAR) and cointegration using a
bivariate model of global oil prices and headline Consumer Price Index (CPI) in South Africa. The
study aims to determine how much of inflation is driven by oil prices. Particular attention is
paid to the theoretical underpinnings of cointergration analysis and the application of STATA
software to undertake such analysis and perform test statistics. Contrary to the popular myth
that a rise in global oil prices fuels inflation, this study has observed that global oil prices are
not the drivers of inflation in South Africa. In this way, other macroeconomic indicators and
policy developments need to be integrated in analyzing the determinants of South African
inflation.

Key words: Consumer Price Index, Oil Prices, Vector Autoregression, Cointegration, STATA Software,
South Africa

*Mphumuzi Sukati is an independent researcher working for the Ministry of Agriculture in the Kingdom of
Swaziland. His research interests are in global food markets and drivers of food prices, mainly using CGE
models and time series analysis. He holds a PhD in economics from the University of Nottingham.



1. Introduction

Oil prices are a key driver of economic activities, with high prices perceived as being
unfavorable for global economic growth. Popular myth is that high oil prices are generally
associated with high consumer prices. The linkage between oil prices and CPI is especially
important for the South African economy for two reasons. Firstly, in terms of income, South
Africa is one of the most unequal countries in the world with a Gini coefficient of 63.1 in 2009".
This means that inflation disproportionately affect larger sectors of the population that do not
have enough income to keep up with rising prices. Further, South Africa is an oil importing
country and as such it is exposed to external shocks of rising oil prices. For these reasons, it is
important to determine the role of imported inflation (via rising global oil prices) in the
economy.

Many studies have used the concept of VAR and cointegration to investigate the link between
oil prices and inflation. For example, Cologni and Manera (2005) used a structural cointegrated
VAR model to study the effects of oil price shocks on output and prices in G-7 countries. Their
key finding was that for most of the countries considered, there seems to be an impact of
unexpected oil price shocks on interest rates, suggesting a contractionary monetary policy
response directed to fight inflation.

Celik and Akgul (2011) studied the relationship between CPI and oil prices in Turkey using the
Vector Error Correction Model (VECM). Their study revealed that a 1% increase in fuel prices
caused the CPI to rise by 1.26% with an approximate one year lag.

Ansar and Asaghar (2013) analyzed the impact of oil prices on stock exchange and CPI in
Pakistan and concluded that there was no strong relationship between oil prices, CPl and KSE-
100 Index.

LeBlanc and Chinn (2004) estimated the effects of oil price changes on inflation for the United
States, United Kingdom, France, Germany and Japan using an augmented Phillips curve
framework. Their study found that oil price increases of as much as 10 % will lead to direct
inflationary increases of about 0.1-0.8 % in the U.S. and the E.U, which showed a modest
response.

Cunado and Perezde (2003) analyzed the effect of oil prices on inflation and industrial
manufacturing for several European countries for the period of 1960 to 1999. Their findings
were that there is an asymmetric effect of oil price on production and inflation. Their findings
suggest that there are expected differences in countries’ responses to changes in global oil

! The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality,
expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality,
while an index of 100 implies perfect inequality (http://data.worldbank.org/indicator/SI.POV.GINI).



prices depending on their macroeconomic status, whether the country is an oil importer or
exporter, and the monetary policies adopted by a given country in response to global oil prices
and other trends like exchange rate variations.

Niyimbanira (2013) has analyzed the relationship between oil prices and inflation in South
Africa. The difference between his work and ours is that in his paper he modeled inflation has
the dependant variable which is driven by oil prices. However, our approach firstly uses
headline CPI and not inflation. Secondly, our approach tests the myth that high oil prices drive
up prices in the economy, such that oil prices are the dependant variables in our analysis. In this
way, there is no need to conduct an Engle Granger causality test.

Our approach is also supported by the work of Lescaroux and Mignon (2008) who noted that
concerning the short term analysis, results indicate that when causality exists between oil
prices and other macroeconomic variables, it generally runs from oil prices to the other
considered variables.

Using the uncorrected or headline CPI and oil prices carries a risk of endogeneity. However, the
direct link between oil price inflation and headline CPI is mainly through the price of petrol and
this accounts for only 4.07% of the total CPI according to the CPIl country weights of 2008
(Statistics South Africa, 2008)°. Further, cointegration analysis removes endogeneity and
autocorrelation as we will discuss later.

Our analysis investigate the theoretical foundations of VAR processes and cointegration and
their economic interpretation using the South African CPl monthly data from May 1987- 2013
and global oil prices for the same period.3 Our study approach specifically highlight the STATA
commands used in such analysis and supported by the theoretical foundations of the analytical
framework, STATA language and test statistics used”.

? The complete contribution of goods and services to the CPI are as follows: Food and non alcoholic beverages
20.6%, alcoholic beverages and tobacco 6.26%, clothing and footwear 4.98%, housing and utilities 11.03%,
household contents, equipment and maintenance 6.92%, health 1.67%, transport 20.04%, communication 3.52%,
recreation and culture 4.43%, education 2.43%, restaurants and hotels 3.14% and miscellaneous goods and
services 14.98%.

* In January 2013, Statistics SA revised the basket of goods and services used to measure CPI, in order to measure
consumer inflation more precisely. Among these changes are: food prices were gathered from rural areas, the
fixed fruit basket was altered to a seasonal one, reduced weightings of automobiles, furniture and appliances
whose prices have been falling in previous years, and increased weight was given to petrol, transport costs,
electricity, education and medical insurance (Dhliwayo, 2013)

* STATA statistical software is a complete, integrated statistical software package that is user friendly and readily
available for purchase. It is versatile and has many techniques for data analysis for a wide range of fields. In
economics it can be used to analyze for example survival models, panel data, generalized estimating equations,
multilevel mixed models, models with sample selection, ARCH and GARCH, OLS, logit/probit regressions
ANOVA/MANOVA, ARIMA and others. The software also facilitates the presentation of summary results in clear
tabulated forms with strong graphical capabilities.



The rest of the paper is organized as follows; section 2 presents the modeling approach and
tests for unit root. In section 3 we test for cointegration in the bivariate model and discuss the
results. Section 4 presents the VECM estimates and discusses their implications while section 5
concludes.

2. Modeling approach

Before working with our bivariate model we have to test the variables for unit root. Following
Hendry and Juselius (2000), data can be unit root i.e. integrated of degree 1 (denoted as I(1)).
Such data cannot be used to investigate relationships between the variables because of
spurious regression and OLS estimates become invalid.

However, data showing such properties can be made stationary by first differencing. If a series
is such that its first difference is stationary (and has positive spectrum at zero frequency) then
the series has an exact (or pure) unit root (Granger and Swanson, 1996).

The test for unit root starts with Equation 1 below, which is an autoregressive process of degree
one, denoted as AR(1) process.

Ve =YVi-1t &

(1)

With;
g ~IN [0, 2]

From this equation it can be shown that subtracting y; (as data) on both sides will result in a
stationary process even though y; is non stationary, i.e.

Ve — Vi1 =AY = &
(2)
Therefore;
Ay, ~IN [0, 02]

Such differencing can be extended to twice-integrated series i.e. 1(2), in which case it must be
differenced twice to deliver a stationary process etc.

It is visually difficult to predict the nature of variables in an economic process i.e. whether they
are stationary or not. Figure 1 below is a plot of monthly data of oil prices and CPI for the South
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African economy from 1987 to 2013 (changed to natural logarithm) with 309 observations and
their first difference.

The oil prices data has been obtained from Europe Brent Spot Price FOB (Dollars per Barrel)
(http://tonto.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=RBRTE&f=M).

The headline CPlI has been obtained from statistics South Africa, available at

www.statssa.gov.za.

Figure 1: Monthly data of oil prices and consumer price index for the South African economy
from 1987 to 2013 and their first difference
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It is not obvious from the graphs if the processes are unit root or follow a random walk. To
determine their true nature requires the application of the relevant statistical analytical tools.
As mentioned above, taking first difference should result in stationary processes but still this



stationary cannot be determined from the graphs of the first differences above. We therefore
need to undertake a formal test for unit root of the data, which we do next.

2.1 Testing for unit root

A test whether variable has a unit root (random walk) was developed by Dickey and Fuller
(1979). The null hypothesis for this test is that the variable under analysis has a unit root.

To develop this test, we repeat the simple AR(1) model shown in Equation 1 above but
including a constant term a , time trend dt and a coefficient p, all that is important in the test
statistics to be developed. This extended model is shown in Equation 3 below:

Ye=a+py,_1+0t+¢&
(3)
With &, as described previously.

The regression in Equation 3 can also be extended to remove possibilities of serial correlation in
the lagged variables by taking p lagged differences and fitting a model as shown in Equation 4
below”:

Ay; = a+ Byr—1+ 0t + @18y, 1 + @28V 5 + -+ QAY—p + Ut

(4)

In STATA, these lags are specified in the lags(p) command. Equation 4 above is the augmented
Dickey-Fuller regression.

STATA command?® facilitates putting constraints on the augmented Dickey-Fuller regression. The
noconstant option eliminates a while the trend option includes the time trend dt. Equations 3
and 4 means that testing if B=0 is the same as testing if p = 1, or that y; is a unit root process.

Four possibilities can arise depending on constraints placed on the constant and time trend and
these possibilities are summarized in Table 17

> This is the Augmented Dickey Fuller Regression that is used to test for unit root
® STATA commands will be shown in italics and underlined to differentiate them from the main text.

’ The critical values of the Dickey Fuller test are adapted from tables in Fuller (1996) reported as one-sided critical
values, with the p-values for the test of H, against the one-sided H,: § < 0, which is equivalent to p < 1, while
MacKinnon (1994) reports the p-values on the basis of a regression surface.



Table 1: Constrains on constant and time trend in augmented Dickey-Fuller unit root test

Possibilities Process under H Regression dfuller option
restrictions
1 Random walk a=0, 0=0 noconstant (default)
without drift
2 Random walk d=0 drift
without drift
3 Random walk with d=0 trend
drift
4 Random walk with none
or without drift

The choice of which constraint to choose depends on economic theory and trending behavior
of the data. For example, if the data shows an increasing time trend, then case four may be
preferred.

Visual inspection of the data in Figure 1 shows a clear upward trend for both the oil prices and
the CPI. Because of this we will therefore use the trend option with dfuller to include a constant
and a time trend in the augmented Dickey-Fuller regression.

2.2 Selecting the number of lags

The need for the lags arises because values in the past affect today’s values for a given variable.
This is to say the variable in question is persistent. There are various methods to determine
how many lags to use. The two most commonly encountered in time series analysis are the
Akaike Information Criterion (AIC) and the Schwarz' Bayesian Information Criterion (SBIC).
These rules choose lag length p to minimize: log(SSR(p)/n) + (p + 1)C(n)/n, where SSR(p) is the
sum or squared residuals for the VAR with p lags and n is the number of observations, with C(n)
=2 for AIC and C(n) = log(n) for SBIC.

STATA varsoc command facilitates the calculation of these lags for the various selection
criterions. varsoc reports the final prediction error (FPE), Akaike’s information criterion (AIC),
Schwarz’s Bayesian information criterion (SBIC), the Hannan Quinn Information Criterion
(HQIC), the log likelihood (LL) and likelihood-ratio (LR)&.

SLL =— (2) {Ln(|i|) + KLn(2m) + K}, where T is the number of observations and K is the number of equations

and 3! is the maximum likelihood estimate of [g,[].

LR(p) = 2{LL(p) — LL(p — 1)}, where p is the number of lags.

—\K
FPE = |Y,| (;t—g) , Where m is the average number of parameters over the K equations.
Alc = -2 (%) +22



Therefore to determine the number of lags to use in our bivariate model we run the varsoc
command and the results are shown in Table 2 below.
Table 2: Number of lags for a VAR of oil prices and CPI

. varsoc LogoilPrice

Selection-order criteria

Sample: 1987m9 - 2013m5 Number of obs = 309
Tag LL LR df o FPE AIC HQIC SBIC
(0] -73.3034 .094709 .480928 .485758 -49301
1 568.09 1282.8 1 0.000 .001501 -3.66401 -3.65435 -3.63985
2 579.81 23.44* 1 0.000 .0014* -3.7334* -3.7189* -3.69715*
3 579.994 -36899 1 0.544 .001407 -3.72812 -3.7088 -3.67979
4 580.074 .15884 1 0.690 .001416 -3.72216 -3.69801 -3.66175
Endogenous: LogOilPrice
Exogenous: —_cons
. varsoc LogCPI
Selection-order criteria
Sample: 1987m9 - 2013m5 Number of obs = 309
Tag LL LR df p FPE AIC HQIC SBIC
0 17.7336 .05254 -.108308 -.103478 -.096226
1 1450.76 2866.1 1 0.000 5.0e-06 -9.37708 -9.36742 -9.35292
2 1456.91 12.307 1 0.000 4.8e-06 -9.41044 -9.39594 -9.37419
3 1461.25 8.6732* 1 0.003 4.7e-06 -9.43203 -9.41271* -9.3837*
4 1462.88 3.253 1 0.071 4.7e-06* -9.43609* -9.41193 -9.37568

Endogenous: LogCPI
Exogenous: _cons

The results reported in Table 2 above shows that the maximum number of lags to include for a
VAR in oil prices is 2, as all the selection criterion show significant values at this lag. For the CPI,
the maximum number of VAR lags is 3 as determined by significant levels of LR, HQIC and SBIC.

Having determined the number of lags to use in the VAR we then run the Augmented Dickey-
Fuller test to determine if the two processes are unit root. For the Dickey-Fuller test, if the test
statistics is smaller (larger) that the critical values we do not reject (reject) the null hypothesis
of unit root in the data.

Computation of the unit root test statistics starts from the Augmented Dickey-Fuller expression
as shown in Equation 4 above, i.e.

Ln(T)
T

HQIC = -2 (E) + Znfln()} t,, where t,is the total number of parameters in the model.
T T

SBIC = -2(%) + ¢,
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Ayt == a‘l‘ﬁyt_l +at+

p
PjAy._j+ &

j=1

A

The test statistic for Hy: f = 0 is given by z; = k where 65 is the standard error of B.

g’
STATA selects the augmented Dickey-Fuller test from a drop down menu. The results for unit
root test for oil prices and CPI are shown in Table 3 below:

Table 3: Augmented Dickey-Fuller test for unit root test of oil prices and CPI

. dfuller LogOilPrice, lags(2)

Augmented Dickey-Fuller test for unit root Number of obs = 310
————— Interpolated Dickey-Fuller
Test 1% Critical 5% critical 10% Critical
Statistic value value value
z(t) -0.967 -3.455 -2.878 -2.570

MacKinnon approximate p-value for z(t) = 0.7652

. dfuller LogCPI, lags(3)

Augmented Dickey-Fuller test for unit root Number of obs = 309
———— 1Interpolated Dickey-Fuller — —
Test 1% critical 5% critical 10% critical
Statistic value value value
z(t) -4,151 -3.455 -2.878 -2.570

MacKinnon approximate p-value for z(t) = 0.0008

The results reported in Table 3 above show that oil prices follow a unit root process while CPl is
a stationary process. This was not apparent from the graphical plot of the two processes as
shown in Figure 1 above, and statistical analysis was necessary to determine stationary
conditions of the two time series variables under analysis.

3. Testing for Cointegration

In a bivariate model with y, and x; variables, there exist a B such that y, — Bx; is 1(0) even
though x; and y, are non stationary processes. This means the two variables are cointegrated
or have a stationary long run relationship even though individually they are stochastic.
Investigation of such processes can starts with the concept of VAR.

Generally, a VAR model with p lags can be represented as shown in Equation 5 below, which is
an extension of Equation 3:



Ye = P1Ye-1 + P2Ye—2 T+ ppYe—p + PO + &
(5)
In the above equation,
V¢ is an kx1 vector of 1(1) variables
d; is an kx1 vector of deterministic variable
pi(i=1... p) is an kxk and ¢ is an kxn matrix of coefficients to be determined for a given data set

& is an kx1 vector of identically and normally distributed errors with mean of zero and non-
diagonal covariance matrix, J.

Given that the variables are cointegrated, equation 5 can be represented by an equilibrium
correction model shown in Equation 6 below, which is an extension of Equation 4 discussed
previously:
p—1
Ay, = af'y,_p + Z LAy, +0t+v+¢
i=1

(6)

Economic importance is placed on the a and [ coefficients.  is an kxr matrix of cointegrating
vectors that explain the long-run relationship of the variables. a is also an kxr matrix that
explains long run disequilibrium of the variables. I are coefficients that estimate short-run
shock effects on Ay, and these explain the differences between the short-run and long-run
responses. It is important to note that for cointegration to exist, matrices a and 8 should have
reduced rank r, where r<k. The identification of the cointegrating vectors in STATA uses
maximum likelihood (ML) method developed by Johansen (1988, 1991, and 1995).

v and dt are the deterministic trend components which can be written as;
v=au+y
(7)
ot = apt + 1t
(8)

Where p and p are rx1 vectors of parameters. y and 7 are also kx1 vectors of parameters. y is
orthogonal to au and 7 is orthogonal to ap, such that y'au = 0 and T’ap = 0.
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Following this motivation, equation (6) can be written as VECM shown below;

p—1
Ay, = a(ﬁyt_p +u+ pt) + Z LAy, +y + 1t + &

=1
(9)

There are 5 possibilities that the trend terms in equation (9) can take and they are the
following;

Possibility 1: unconstrained trend

If there are no constraints on the trend parameters, this means that there exist quadratic
trends in the levels of the variables but cointegrating equations are still stationary.

Possibility 2: constrained trend, =0

Setting T = 0, means that there are only linear trends in the levels of the data, with no quadratic
expressions. Cointegrating equations are still trend stationary.

Possibility 3: unconstrained constant 7 = 0 and p=0

Setting T = 0 and p=0 eliminates quadratic trends in the level variables and cointegrating
variables are stationary around the constant means. However, since y is not zero, this model
still places a linear time trend in the levels of the data.

Possibility 4: constrained constant, 7=0, p=0andy =0

Inclusion of ¥y = 0 eliminates all linear time trends in the levels of the data. Cointegrating
equations are still stationary around a constant mean with no other trends.

Possibility 5: constrained trend 7 =0, p=0, y = 0 and p=0

This model eliminates all means or trends i.e. reduce them to zero. Cointegrating equations are
stationary around a mean of zero.

In the determination of cointegration or long run relationship in our bivariate model, we still
need to determine the number of lags to be included in the VECM, as it was the case for the
VAR discussed previously.

Again in working with STATA we apply the varsoc commands to statistically select the number
of lags of a VECM model, as is built on a paper by Tsay (1984) and Paulsen (1984).

The STATA output from running a varsoc command is shown in Table 4 below;

11



Table 4: Lag determination of VECM of Oil Prices and CPI in South Africa

varsoc LogOilPrice LogCPI

Selection-order criteria

Sample: 1987m9 - 2013m5 Number of obs = 309
Tag LL LR df p FPE AIC HQIC SBIC
0 101.902 .001796 -.646617 -.636956 -.622453
1 2034.32 3864.8 4 0.000 6.8e-09 -13.1283 -13.0993 -13.0558
2 2050.52 32.394* 4 0.000 6.3e-09 -13.2072 -13.1589* -13.0864*
3 2054.8 8.5606 4 0.073 6.3e-09 -13.2091 -13.1414 -13.0399
4 2059.37 9.1461 4 0.058 6.3e-09* -13.2128* -13.1258 -12.9953

Endogenous: LogOilPrice LogCPI
EXOgenous: _cons

The results above show that the HQIC, SBIC and the LR test all chose two lags. This means our
oil prices and CPI bivariate model will be explained by two lags.

Once we have determined the number of lags, our next task is to test for cointegration amongst
the variables.

STATA has inbuilt test for cointegration. This test is performed via the vecrank command. The
command vecrank produces statistics used to determine the number of cointegrating equations
ina VECM i.e., is used to determine the value of r.

The vecrank command solves for the rank of the model using three methods which are the
Johansen’s static method, the maximum eigenvalue statistic method and lastly the choice of r
to minimize an information criterion. All these methods are based on Johansen’s maximum
likelihood (ML) estimator of the parameters of a cointegrating VECM.

The ML estimator is based on papers by Anderson (1984) and Johansen (1995) who derived the
ML estimator for the parameters and LR test for inference on r. These LR tests are known as the
trace statistics and the maximum-eigenvalue statistic. For the trace statistics as derived in
Johansen (1995)°, large values are evidence against the null hypothesis that there are r or fewer
cointegrating relations in the VECM.

For the eigenvalue statistics, letting A4,... 4 be k eigenvalues used in computing the log
likelihood at the optimum and assuming that these eigenvalues are sorted from largest 4, to
smallest it follows that if there are r<k cointegrating equations, a and B have rank r and the rest
of the eigenvalues beyond r, i.e. 1,.,4,... A; are zero.

? Johansen (1995) derives the distribution of the trace statistics as = —T YX__, In (1 — 4;), where T is the number

of observations and the /; are the estimated eigenvalues.
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The test for cointegration therefore is based on the log likelihood findings in the model. The
null hypothesis is that the log likelihood of the unconstrained model including the cointegrating
equations is not significantly different from the log likelihood of the constrained model that
does not include the cointegrating equations. It the two models are significantly different then
we reject the null hypothesis and conclude that there is statistical evidence of cointegration
amongst the variables. In other words, the test begins from r=0 where there is no cointegration
amongst the variables and accepts the first null hypothesis that is not rejected.

The results of the vecrank command are shown in Table 5 below:

Table 5: Johansen test for Cointegration in oil prices and CPI in South Africa
vecrank LogOilPrice LogCPI

Johansen tests for cointegration

Trend: constant Number of obs = 311
Sample: 1987m7 - 2013m5 Lags = 2
5%
maximum trace critical
rank parms LL eigenvalue statistic value
0 6 2037.3234 . 54.4031 15.41
1 9 2062.7725 0.15097 3.5049* 3.76
2 10 2064.5249 0.01121

The header produces information about the sample, the trend specification, and the number of
lags included in the model. The main table contains a separate row for each possible value of r,
the number of cointegrating equations. In our model, when r=2, all variables in the model are
stationary.

In the above table, the trace statistics at r=0 of 54.4031 exceeds its critical value of 15.41, we
reject the null hypothesis of no cointegrating equations. The trace statistics at r=1 of 3.5049 is
less than the critical value of 3.76; we cannot reject the null hypothesis that there is one
cointegration relationship between oil prices and CPI in South Africa.

As discussed above, another alternative to the determination of the rank of the model is the
use of LR test that there are r+1 cointergrating equations, which is the maximum eigenvalue
test statistics. The results of this test are shown in Table 6 below:
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Table 6: Alternative test for cointegration in oil prices and CPI in South Africa
. vecrank LogOilPrice LogCPI, lags(5) max levela notrace

Johansen tests for cointegration

Trend: constant Number of obs = 308
Sample: 1987ml10 - 2013m5 Lags = 5
maximum max 5% critical 1% critical
rank parms LL eigenvalue statistic value value
0 18 2045.6655 21.5810 14.07 18.63
1 21 2056.456 0.06767 2.6794 3.76 6.65
2 22 2057.7957 0.00866

The above output also confirms the number of rank to be 1 in the model at both 5% and 1%
level. After determining that there is indeed a long run cointegration relationship between the
prices of oil and CPI, the next step is to collect the VECM estimates.

To find out if we have correctly specified the number of cointegrating equations, we use the
vecstable command. The companion matrix of a VECM with m endogenous variables and r
cointegrating equations has m-r unit eigenvalues. The results of the stability conditions are
shown in Table 7 and Figure 2 below:

Table 7: Stability test for the cointegration relationship between oil prices and CPI

Eigenvalue stability condition

Eigenvalue Modulus

1 1
.9797972 .979797
.2550938 .255094
.1582474 .158247

The VECM specification imposes a unit modulus.

14



Figure 2: Stability test for the cointegration relationship between oil prices and CPI

Roots of the companion matrix

Imaginary

T T T

-1 -5 0 5 1
Real

The VECM specification imposes 1 unit modulus

Our results show that 2 eigenvalues are strictly less that one, thus confirming stability of our

bivariate model.

4. Estimation of the VECM parameters

For population of the VECM cointegration estimates, we use STATA vec command. vec simply
runs a VAR of the cointegrated variables using Johansen’s (1995) maximum likelihood method
as discussed above. From Equation 6 above, our estimates of interest are the matrix  which

contain the cointegrating parameters, a which is the adjustment coefficient and the short run

coefficients, I'.

The STATA vec command output is shown in Table 7 below:
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Table 7: VECM estimates for oil prices and CPI in South Africa

vec LogQilPrice LogCPI

vector error-correction model

Sample: 1987m7 - 2013m5 No. of obs = 311
AIC = -13.20754
Log likelihood = 2062.772 HQIC = -13.16428
Det(Sigma_ml) = 5.94e-09 SBIC = -13.09931
Equation Parms RMSE R-sq chi2 P>chi2
D_LogOi1Price 4 .037114 0.0824 27.58133 0.0000
D_LogCPI 4 .002129 0.6687 619.5162 0.0000
Coef. std. Err. z P>|z| [95% conf. Intervall
D_LogOi1Pr~e
_cel
L1. -.0081944 .0064279 -1.27 0.202 -.0207928 .004404
LogOilPrice
LD. .2692116 .0551547 4.88 0.000 .1611104 .3773127
LogCPI
LD. -.4574795 .9869151 -0.46 0.643 -2.391798 1.476839
_cons .0009504 .0042948 0.22 0.825 -.0074672 .0093681
D_LOgCPI
_cel
L1. .0025802 .0003687 7.00 0.000 .0018575 .0033029
LogOilPrice
LD. .0050637 .0031641 1.60 0.110 -.0011377 .0112651
LogCPI
LD. .1383145 .0566164 2.44 0.015 .0273484 .2492805
_cons .0030185 .0002464 12.25 0.000 .0025356 .0035014

Cointegrating equations

Equation Parms chi2 P>chi2

—cel 1 133.5188 0.0000

Identification: beta is exactly identified

Johansen normalization restriction imposed

beta Coef. std. Err. z P>|z]| [95% conf. Intervall

_cel
LogOilPrice 1 . . . . .
LogCPI -2.400303 .2077279 -11.56 0.000 -2.807442 -1.993164
_cons 2.236263 . . . . .

The short run estimates are read from the first part of Table 7 above. The two coefficients on
L._cel make up the long run disequilibrium adjustment matrix a for our model. The second part
of the Table presents the B parameters of the cointegrating vector. The short run coefficients

16



contained in I" are collected from the row coefficients of the lagged differences (LD) and the
constant matrix is read from the row of constants (_cons) in the first part of the table.

The matrix estimates are summaries below:
a=(-0.00819, 0.00258)
B=(1,-2.4)
¥=(0.00095, 0.003019)

and

F= ( 0.2692 —0.4575)
0.005064 0.13831

The assumption that the errors are independently, identically and normally distributed with
zero mean and finite variance allows for the derivation of the likelihood function. If the errors
do not come from a normal distribution but are just independently and identically distributed
with zero mean and finite variance, the parameter estimates are still consistent, but they are
not efficient. We use vecnorm command to test the null hypothesis that the errors are normally
distributed and the results are shown in Table 9 below:

Table 9: Test for distribution of the error terms of the bivariate oil and CPlI model

Jarque—-Bera test

Equation chi2 df Prob > chi2
D_LogOil1Price 55.420 2 0.00000
D_LoOgCPTI 25.360 2 0.00000
ALL 80.780 4 0.00000

Skewness test

Equation Sskewness chi2 df Prob > chi2
D_LogOil1Price .05454 0.154 1 0.69455
D_LOgCPI .55487 15.958 1 0.00006
ALL 16.113 2 0.00032

Kurtosis test

Equation Kurtosis chi2 df Prob > chi2
D_LogOilPrice 5.0652 55.266 1 0.00000
D_LogCPI 3.8518 9.402 1 0.00217
ALL 64.667 2 0.00000

The results above show that the errors are not normally distributed but show some evidence of
skewness and kurtosis.
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As alluded to earlier, one of the problems in statistics is autocorrelation amongst the variables.
However, autocorrelation is not a problem in cointegration analysis in that, beginning with a
simple OLS estimation of an AR(1) process,

Ve = PYt-1 T &

Where &; are independently and identically distributed as N (0, 02) and yy = 0, the OLS
estimate of n time series observations, the autocorrelation parameter p is given by:

A D=1 YVe-1Vt

n n 2
t=1Yt

If |p|<1, then

Vn(pn — p) > N(0,1 - p?)

For the data to have unit root it must be that p=1 so that the variance of the distribution is zero.
However, in cointegration analysis, the data used has been corrected for unit root processes
and therefore autocorrelation. This means that even though the CPI used in our data also
contain the price of transport fuel, which is expected to have strong correlation to the price of
oil, the removal of unit root and also autocorrelation in long run cointegration analysis removes
this problem. This means our estimates of the cointegration relationship between oil prices and
CPI based on our data are valid.

The adjustment parameters in general are small, implying a slow correction to equilibrium. The
adjustment parameter on the CPIl is small but significant, meaning that the CPI does not adjust
contemporaneously to changes in the prices of oil as expected. The estimate of the coefficient
for the CPI is 0.00258, meaning when the price of oil is high, the consumer price index slowly
adjust upwards to match the oil prices, while the oil price attempts to adjust down, probably
due to high commodity prices and reduced consumer demand thus leading to reduced demand
for oil. Oil prices are not the only drivers of CPl but also other factors like exchange rate
fluctuations and production cost like labor, electricity and land rent.

The long run relationship between oil prices (OP) and CPIl is summarized in the equation below:

OP=-2.4CPI + 2.2
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The long run relationship between oil prices and CPI is surprising in that it predicts that a 1%
increase in the price of oil is associated with a 2.4% decrease in the CPI. However, this supports
the observation the CPl is not only driven by oil prices but by other internal developments in
the country. To better understand the relationship, other macroeconomic variables like the
exchange rate and interest rate should be factored in.

It is known that when there is inflationary pressure monetary policy tend to increase interest
rates to decrease demand, which may deflate the increase in prices. As observed by Tresor
Economics (2012), oil price increases can also feed expectations of monetary tightening, which
could reinforce the negative impact of the higher price of oil on aggregate supply and demand.

Other studies also support the observation that oil prices are not the sole drivers of inflation in
the economy. Responses to oil price shocks are also country specific depending on internal
variables that drive consumer demand.

Due to anti-inflationary tendencies, monetary authorities generally adopt contractionary policy
after the impact of oil shocks, and this is a possible reason behind deepening of economic
recession (Kuo-Wei and Yi-heng, 2011) and thus the need to also factor in GDP and
employment rates in such analysis.

Blomberg and Harris (1995) observed that commodity prices should remain a secondary
indicator of future inflation. Inflation hawks might more profitably focus on the unemployment
rate and other indicators for signs of future inflation.

The implication for empirical work is that commodity prices’ influence on consumer prices may
not be captured adequately by mechanical pass-through effects from the commodity market to
the final goods market and a richer, monetary-based characterization and modeling of their
relationship is required (Brown and Cronin, 2007).

Further, oil prices could be associated with a weaker dollar, on which the price of oil is
denominated. This could lead to a relatively strong Rand thus resulting in reduced inflation. This
means that other macroeconomic indicators like the exchange rate should be included in the
analysis of determinants of inflation. This observation is also supported by Thrung and Vinh
(2011) who noted that Vietnamese economic activity is influenced more by changes of value of
the Vietnamese currency than the fluctuations of oil prices.

As noted by Jordan (2011), rising oil prices in isolation are not recessionary (technically, they
are not even inflationary, but rather represent a relative price increase). This therefore means
that headline CPI is as a result of a cocktail of internal and external policies and shock rather
that oil prices alone.
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5. Conclusion

This paper has investigated the long run relationship between global oil prices and the headline
consumer price index in South Africa using STATA software. The paper has highlighted the
flexibility and ease of using this software for cointegration analysis supported by the theoretical
foundations of such analysis. It has also shown that there is a long run relationship between
global oil prices and headline consumer price index in the country. Contrary to belief that oil
prices drive up inflation, the paper has shown that in fact in the long run, increase in prices
decrease inflation in South Africa. The analysis of the relationship between oil prices and
inflation should therefore factor in other macroeconomic indicators like GDP, employment,
exchange rate variations and interest rates for it to be conclusive.
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