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CELLULAR AUTOMATON

FOR THE FRACTURE OF ELASTIC MEDIA

PETER OSSADNIK

HLRZ, KFA Jülich

Postfach 1913, D-5170 Jülich, Germany

We study numerically the growth of a crack in an elastic medium under the influence
of a travelling shockwave. We describe the implementation of a fast algorithm which
is perfectly suited for a data parallel computer. Using large scale simulations on the
Connection Machine we generate cracks with more than 10000 sites on a 1024×1024

lattice. We show that the resulting patterns are fractal with a fractal dimension that
depends on the chosen breaking criterion and varies between 1. and 2.

1. Introduction

How does a solid body break under an externally applied load? This is an important

question for researchers in many fields and has strong implications on e.g. mate-

rials science, engineering or geophysics. It has been studied for a long time quite

extensively using numerical, experimental and analytical methods.1

If one considers the solid to be a linear elastic medium the formulation of the

initial question can be made in terms of the Lamé equation

(1 − 2ν)∆u + ∇(∇ · u) = 0 (1)

which describes the displacement u of a small volume element in an elastic material

from its equilibrium position. The Poisson ratio ν is a material dependent parameter

which has the following meaning: If one applies a uniaxial force to an elastic bar

of length L and cross section W × W , it will not only change its length by ∆L in

the direction of the force, but it will also change its width by ∆W in the direction

perpendicular to the force. The Poisson ratio then defines the relative amount of

change

ν = −
∆W/W

∆L/L
. (2)

Due to thermodynamical reasons ν is bounded between −1 ≤ ν < 0.5. Concrete

for instance has a Poisson ratio ν ≈ 0.2.
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A crack in such a system can be described as an additional force free surface

which thus obeys the boundary condition

σ · n = 0 (3)

where σ is the stress tensor and n is a surface vector. The crack grows if the stress

parallel to the crack surface σ‖ is larger than a certain material dependent critical

stress σC . Since no first principle law for the normal growth velocity is known one

assumes the general behavior

vn ∝ (σ‖ − σC)η (4)

where η is often simply set to unity. The equations (1), (3) and (4) formulate the

growth of a crack as a moving boundary problem which is far more difficult to solve

than the Lamé equation itself. Yet, there is one important property of real material

missing, which is “disorder”. Microscopically disorder means deviations from the

perfect crystal structure of the elastic material due to vacancies, dislocations or grain

boundaries. But macroscopically these imperfections are simply reduced to spatial

randomness of the material properties like Poisson ratio and breaking threshold.

In numerical simulations for crack growth one often discretizes the elastic

medium on a lattice, for instance with a finite element scheme.2 According to the

chosen boundary conditions and the externally applied load one relaxes the system

to equilibrium. Then one picks one or several bonds according to a given rule –

for instance the bond with the highest load – and breaks it. This defines a new

boundary and therefore one has to resolve the whole problem again. This procedure

is then repeated until a crack of desired size is grown. The disorder is often put into

the simulations by considering lattice parameters (like bond strength and breaking

threshold) that vary from site to site. Since the system has enough time to relax

to full equilibrium before the crack can grow, such a procedure is only capable of

describing quasi static processes.

On the other hand there are phenomena — like explosions, shattering of glass

or shock waves – which should not be treated in a static approximation and in

which the system is not able to relax to equilibrium before breaking a bond, but

in which the time to relax the system is comparable to or larger than the time one

needs to propagate the crack. Such a situation usually results in cracks with many

sidebranches growing behind the shock front since the internal energy cannot be

dissipated fast enough.3 In the following we are going to study numerically such a

process in which one obviously has to take into account the dynamical behavior of

the elastic medium.

The organization of this paper is thus as follows: in Sect. 2 we introduce the

general model, whose implementation on the Connection Machine is described in

Sect. 3. In Sect. 4 we describe the details of the simulation and in Sect. 5 we present

some results.

2. The Model

As a model for the elastic material we consider a triangular network of Hookean
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springs connecting points of mass m. A triangular network is necessary for the

simulation since a simple quadratic lattice does not have any shear modulus and

thus can be deformed arbitrarily under shear load. This model is known as “central

force model”2 since the Hookean springs are isotropic. The boundary sites of this

network are kept fixed in space. On each site there are two continuous degrees of

freedom, which are the coordinates of the displacement ux and uy of this site from

its equilibrium position r0. Since we want to study the dynamical behavior of this

network we have to determine the time evolution of the displacements which is gov-

erned on each lattice site by Newton’s equation. Following a suggestion of Chopard4

we use a discrete time Hamilton formalism to express the dynamic behavior. The

Hamiltonian of this system is given by

H
(

p
1
. . . p

N
, r1 . . . rN

)

=
N

∑

i=1

p2
i

2mi
+

1

2

N
∑

i,j=1

Uij

(

ri, rj

)

(5)

where p
i
and ri are the momentum and position of site i, and Uij is the interaction

energie between two lattice sites i and j. Uij is nonzero only between nearest

neighbor sites and since we use Hookean springs it is simply a harmonic potential

Uij =
kij

2

(∣

∣ri − rj

∣

∣ − a
)2

=
kij

2

(∣

∣ui + r0i − uj − r0j

∣

∣ − a
)2

=
kij

2

(∣

∣ui − uj + drij

∣

∣ − a
)2

(6)

where kij is the coupling constant between the sites i and j. drij = r0i − r0j is

the vector between their equilibrium positions and a is the equilibrium length of

the connecting spring (please note, that drij does not mean differentials). In our

simulation we are going to set a = 0 while we keep drij = 1. This corresponds to

the case of a prestretched network and can be compared for instance with the skin

of a drum. The discretized versions of Hamilton’s equations are

ri (t + 1) − ri (t) =
∂H

∂p
i

=
p

i
(t)

mi

p
i
(t) − p

i
(t − 1) = −

∂H

∂ri

(7)

where we use vector derivatives as symbols for the corresponding gradients. The

time evolution of the displacement field can finally be written as

ui (t + 1) − 2ui (t) + ui (t − 1) = −
1

mi

∂H

∂ui(t)

=
∑

j=NN(i)

kij · δij · (1 −
a

∣

∣δij

∣

∣

)
(8)

where δij = ui(t)− uj(t) + drij . This equation (8) defines the updating rule, which

relates the displacements at time t + 1 to the displacements at times t and t − 1.
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Although the chosen dynamics seems to be rather crude as compared to molecular

dynamics, one can actually show that it conserves the total momentum and some

kind of total “energy”. Moreover we show that it conserves the essential features

we need for the generation of cracks: A wave packet that is imposed on the lattice

will travel with only minor changes in shape with a definite velocity through the

lattice.

3. The Growth Model using Fortran 90

Since the same updating rule (8) is applied to all lattice sites at each time step and

on the other hand the topology of the underlying lattice is, in contrast to molecular

dynamics, not changed due to rearrangements of particles single instruction multi-

ple data (SIMD) machine like the CM is the appropriate computer architecture for

this problem: Each lattice site is mapped onto one virtual processor and all sites

are updated in parallel. The only inter processor communication is required for the

calculation of the right hand side of eqn. (8). But because the triangular lattice

structure can be mapped onto a square lattice with next nearest neighbor interac-

tions into one direction, a nearest neighbor grid communication using CSHIFTS is

sufficient and no general router communication is required, which makes this lattice

model fast and efficient.

In the actual implementation of the program we chose the following data layout

for the main variables: Each processor has to store the displacements at time t and

t − 1, UT and UTM1, which are represented as complex numbers. Since we intend

to simulate a “disordered” system, we assign to each spring a different, randomly

chosen coupling constant. Therefore we keep on each lattice site the six couplings

K to all neighbors. By doing this we waste some memory space because each kij

is stored twice – on site i and on site j – but we save computer time by avoiding

unnecessary communication. The data layout for the main variables is thus as

follows

COMPLEX , ARRAY (NXY, NXY) :: UT, UTM1

REAL , ARRAY (Z, NXY, NXY) :: K

CMF$ LAYOUT UT(:NEWS,:NEWS)

CMF$ LAYOUT UTM1(:NEWS,:NEWS)

CMF$ LAYOUT K(:SERIAL,:NEWS,:NEWS)

Listing 1.

The LAYOUT directive for K is used to group the couplings of one site as a serial di-

mension onto one processor. It is necessary, because otherwise the compiler would

spread the couplings over all virtual processors which results in unnecessary com-

munication for the force calculation. Using this data layout a single step of the

updating rule (8) is programmed in a straightforward manner in CM Fortran

C GET VECTORS TO NEIGHBORS

C COMPUTE NEW PARTICLE POSITION AND MOMENTUM

C NN is a help field to store r i-r j. It has the same layout as
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C ut and utm1.

NN(1,:,:) = CSHIFT(UT,1,1)

NN(2,:,:) = CSHIFT(UT,2,1)

NN(4,:,:) = CSHIFT(UT,1,-1) !get displacements

NN(5,:,:) = CSHIFT(UT,2,-1) !of nearest neighbors

NN(3,:,:) = CSHIFT(NN(4,:,:),2,1)

NN(6,:,:) = CSHIFT(NN(1,:,:),2,-1)

NN(1,:,:) = NN(1,:,:)-UT+DR 1

NN(2,:,:) = NN(2,:,:)-UT+DR 2

NN(3,:,:) = NN(3,:,:)-UT+DR 3

NN(4,:,:) = NN(4,:,:)-UT+DR 4 !calculate difference vector

NN(5,:,:) = NN(5,:,:)-UT+DR 5

NN(6,:,:) = NN(6,:,:)-UT+DR 6

UTM1 = SUM(NN*(K*(1.-A1/ABS(NN))),DIM=1)/M + 2.*UT - UTM1

Listing 2.

The CSHIFT commands are used to communicate the displacements between “neigh-

boring” processors. By carefully reusing already shifted data it is of course possible

to get the displacements from the six nearest neighbors on the triangular lattice with

only six CSHIFTS. Since we are not using full next nearest neighbor communication

the use of stencil operations does not seem useful at this point. The global SUM along

the first dimension computes the total force exerted onto each site by its neighbors.

Because the first dimensions of the coupling constant array k and the vectors to the

nearest neighbors NN are laid out onto the same processor as a :serial dimension,

the computation of the SUM does not require any communication.

Unfortunately this simple formulation does not give optimal performance. The

compiler allocates and deallocates unnecessary temporary fields and even generates

general CM send router communication, which in fact uses 43% of the total CPU

time! To obtain a much better performance we coded the code fragment shown

in Listing 2 completely in PARIS (PARallel Instruction Set). This allows to fully

control the memory allocation, the communication and to make efficient use of

pipelined commands like CM f sub const mult always. Now, most of the CPU

time – 38% – is used for the calculation of the distance between neighboring lattice

sites |ri−rj | which is coded as CM f c abs 2. Now, the NEWS communication part

is negligible and sums up to 5.8% of the total CPU time.

These improvements result in a speedup of a big factor of five as compared to

the straightforward implementation. One obtains on 8K processors of the previously

described CM2 an update rate of 1.1 millions of updates per second (MUPS) and

a speed of 110 MFlops. As a comparison, one can obtain with typical spin cellular

automata using multispin coding techniques more than 1000 MUPS on one processor

of a NEC-SX35 and on a CM2-16K a Q2R cellular automaton runs at 1600 MUPS.6

For a full molecular dynamics simulations on an CM200-8K Hedman and Laaksonen

achieve about 0.2 MUPS7 and for MD simulations on a CM2-16K Mel‘čuk et. al.



6 P. Ossadnik

obtained an update rate of 4.5 KUPS.8

4. The simulation

All simulations are performed on a 1024 × 1024 lattice and we use between 3000

and 5000 timesteps. At the beginning of the simulation the couplings are chosen at

random out of a uniform distribution with mean value k0 = 0.005 and a width of

typically 50%. To initiate the crack growth we break all bonds between site r0 and

its neighbors. Afterwards an initial pulse is imposed on the center of the lattice:

If r0 is the central site in the lattice, then its nearest neighbors r1 . . . r6 are dis-

placed radially outward for 100 lattice units while keeping all other sites fixed. This

displacement seems very large at first sight, but since we use a harmonic potential

between the sites the actual size of the initial displacement is not relevant. We

only wanted to make sure that this perturbation is much larger than the “thermal”

motion unduced by chosing random coupling constants. At time t = 0 all sites are

released and the system is free to evolve. After every other time step one looks

for the bond with the largest elongation lm. Then one determines all bonds whose

elongations l are larger than α · lm – where α is an adjustable parameter – and

which lie on the surface of the already existing crack. All those bonds are broken

by setting the corresponding coupling constant kij to zero. Here one has to notice

that this breaking rule does not require any communication and can be performed

completely in parallel since both sites i and j which are connected by such a bond

will clear their own copy of kij .

Thus we consider a relative breaking threshold rather than an absolute one,

which has the following reason: In an absolute breaking threshold one would break

all bonds whose elongation is larger than some fixed critical length lc. On the other

hand the amplitude of the outgoing wave packet is decreasing with the distance from

the center. So, when the wave packet has initially an amplitude that is larger than

the threshold, the outgoing wave will break all bonds it reaches until its amplitude

has dropped below the threshold and from then on no further bond will be broken.

Thus, one only creates a structureless isotropic hole in the center of the system.

A somewhat similar model has been studied by Louis et. al.9 They try to solve

a quasi static problem, but perform only a few relaxation steps to find the equilib-

rium state of the network. However, since they use an overrelaxation scheme the

relaxation of their system towards equilibrium has another dynamical interpretaion

than the iterative method I use. Another similarity is given in the breaking rules.

Louis et. al. pick bonds that are to be broken with a probability that is proportional

to the bond length Pij ∝ |ri − rj |.

5. Results

To demonstrate that the dynamics (8) produces reasonable results we first consider

the case of a smooth wave packet travelling through a system without disorder and

without breaking. Therefore we applied not a singular pulse to the network but
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rather a smooth wave packet. The initial radial displacements of the central sites

are

u(t) = u0 ·

(

1 − cos

(

2π ·
t

τ

))

(9)

for 0 ≤ t ≤ τ and u(t) = 0 for t > τ while all other sites are free to move. The

period is chosen to be τ = 100.
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Fig. 1. Cut through a shockwave after 200 timesteps.

Fig. (1) shows a cut along the x axis through this wave packet at time t = 200. One

indeed recovers the original pulse plus a further minimum which is due to the fact

that we keep the displacements of the central sites for t > τ fixed at zero. Because

of their inertia the neighboring sites keep vibrating which results in the second

minimum. If one measures the velocity of the maximum of the wave packet one

obtains a value which agrees with the analytical expression for the group velocity

of a circular wave with frequency ω = 2π/τ on a triangular lattice.

After having confirmed that the travelling wave shows reasonable behavior we

restrict ourselves again to the case of a singular pulse, which corresponds to the

case τ = 2.

Fig. 2. Crack patterns generated for (from left to right) a) α = 1, b) α = 0.98 and c) α = 0.95.

In figs (2.a-2.c) we show examples of cracks which were generated for different

breaking thresholds: α = 1 (10934 sites) – which means that only the bond with

the largest elongation is broken – α = 0.98 (16038 sites) and α = 0.95 (35837 sites).

The number in brackets are the number of sites that are “connected” by broken

bonds. All cracks show a starlike and fractal structure. For decreasing α they

become more and more ramified. This is easily understood since with decreasing
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α many more bonds are eligible to be broken. The delta-like excitation we impose

initially on the lattice is highly non-periodic and therefore produces waves with

many different frequencies, althoug lower amplitude. For small enough α many of

these waves can contribute to the growth of the crack. But one also has to take into

account another effect. Since the lattice is prestretched each bond that is broken is a

source for another spherical wave travelling away from this point. For small enough

α also those waves can break bonds and therefore can lead to an avalanche-type

growth of the crack. Thus, one can distinguish two different regimes: For α close

to unity the crack grows mainly at the tips at the outer branches which coincide

with the front of the shockwave. The sidebranches behind the shockfront remain

inactive. For smaller α also the tips behind the shockfront continue to grow and

split and eventually the crack becomes space filling.

Another fact to be noticed is that for decreasing α the lattice structure becomes

more and more dominant and eventually the cracks grow into a structure with sixfold

symmetry.

To be more quantitative, we study the dependence of the number of broken

bonds N on the radius of the cluster, which is measured in terms of the radius of

gyration RG. RG describes the average distance of all broken bonds from the center

of mass rCM of the crack

RG =

√

√

√

√

N
∑

i=1

(ri − rCM )
2
. (10)
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Fig. 3. Scaling of the number of broken bonds with the radius of the crack.

In fig. (3) we show the typical behavior of the number of broken bonds. As an

example we show data for α = 0.98 in which we averaged over four cracks.
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Fig. 4. Dependence of fractal dimension on the breaking threshold.

One finds that this number has a power law dependence on the radius of gyration

N ∝ R
Df

G (11)

and for this specific example we find a fractal dimension Df = 1.15. As indicated

above this exponent varies with varying α. So, in fig. (4) we show all exponents Df

for different α.

Also in this plot the exponents Df(α) were obtained by averaging over four

independent realizations. One obtains a linear dependence

Df (α) = −(2.06 ± 0.05) · α + (3.19 ± 0.05). (12)

Thus, for decreasing α one approaches a space filling structure which one reaches for

α ≈ 0.58. However, it could be possible that for even larger clusters the asymptotic

behavior changes and one crosses over into other exponents Df .

6. Conclusions

We have described the implementation and results of a discrete time simulation for

the growth of large cracks on a triangular network. We use a central force model

and study the dynamical behavior of crack growth instead of studying the slow

growth modes. Using a simplified dynamics, which anyway reproduces the essential

features for the crack production, we are able to grow cracks with more than 10000

sites on a 1024 × 1024 lattice. We obtain fractal growth patterns with dimensions

almost in the whole range between 1.1 and 2.0. The dimensionality of the cracks is

mainly governed by the breaking threshold α and one finds a linear dependence of
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Df on α.
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