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CELLULAR AUTOMATON
FOR THE FRACTURE OF ELASTIC MEDIA

PETER OSSADNIK

HLRZ, KFA Jilich
Postfach 1913, D-5170 Jilich, Germany

We study numerically the growth of a crack in an elastic medium under the influence
of a travelling shockwave. We describe the implementation of a fast algorithm which
is perfectly suited for a data parallel computer. Using large scale simulations on the
Connection Machine we generate cracks with more than 10000 sites on a 1024x1024
lattice. We show that the resulting patterns are fractal with a fractal dimension that
depends on the chosen breaking criterion and varies between 1. and 2.

1. Introduction

How does a solid body break under an externally applied load? This is an important
question for researchers in many fields and has strong implications on e.g. mate-
rials science, engineering or geophysics. It has been studied for a long time quite
extensively using numerical, experimental and analytical methods.!

If one considers the solid to be a linear elastic medium the formulation of the
initial question can be made in terms of the Lamé equation

1-2v)Au+V(V-u)=0 (1)

which describes the displacement u of a small volume element in an elastic material
from its equilibrium position. The Poisson ratio v is a material dependent parameter
which has the following meaning: If one applies a uniaxial force to an elastic bar
of length L and cross section W x W, it will not only change its length by AL in
the direction of the force, but it will also change its width by AW in the direction
perpendicular to the force. The Poisson ratio then defines the relative amount of
change
AW/W

T AL/L" )

Due to thermodynamical reasons v is bounded between —1 < v < 0.5. Concrete
for instance has a Poisson ratio v ~ 0.2.


http://arXiv.org/abs/cond-mat/9211015v1

2 P. Ossadnik

A crack in such a system can be described as an additional force free surface
which thus obeys the boundary condition

g-QZO (3)

where ¢ is the stress tensor and n is a surface vector. The crack grows if the stress
parallel_to the crack surface o is larger than a certain material dependent critical
stress o¢. Since no first principle law for the normal growth velocity is known one
assumes the general behavior

vp X (o) —o¢)" 4)

where 7 is often simply set to unity. The equations (1), (3) and (4) formulate the
growth of a crack as a moving boundary problem which is far more difficult to solve
than the Lamé equation itself. Yet, there is one important property of real material
missing, which is “disorder”. Microscopically disorder means deviations from the
perfect crystal structure of the elastic material due to vacancies, dislocations or grain
boundaries. But macroscopically these imperfections are simply reduced to spatial
randomness of the material properties like Poisson ratio and breaking threshold.

In numerical simulations for crack growth one often discretizes the elastic
medium on a lattice, for instance with a finite element scheme.? According to the
chosen boundary conditions and the externally applied load one relaxes the system
to equilibrium. Then one picks one or several bonds according to a given rule —
for instance the bond with the highest load — and breaks it. This defines a new
boundary and therefore one has to resolve the whole problem again. This procedure
is then repeated until a crack of desired size is grown. The disorder is often put into
the simulations by considering lattice parameters (like bond strength and breaking
threshold) that vary from site to site. Since the system has enough time to relax
to full equilibrium before the crack can grow, such a procedure is only capable of
describing quasi static processes.

On the other hand there are phenomena — like explosions, shattering of glass
or shock waves — which should not be treated in a static approximation and in
which the system is not able to relax to equilibrium before breaking a bond, but
in which the time to relax the system is comparable to or larger than the time one
needs to propagate the crack. Such a situation usually results in cracks with many
sidebranches growing behind the shock front since the internal energy cannot be
dissipated fast enough.?® In the following we are going to study numerically such a
process in which one obviously has to take into account the dynamical behavior of
the elastic medium.

The organization of this paper is thus as follows: in Sect. 2 we introduce the
general model, whose implementation on the Connection Machine is described in
Sect. 3. In Sect. 4 we describe the details of the simulation and in Sect. 5 we present
some results.

2. The Model

As a model for the elastic material we consider a triangular network of Hookean
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springs connecting points of mass m. A triangular network is necessary for the
simulation since a simple quadratic lattice does not have any shear modulus and
thus can be deformed arbitrarily under shear load. This model is known as “central
force model”? since the Hookean springs are isotropic. The boundary sites of this
network are kept fixed in space. On each site there are two continuous degrees of
freedom, which are the coordinates of the displacement u, and u, of this site from
its equilibrium position r. Since we want to study the dynamical behavior of this
network we have to determine the time evolution of the displacements which is gov-
erned on each lattice site by Newton’s equation. Following a suggestion of Chopard*
we use a discrete time Hamilton formalism to express the dynamic behavior. The
Hamiltonian of this system is given by

- w1
(Bl...BN,fl...[N)— > i 52_: 1) (5)

where P and r; are the momentum and position of site ¢, and Uj;; is the interaction
energie between two lattice sites ¢ and j. U;; is nonzero only between nearest
neighbor sites and since we use Hookean springs it is simply a harmonic potential

ki ki
Usj = = (| — ;] —a)’ = - (i + 1o =y =1y —a)’
iy (6)

(Jus — w; +dry;| = a)2

where k;; is the coupling constant between the sites ¢ and j. dr;; = ro; —ro; is
the vector between their equilibrium positions and a is the equilibrium length of
the connecting spring (please note, that dr,; does not mean differentials). In our
simulation we are going to set a = 0 while We keep dr,; = 1. This corresponds to
the case of a prestretched network and can be compared for instance with the skin
of a drum. The discretized versions of Hamilton’s equations are

(t
r(t+1)—r;(t) = gf B:TE)
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where we use vector derivatives as symbols for the corresponding gradients. The
time evolution of the displacement field can finally be written as

1 9"
m; Ou, ()
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w (E+1) = 2u, (8) +u, (t—1) = —
(8)

where §;; = u,(t) — u;(t) +dr;;. This equation (8) defines the updating rule, which
relates the displacements at time ¢ + 1 to the displacements at times ¢ and ¢ — 1.
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Although the chosen dynamics seems to be rather crude as compared to molecular
dynamics, one can actually show that it conserves the total momentum and some
kind of total “energy”. Moreover we show that it conserves the essential features
we need for the generation of cracks: A wave packet that is imposed on the lattice
will travel with only minor changes in shape with a definite velocity through the
lattice.

3. The Growth Model using Fortran 90

Since the same updating rule (8) is applied to all lattice sites at each time step and
on the other hand the topology of the underlying lattice is, in contrast to molecular
dynamics, not changed due to rearrangements of particles single instruction multi-
ple data (SIMD) machine like the CM is the appropriate computer architecture for
this problem: Each lattice site is mapped onto one virtual processor and all sites
are updated in parallel. The only inter processor communication is required for the
calculation of the right hand side of eqn. (8). But because the triangular lattice
structure can be mapped onto a square lattice with next nearest neighbor interac-
tions into one direction, a nearest neighbor grid communication using CSHIFTS is
sufficient and no general router communication is required, which makes this lattice
model fast and efficient.

In the actual implementation of the program we chose the following data layout
for the main variables: Each processor has to store the displacements at time ¢ and
t — 1, UT and UTM1, which are represented as complex numbers. Since we intend
to simulate a “disordered” system, we assign to each spring a different, randomly
chosen coupling constant. Therefore we keep on each lattice site the six couplings
K to all neighbors. By doing this we waste some memory space because each k;;
is stored twice — on site ¢ and on site j — but we save computer time by avoiding
unnecessary communication. The data layout for the main variables is thus as
follows

COMPLEX , ARRAY (NXY, NXY) :: UT, UTML
REAL , ARRAY (Z, NXY, NXY) :: K

CMF$ LAYOUT UT(:NEWS, :NEWS)

CMF$ LAYOUT UTM1(:NEWS, :NEWS)

CMF$ LAYOUT K(:SERIAL,:NEWS,:NEWS)

Listing 1.

The LAYOUT directive for K is used to group the couplings of one site as a serial di-
mension onto one processor. It is necessary, because otherwise the compiler would
spread the couplings over all virtual processors which results in unnecessary com-
munication for the force calculation. Using this data layout a single step of the
updating rule (8) is programmed in a straightforward manner in CM Fortran

c GET VECTORS TO NEIGHBORS

c COMPUTE NEW PARTICLE POSITION AND MOMENTUM

C NN is a help field to store r_i-r_j. It has the same layout as
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C ut and utml.
NN(1,:,:) = CSHIFT(UT,1,1)

NN(2,:,:) = CSHIFT(UT,2,1)

NN(4,:,:) = CSHIFT(UT,1,-1) lget displacements

NN(5,:,:) = CSHIFT(UT,2,-1) lof nearest neighbors
NN(3,:,:) = CSHIFT(NN(4,:,:),2,1)

NN(6,:,:) = CSHIFT(NN(1,:,:),2,-1)

NN(1,:,:) = NN(1,:,:)-UT+DR_1

NN(2,:,:) = NN(2,:,:)-UT+DR_2

NN(3,:,:) = NN(3,:,:)-UT+DR_3

NN(4,:,:) = NN(4,:,:)-UT+DR_4 !calculate difference vector
NN(5,:,:) = NN(5,:,:)-UT+DR_5

NN(6,:,:) = NN(6,:,:)-UT+DR_6
UTM1 = SUM(NNx(K*(1.-A1/ABS(NN))),DIM=1)/M + 2.%UT - UTM1

Listing 2.

The CSHIFT commands are used to communicate the displacements between “neigh-
boring” processors. By carefully reusing already shifted data it is of course possible
to get the displacements from the six nearest neighbors on the triangular lattice with
only six CSHIFTS. Since we are not using full next nearest neighbor communication
the use of stencil operations does not seem useful at this point. The global SUM along
the first dimension computes the total force exerted onto each site by its neighbors.
Because the first dimensions of the coupling constant array k and the vectors to the
nearest neighbors NN are laid out onto the same processor as a :serial dimension,
the computation of the SUM does not require any communication.

Unfortunately this simple formulation does not give optimal performance. The
compiler allocates and deallocates unnecessary temporary fields and even generates
general CM_send router communication, which in fact uses 43% of the total CPU
time! To obtain a much better performance we coded the code fragment shown
in Listing 2 completely in PARIS (PARallel Instruction Set). This allows to fully
control the memory allocation, the communication and to make efficient use of
pipelined commands like CM_f_sub_const mult_always. Now, most of the CPU
time — 38% — is used for the calculation of the distance between neighboring lattice
sites |1, —r;| which is coded as CM_f_c_abs_2. Now, the NEWS communication part
is negligible and sums up to 5.8% of the total CPU time.

These improvements result in a speedup of a big factor of five as compared to
the straightforward implementation. One obtains on 8K processors of the previously
described CM2 an update rate of 1.1 millions of updates per second (MUPS) and
a speed of 110 MFlops. As a comparison, one can obtain with typical spin cellular
automata using multispin coding techniques more than 1000 MUPS on one processor
of a NEC-SX3% and on a CM2-16K a Q2R cellular automaton runs at 1600 MUPS.6
For a full molecular dynamics simulations on an CM200-8K Hedman and Laaksonen
achieve about 0.2 MUPS” and for MD simulations on a CM2-16K Mel‘¢uk et. al.



6 P. Ossadnik

obtained an update rate of 4.5 KUPS.®

4. The simulation

All simulations are performed on a 1024 x 1024 lattice and we use between 3000
and 5000 timesteps. At the beginning of the simulation the couplings are chosen at
random out of a uniform distribution with mean value ky = 0.005 and a width of
typically 50%. To initiate the crack growth we break all bonds between site r, and
its neighbors. Afterwards an initial pulse is imposed on the center of the lattice:
If ry is the central site in the lattice, then its nearest neighbors r;...rq are dis-
placed radially outward for 100 lattice units while keeping all other sites fixed. This
displacement seems very large at first sight, but since we use a harmonic potential
between the sites the actual size of the initial displacement is not relevant. We
only wanted to make sure that this perturbation is much larger than the “thermal”
motion unduced by chosing random coupling constants. At time ¢ = 0 all sites are
released and the system is free to evolve. After every other time step one looks
for the bond with the largest elongation [,,. Then one determines all bonds whose
elongations [ are larger than « - [,, — where « is an adjustable parameter — and
which lie on the surface of the already existing crack. All those bonds are broken
by setting the corresponding coupling constant k;; to zero. Here one has to notice
that this breaking rule does not require any communication and can be performed
completely in parallel since both sites ¢ and j which are connected by such a bond
will clear their own copy of k;;.

Thus we consider a relative breaking threshold rather than an absolute one,
which has the following reason: In an absolute breaking threshold one would break
all bonds whose elongation is larger than some fixed critical length .. On the other
hand the amplitude of the outgoing wave packet is decreasing with the distance from
the center. So, when the wave packet has initially an amplitude that is larger than
the threshold, the outgoing wave will break all bonds it reaches until its amplitude
has dropped below the threshold and from then on no further bond will be broken.
Thus, one only creates a structureless isotropic hole in the center of the system.

A somewhat similar model has been studied by Louis et. al.” They try to solve
a quasi static problem, but perform only a few relaxation steps to find the equilib-
rium state of the network. However, since they use an overrelaxation scheme the
relaxation of their system towards equilibrium has another dynamical interpretaion
than the iterative method I use. Another similarity is given in the breaking rules.
Louis et. al. pick bonds that are to be broken with a probability that is proportional
to the bond length P;; o |r; —r;].

5. Results

To demonstrate that the dynamics (8) produces reasonable results we first consider
the case of a smooth wave packet travelling through a system without disorder and
without breaking. Therefore we applied not a singular pulse to the network but
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rather a smooth wave packet. The initial radial displacements of the central sites

)= (1o (20 2)) o

for 0 <t < 7 and u(t) = 0 for ¢ > 7 while all other sites are free to move. The
period is chosen to be 7 = 100.
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Fig. 1. Cut through a shockwave after 200 timesteps.

Fig. (1) shows a cut along the x axis through this wave packet at time ¢ = 200. One
indeed recovers the original pulse plus a further minimum which is due to the fact
that we keep the displacements of the central sites for ¢ > 7 fixed at zero. Because
of their inertia the neighboring sites keep vibrating which results in the second
minimum. If one measures the velocity of the maximum of the wave packet one
obtains a value which agrees with the analytical expression for the group velocity
of a circular wave with frequency w = 27/7 on a triangular lattice.

After having confirmed that the travelling wave shows reasonable behavior we
restrict ourselves again to the case of a singular pulse, which corresponds to the
case T = 2.

Fig. 2. Crack patterns generated for (from left to right) a) & = 1, b) @ = 0.98 and c¢) a = 0.95.

In figs (2.a-2.c) we show examples of cracks which were generated for different
breaking thresholds: o = 1 (10934 sites) — which means that only the bond with
the largest elongation is broken — o = 0.98 (16038 sites) and o = 0.95 (35837 sites).
The number in brackets are the number of sites that are “connected” by broken
bonds. All cracks show a starlike and fractal structure. For decreasing « they
become more and more ramified. This is easily understood since with decreasing
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«a many more bonds are eligible to be broken. The delta-like excitation we impose
initially on the lattice is highly non-periodic and therefore produces waves with
many different frequencies, althoug lower amplitude. For small enough o many of
these waves can contribute to the growth of the crack. But one also has to take into
account another effect. Since the lattice is prestretched each bond that is broken is a
source for another spherical wave travelling away from this point. For small enough
« also those waves can break bonds and therefore can lead to an avalanche-type
growth of the crack. Thus, one can distinguish two different regimes: For « close
to unity the crack grows mainly at the tips at the outer branches which coincide
with the front of the shockwave. The sidebranches behind the shockfront remain
inactive. For smaller a also the tips behind the shockfront continue to grow and
split and eventually the crack becomes space filling.

Another fact to be noticed is that for decreasing « the lattice structure becomes
more and more dominant and eventually the cracks grow into a structure with sixfold
symmetry.

To be more quantitative, we study the dependence of the number of broken
bonds N on the radius of the cluster, which is measured in terms of the radius of
gyration Rg. Rq describes the average distance of all broken bonds from the center
of mass g, of the crack

(10)

coupling 0.005+50%
I a=0.98
4 D~=1.15

Crack size

2 . ]

10

10
Radius of gyration
Fig. 3. Scaling of the number of broken bonds with the radius of the crack.

In fig. (3) we show the typical behavior of the number of broken bonds. As an
example we show data for o = 0.98 in which we averaged over four cracks.
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Fig. 4. Dependence of fractal dimension on the breaking threshold.
One finds that this number has a power law dependence on the radius of gyration
Dy
N x R (11)

and for this specific example we find a fractal dimension Dy = 1.15. As indicated
above this exponent varies with varying a.. So, in fig. (4) we show all exponents Dy
for different a.

Also in this plot the exponents Dy(a) were obtained by averaging over four
independent realizations. One obtains a linear dependence

D) = —(2.06 + 0.05) - o + (3.19 & 0.05). (12)

Thus, for decreasing « one approaches a space filling structure which one reaches for
a =~ 0.58. However, it could be possible that for even larger clusters the asymptotic
behavior changes and one crosses over into other exponents Dy.

6. Conclusions

We have described the implementation and results of a discrete time simulation for
the growth of large cracks on a triangular network. We use a central force model
and study the dynamical behavior of crack growth instead of studying the slow
growth modes. Using a simplified dynamics, which anyway reproduces the essential
features for the crack production, we are able to grow cracks with more than 10000
sites on a 1024 x 1024 lattice. We obtain fractal growth patterns with dimensions
almost in the whole range between 1.1 and 2.0. The dimensionality of the cracks is
mainly governed by the breaking threshold a and one finds a linear dependence of
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Dy on a.
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