
IDS566: Advanced Text Analytics Updated: 11/15/20

Homework #2

Instructor: Moontae Lee Total Points: 170

Policy

1. HW2 is due by 11/30/2020 11:59PM in Central Time. One submission per each group.

2. You are allowed to work individually or as a group of up to three students.

3. Having wider discussions is not prohibited. Put all the names of students beyond your
group members. However individual students/groups must write their own solutions.

4. Put your write-up and results from the coding questions in a single pdf file. Compress
the source codes into a zip file. Each student/group must submit only two files. (You
will lose the points if the answers for coding questions are not included the pdf report)

5. If you would include some graphs, be sure to include the source codes together that
were used to generate those figures. Every result must be reproducible.

6. Maximally leverage Piazza to benefit other students by your questions and answers.
Try to be updated by checking notifications in both Piazza and the class webpage.

7. Late submissions will be penalized 20% per each late day. As this is the last assignment
in the semester, only one late day is allowed. For HW2, it will be 12/1/2020 11:59pm.

Problem 1: Word-vector Embedding [25 points]
In class you have learned distributed representations which try to encode each word as a vector
in a multi-dimensional Euclidean vector space. Answer for the following questions:

(a) A naive encoding is to use |V |-dimensional representation for each word where V is the
set of vocabulary. As given in the lecture, you can construct such representations by
counting either the co-existence (0-1) or the co-occurrence (frequency) with other words
in the data. Explain the benefits and limitations of these approaches.

(b) Suppose another encoding provides you vman = (0.3, 0.1, 0.4) and vwoman = (0.3, 0.1,−0.6).
Compute the cosine similarity between man and woman as learned in the class. Interpret
some of the three dimensions by comparing lexical semantics of these two words.

(c) Recall two word-vectors given in (b). Assuming vboy = (−0.7,−0.9, 0.3), guess the best
word-vector for vgirl. Try to come up with vector operations that can evaluate vgirl in
terms of addition/subtraction(s) of vboy, vman, and vwoman, thereby justifying your guess.

Updated: 11/15/20-1

Word2vec is the most popular word-vector embedding that brings up innovations for various
applications in Natural Language Processing. The following questions ask basic understanding
about word2vec’s theoretical foundations.

(d) Given a target word t ∈ V and a context word c ∈ V , the skip-gram models the conditional
probability p(c|t) by the following formula:

p(c|t) =
exp(uTc vt)∑

w∈V exp(uTwvt)
.

Explain why the exponential function is necessary and how this formula properly converts
relationships in the vector space into a probability distribution.

(e) In class, we derive the partial derivative of the log-likelihood version of the above equation
with respect to vt. Evaluate the partial derivative of it with respect to uc. In other words,
compute ∂ log p(c|t;uc,vt)

∂uc
. Then explain how to learn word-vector embeddings.

Problem 2: Part-Of-Speech Tagging and Parsing [25 points]
In order for POS tagging, supervised dataset is generally required. Each example in the data
consists of a sentence instance and the true label: tags that mark the true POS for each word.
Once models learn from the data, then it can predict the most-likely POS tags of each word in
unseen examples. Penn Treebank is the most popular supervised dataset.

(a) Machine learning models predict well the labels of instances if they are already seen
during the training process. Construct a simple sentence which is a part of supervised
dataset, but the learned POS tagger could incorrectly predict its POS tags when testing
on the same sentence.

(b) All word to in the Penn Treebank is tagged simply as TO rather than as a precise POS.
Explain potential problems by making your own examples that includes to. If you try
to make an elaborated POS tagger that can distinguish different syntactic roles of to in
your examples, what could you do?

Answer the following questions about parsing given the 9 rules: 1) S → NP VP; 2) S → VP;
3) NP → Det NP; 4) NP → Proper-Noun Noun; 5) VP → Verb NP; 6) Det → the; 7) Noun →
run | marathon; 8) Verb → run; 9) Proper-Noun → Chicago.

(c) Show a possible bottom-up parsing for the sentence: “Run the Chicago marathon”.

(d) Show a possible top-down parsing for the sentence: “Run the Chicago marathon”.

(e) If you only draw a parse-tree of the sample sentence used in (c) and (d), can you tell which
derivation algorithm you used between the top-down and the bottom-up approaches?

Updated: 11/15/20-2

Problem 3: Programming Project [100+20 points]
Word Sense Disambiguation (WSD) is a task to find the correct meaning of a word given
context, which can be a building block for various high-level NLP tasks. As many words in
languages have more than a single meaning, humans perform WSD with respect to various
verbal and non-verbal signals. In this problem, you are going to implement a WSD system by
using two different models: ontological model and supervised model. To start, read the English
Lexical Sample Task written by Mihalcea, Chklovski and Kilgarriff in the following link.1

The data files are lightly preprocessed for the class project. They consist of training, validation,
and test data provided with a XML formatted dictionary that describes commonly used senses
for each word. Every lexical element in the dictionary contains multiple sense items, assigning
one integer id per each sense. Briefly see the following example from our XML dictionary

It describes one lexical element: future (part-of-speech is noun) with its four different senses.
Each sense has its own gloss (definition) and examples that are separated by | symbol. Each
sense is also associated with the corresponding senses of WordNet 2.1. As our sense divisions
and WordNet’s are not identical, some of our senses could be mapped to multiple WordNet
senses or possibly nothing (e.g., See the fourth sense item in the above example). Since the
current NLTK is using WordNet 3, the sense mapping from 2.1 to 3.x could be useful.2

The training data specifies the correct sense of the target word providing its verbal context
surrounding the target word. Each line of training data has the the following format:

word.pos | sense-id | prev-context %% target %% next-context

• word is the original form of the target word for which we are to predict the sense. You
will use it to lookup the XML dictionary.

• pos is the POS where ‘n’, ‘v’, and ‘a’ stand for noun, verb, and adjective, respectively.

• sense-id is the integer number for the correct sense id defined in our dictionary.

• prev-context is the text given earlier than each of the target word occurrence.

• target is the actual occurrence of the target word. Note that the word “begin.v” could
occur as “beginning” instead of “begin” to denote a participle at the given position.

• next-context is the text given later than each of the target word occurrence.

Note that sense-ids in the test data are all erased to 0 as those are what you should predict.

1http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.153.8426
2https://stackoverflow.com/questions/46950379/how-to-fetch-a-specific-version-of-wordnet-when-doing-nltk-download

Updated: 11/15/20-3

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.153.8426
https://stackoverflow.com/questions/46950379/how-to-fetch-a-specific-version-of-wordnet-when-doing-nltk-download

1 Ontological (dictionary-based) WSD

Dictionary-based approaches utilize definitions given in the dictionary. See the following exam-
ple that tries to disambiguate ”pine cone”.

• pine (the context)

1. a kind of evergreen tree with needle-shaped leaves

2. to waste away through sorrow or illness

• cone (the target word)

1. A solid body which narrows to a point

2. Something of this shape, whether solid or hollow

3. Fruit of certain evergreen trees

As bold faced in the above, 3rd sense of the target word matches the most with the 1st sense of
the context word among all possible combinations. This process shows the original Lesk algo-
rithm to disambiguate senses based only on the cross-comparing the definitions. However, rich
examples given in the dictionary can be utilized to extend this model for better matching.

1. Design a metric that rewards consecutive overlaps more. One overlap of two consecutive
words must get higher scores than two distant overlaps of a single word. Note that
there would be morphological variations in the definitions and examples. To increase the
matching, stemming or lemmatizing could be useful.3

2. Implement a dictionary-based WSD system that disambiguates the sense by comparing
the definitions of the target word to the definitions of relevant words in the context.
Your design decision of choosing relevant words will determine the performance of the
dictionary-based system in combining with the metric you designed above.

3. Because we mainly use glosses and examples in the dictionary to figure out the correct
senses, no training is necessary for the Simple Lesk WSD. If you want to try the Corpus
Lesk WSD (extension), try to augment the dictionary by the trainig data. If you think
that those are not enough to achieve competitive accuracy, feel free to use the WordNet
dictionary to further improve the performance.4

4. If no training process is involved, you could verify the performance of your Simple Lesk
WSD system on the entire training set. If you want to compare the performance of
various WSD systems like your Corpus Lesk or supervised WSD in the next section, test
on the same validation set that we provide. You should also submit prediction results on
the test data for every model that you would try.

3You can find relevant tools: stemmer and lemmatizer in NLTK and WordNet.
4If you would use WordNet, be careful in the version difference as stated in the introduction.

Updated: 11/15/20-4

2 Supervised WSD

This section describes a simple probabilistic approach called the Naive-Bayes model. The model
takes a word in context as an input and outputs a probability distribution over predefined senses,
indicating how likely each sense would be the correct meaning of the target word within the
given context. Specifically, it picks the best sense by the following equation:

ŝ = argmaxs∈S(w)p(s|~f)

In the above equation, S(w) is the predefined set of senses for the target word w and ~f is a
feature vector extracted from the context surrounding w. Thus the equation says that we are
going to choose the most probable sense as the correct meaning of w. By Bayes rule,

p(s|~f) =
p(~f |s)p(s)
p(~f)

.

As the denominator does not change with respect to s ∈ S(w), the best sense ŝ is given by

ŝ = argmaxs∈S(w)p(s|~f) = argmaxs∈S(w)p(~f |s)p(s).

Here the model naively assumes5 that each feature in the feature vector ~f is conditionally
independent given the sense of the word s. The assumption allows us to evaluate p(~f |s) by

p(~f |s) =
n∏

j=1

p(fj |s) where f = (f1, f2, ..., fn).

In other words, the probability of a feature vector given sense can be estimated by the product
of the probability of its individual features given that sense under our assumption. Hence,

ŝ = argmaxs∈S(w)p(~f |s)p(s) = argmaxs∈S(w)p(s)
n∏

j=1

p(fj |s)

What you have to implement for this model is given in the following instructions.

1. To train the above model, you should learn the model parameters: 1) the prior probability
of each sense p(s) and 2) the individual feature probabilities p(fj |s). Those are computed
by the Maximum Likelihood Estimation (MLE) which purely counts the number of actual
occurrences in the training set. Particularly for the i-th sense si of a word w,

P (si) =
count(si, w)

count(w)
P (fj |si) =

count(fj , si)

count(si)

For instance, assume there are 1,000 training examples corresponding to the word “bank”.
Among them, 750 occurrences stand for bank1 which covers the financial sense, and 250
occurrences for bank2 which covers the river sense. Then the prior probabilities are

5This is why the model is called Naive-Bayes.

Updated: 11/15/20-5

P (s1) =
750

1000
= 0.75 P (s2) =

250

1000
= 0.25

If the first feature “credit” occurs 195 times within the context of bank1, but only 5 times
within the context of bank2,

P (f1 = “credit”|s1) =
195

750
= 0.26 P (f1 = “credit”|s2) =

5

250
= 0.02

2. The performance of your WSD system would rely more on how to generate feature vectors
from the context. Note that target words are always provided within sufficiently long
sentence(s). As the above example shows, extracting informative words from surrounding
context allows the model parameters to discriminate unlikely senses from the correct
sense. In our model, this process of deciding model parameters becomes training. You
have to train a separate model per each target word in the training data.

3. When initially training your model, make sure that you never use the validation/test
data. Note that the correct sense-ids given in the test data are deliberately erased to
0, which means those are no longer true labels. Instead of marking the predicted senses
directly on the testing file, you must generate a separate output file consisting only of
the predicted sense-ids, one id per line in each test data.

4. To achieve quality performance, smoothing is necessary. Implement either add-1 or add-λ
smooothing. If you want to compare the performance of multiple models (e.g., different
λ’s), feel free to use a validation set, which is randomly reserved from the original test
data. Since the true senses are alive in the validation data, testing on the validation set
will let you guess the true performance on the unseen data. Note that you must not train
on the validation set if you want to validate the performance. However, you can add the
validation set to the training data for predicting the best senses of the test data.

3 Scoring and Extensions

We use accuracy6 as a score. Since each of possible senses is already specified by a dfferent sense-
id, and no examples has multiple senses at the same time, a single prediction will be counted
as incorrect one unless the prediction is equivalent to the ground-truth sense tag.

1. Assuming the given word in a test example has k different senses based on our XML
dictionary, the prediction file must consist of a 1−k integer number per line. Concretely, if
the test set consists of three examples where each example has 7, 3, and 5 different senses,
your system should output one line for each of three test examples like the following.

7
1
4

6Accuracy = # of correct predictions / # of total predictions

Updated: 11/15/20-6

2. (+5 pts) Implement the Corpus Lesk algorithm by augmenting the dictionary with the
training data. Report your improved performance against the Simple Lesk algorithm.

3. (+5 pts) Instead of hard-comparing to a single correct sense, you could design soft-scoring
scheme that partially votes to each sense with respect to its confidence based on your
model. For the supervised WSD using the Naive-Bayes model, it is easy to vote partially
because the system guesses the correctness of each sense as a probability distribution,
whereas you may have to do some normalization for soft-scoring in the dictionary-based
method.7 Note that this scoring is an expected score: for example, if your best answers
are sense-1 with 70% confidence and sense-2 with 30% confidence, you gain only 0.7
(rather than 1.0) if sense-1 is a right answer, whereas you gain only 0.3 (rather than 1.0)
if sense-2 is a right answer. Evaluate the prediction result on the validation set and
compute the average accuracy. Analyze the difference between the two scoring schemes
and discuss which one seems more beneficial with supporting reasons.

4. (+10 pts) Use embeddings via Spacy package in Python. Install Spacy and download the
pre-trained embedding models by “python -m spacy download en_core_web_md”. Then
you can retrieve individual word-vectors given a sentence or its sentence-vector in terms
of the average of the word vectors. Improve your ontological WSD and supervised WSD
by incorporating these word-vector information. Feel free to use the following script for
this open-ended extension.

1 import spacy

2 # Load the spacy model that you have installed.

3 model = spacy.load(’en_core_web_md ’)

4 # Process a sentence given the pre -trained model.

5 embeddings = model("You are working on the second homework.")

6 # Extract a word -vector for the 7-th word homework.

7 embeddings [6]. vector

8 # Get a sentence -vector as a mean of the individual word vectors.

9 embeddings.vector

4 What to submit?

Minimally you should implement the Simple Lesk algorithm for the ontological WSD and the
Naive-Bayes algorithm with add-1 smoothing for the supervised WSD. After experiments, write
a short PDF report (max 4 pages) that consists of the followings in addition to your codes and
predictions on the test data. Add accordingly if you do some extensions. (List any software
that you did not write by yourself. Note that using any pre-built WSD is not allowed)

(a) Explain all WSD systems that you have built. Ideally two systems: the Simple Lesk and
the Corpus Lesk for ontological WSD. Another two systems: add-1 and add-λ smoothing
Naive-Bayes for supervised WSD.

7Recall 1-(d) that explains how to normalize the score, getting a probability distribution.

Updated: 11/15/20-7

(b) Try various scoring functions and different feature engineering. Pick the best one for each
WSD system, providing several intuitive real examples chosen from the training data that
can justify your design decisions.

(c) Report the comparative performance among your ontological WSD systems with table/-
graphs by testing on the validation set. Report the comparative performance similarly
among your supervised WSD systems. Note that there must be a baseline WSD system
that always predicts to the most frequent sense. No comparisons with the baseline cannot
justify performance of your systems. Finally compare the entire WSD systems, reporting
clearly labeled tables/graphs with a written summary of the results.

(d) Include observations that you achieve during the experiment. One essential discussion
is to analyze informative features based on the real examples. In addition, Discuss the
difference between the supervised and the dictionary-based WSD systems. Which system
is more appropriate for which cases based on the real examples chosen from the data.

(e) Report your additional findings if you decide to implement some of the extensions.

Updated: 11/15/20-8

	Ontological (dictionary-based) WSD
	Supervised WSD
	Scoring and Extensions
	What to submit?

