Branch Prediction in Python

This assignment is based off of one-bit and two-bit branch predictors. To simulate instructions
and whether branches will occur or not, the provided methods next_branch_outcome _random
and next_branch_outcome_loop will be used. These methods will simulate a completely random
prediction outcome, and a set of outcomes that would more closely resemble a series of loops. A
return of True represents taking a branch, and a False represents not taking a branch.
The class Predictor represents the predictor. It is best practice to set the initial state to 0.

In[]: from random import paretovariate
from random import random

def next_branch_outcome_loop():
alpha=2
outcome = paretovariate(alpha)
outcome = outcome > 2
return outcome

def next_branch_outcome_random():
outcome = random()

outcome = outcome > 0.5

return outcome

class Predictor:

def __init__(self):
self.state =0

def next_predict(self):
Use this method to return the prediction based off of the current
state.

min

raise NotimplementedError("Implement this method")

def incorrect_predict(self):
Use this method to set the next state if an incorrect predict
occurred. (self.state = next_state)

min

raise NotiImplementedError("Implement this method")

def correct_predict(self):
Use this method to set the next state if an incorrect predict
occurred. (self.state = next_state)””
raise NotlImplementedError("Implement this method")

Part 1 - One Bit Predictor

Complete the OneBitPredictor class by implementing the next_predict, incorrect_predict,

and correct_predict methods. This instantiation will be used to compute the prediction accu-
racy. Use the next_predict method of the class to predict the next branch state. If the predict is
incorrect, use the incorrect_predict method to set the next state. If the predict is correct, use the
correct_predict method to set the next state.

In[]: class OneBitPredictor(Predictor):

def next_predict(self):
YOUR CODE HERE
raise NotimplementedError()

def incorrect_predict(self):
YOUR CODE HERE
raise NotimplementedError()

def correct_predict(self):
YOUR CODE HERE
raise NotimplementedError()

Part 1.1 - Random Branch Prediction
Use the next_branch_outcome_random method to generate branch outcomes. Use the previously
implemented methods to compute a prediction rate.

In[]: #YOUR CODE HERE
raise NotlImplementedError()

Part 1.2 - Loop Branch Prediction
Use the next_branch_outcome_loop method to generate branch outcomes. Use the previously
implemented methods to compute a prediction rate.

In[]: #YOUR CODE HERE
raise NotlImplementedError()

Part 2 - Two Bit Predictor

Complete the TwoBitPredictor class by implementing the next_predict, incorrect_predict,

and correct_predict methods. This instantiation will be used to compute the prediction accu-
racy. Use the next_predict method of the class to predict the next branch state. If the predict is
incorrect, use the incorrect_predict method to set the next state. If the predict is correct, use the
correct_predict method to set the next state.

In[]: class TwoBitPredictor(Predictor):

def next_predict(self):
YOUR CODE HERE
raise NotImplementedError()

def incorrect_predict(self):
YOUR CODE HERE
raise NotImplementedError()

def correct_predict(self):
YOUR CODE HERE
raise NotlmplementedError()

Part 2.1 - Random Branch Prediction
Use the next_branch_outcome_random method to generate branch outcomes. Use the previously
implemented methods to compute a prediction rate.

In[]: #YOUR CODE HERE
raise NotlImplementedError()

Part 2.2 - Loop Branch Prediction
Use the next_branch_outcome_loop method to generate branch outcomes. Use the previously
implemented methods to compute a prediction rate.

In[]: #YOUR CODE HERE
raise NotlImplementedError()

Part 3 - N-Bit Predictor
Inherit the Predictor class and implement it's methods just like before. Now, implement an n-bit
predictor that represents a higher confidence prediction.

In[]: # YOUR CODE HERE
raise NotlImplementedError()

Part 3.1 - Random Branch Prediction
Use the next_branch_outcome_random method to generate branch outcomes. Use the previously
implemented methods to compute a prediction rate.

In[]: #YOUR CODE HERE
raise NotimplementedError()

Part 3.2 - Loop Branch Prediction
Use the next_branch_outcome_loop method to generate branch outcomes. Use the previously
implemented methods to compute a prediction rate.

In[]: #YOUR CODE HERE
raise NotlImplementedError()

