
Chapter 4

Project 3: An introduction to

reinforcement learning I

4.1 Introduction

Reinforcement learning is a learning paradigm that states that one learns by interacting with

the environment in which one is in, rather than by being provided explicit rules to follow.

Specifically, reinforcement learning states that an agent (e.g. a human or a robot) learns which

actions to take in the environment so as to maximize a specific reward signal. That is, the

agent initially has no information about the set of desirable actions to take and only learns

them gradually by interacting with its environment, which will periodically issue rewards to the

agent. Reinforcement learning is fundamentally different from supervised learning where the

agent would be explicitly taught which behaviour to take [6].

Thus, to cast a problem as a reinforcement learning problem one needs to define an environ-

ment, an agent acting in this environment and a reward signal. Among the many particular

problems that can be cast as a reinforcement learning problem is learning to drive a car. Here

the environment is a network of roads, the agent is a human or a robot (such as a self-driving

vehicle), the set of actions are to accelerate forward and backward, stopping, turning left and

right, and the reward signal could be defined as the time that has passed without crashing the

car. Each action taken by the agent brings the agent from one state of the environment to

another state of the environment. For driving a car, say, your initial state is the parking spot

in front of a house (which belongs to the network of roads) and once you start to drive (i.e.

accelerate and turn left or right) you find yourself in another state of the environment (another

part of the network of roads). You maximize your reward by simply not crashing your car.

While the concept is astonishingly simple, reinforcement learning (and its combination with

deep neural networks, the so-called deep reinforcement learning) is responsible for most of the

recent breakthroughs in artificial intelligence, such as self-driving cars and computers beating

humans in the games of Chess and Go [5] as well as in several video games such as the Atari

games, StarCraft II or Dota II [4]. What makes reinforcement learning superior to other learning

approaches is that we do not teach the agent which particular rules to follow. In the case of

(video) games, we do not explicitly teach the agent which behaviour we think is best. The agent

learns only by maximizing its expected reward (e.g. how to win the game as fast as possible).

This has led to surprising new strategies learned by the various agents for solving problems,

which were previously unknown to humans. In fact, reinforcement learning is currently believed

to be our best shot at realizing true artificial intelligence.

11



Remark 4. This entire course can be regarded as an example for reinforcement learning. You

are provided with which results are expected for each project, and your task is to figure out how

to obtain these results using trial-and-error. Doing so as best as possible then maximizes your

cumulative reward (your final grade on this course).

4.2 Background

In this first part of the introduction to reinforcement learning, we consider the problem of a

multi-armed bandit : We are presented with k slot machines, each of which produces a particular

numerical reward. The problem is that we do not know ahead of time which slot machine (or

bandit) pays the most reward, which is the bandit we should be playing all the time. This

setting simplifies the reinforcement learning problem in that there is only a single state of the

environment, and we aim to learn which action, i.e. which bandit to play, will yield the highest

payout in the long run.

Each of the k actions, i.e. each of the k bandits we can be playing, has an expected (mean)

reward given that this action has been selected. We denote this as the value of that action. The

action selected at time step t is denoted by At, with the corresponding obtained reward being

denoted as Rt. The value q∗(a) of the action a is the expected reward provided that we have

selected action a at time step t,

q∗(a) = E(Rt|At = a).

The above equation reads that the value of the action a is obtained as the expected value of the

reward Rt given that we select action a at step t.

The goal of the reinforcement learning problem is to learn the true value q∗(a), i.e. to obtain

as good an estimate Qt(a) for the true value q∗(a) of the action a as possible, having played the

bandits t− 1 times. The following example provides some clarification.

Example 1. Assume that there is only one bandit, i.e. k = 1. You play the bandit 9 times and

obtain the following rewards:

R1 = 0.79110577, R2 = 1.58662319, R3 = 1.83898341,

R4 = 1.93110208, R5 = 1.28558733, R6 = 1.88514116,

R7 = 0.24560206, R8 = 2.25286816, R9 = 1.51292982.

The mean reward after playing this bandit 9 times is then

Q10 =
1

9
(R1 +R2 + · · ·+R9) =

1

9

9∑
i=1

Ri ≈ 1.4811.

Note that we call this value estimate Q10 instead of Q9 since this is the expected reward we

will receive when playing the bandit a 10th time. Thus, after playing the bandit 9 times, we

estimate the value of the single action a = 1 (we only have one bandit to play so a = 1 means

playing bandit number 1) is

q∗(1) ≈ Q10(1).

The more often we play the bandit, the more accurate this estimate will become.

12



Example 2. If there is only one bandit, there is no learning problem since there is no choice

to be made. Now consider that there are two bandits. You play the first bandit at t = 1 and

obtain

R1 = 2.12948391.

You then try the second bandit at t = 2 and obtain

R2 = 1.36126959.

Disappointed with the lower payout of the second bandit, you return to the first bandit and

exclusively play the first bandit afterwards. Is this a smart choice?

The previous example is known as the exploration–exploitation problem. Exploitation refers

to using your current knowledge to choose the action that maximizes your reward over a single

step. Exploration in turn refers to choosing an action that gives you a lower reward over a single

step but may lead to a higher reward in the long run.

Example 3. Continuing Example 2, assume we first play the first bandit (a = 1) 9 times and

obtain the following rewards:

R1 = 2.12948391, R2 = 0.79924193, R3 = 1.18656139,

R4 = 1.41005165, R5 = 1.19829972, R6 = 1.11900865,

R7 = 0.32933771, R8 = 1.37756379, R9 = 1.12182127.

This allows us to estimate the value of the action a = 1 as

q∗(1) ≈ Q10(1) =
1

9

9∑
i=1

Ri ≈ 1.1857.

Now assume we instead played the second bandit (a = 2) 9 times, where we obtain the following

rewards

R1 = 1.36126959, R2 = 3.19891788, R3 = 2.18515642,

R4 = 1.62471505, R5 = 2.42349435, R6 = 2.07734007,

R7 = 1.65614632, R8 = 2.04359686, R9 = 1.37999916.

We can thus estimate the value of the action a = 2 as

q∗(2) ≈ Q10(2) =
1

9

9∑
i=1

Ri ≈ 1.9945.

In other words, the second bandit has almost twice the mean payout as the first bandit. We

were just unlucky that the first time we played each bandit, that the first one gave more reward

than the second one. Over a total of 9 plays each, the mean payout per play if of course much

better for the second bandit.

Thus, had we followed a strict exploitation strategy after having played each bandit only once,

we would have always played bandit 1. Exploration over a period of time allowed us to discover

that bandit 2 actually seems more promising than bandit 2, regardless of the disappointing

performance after a single play. Going forward, based on the information we have gathered over

18 plays it thus would make more sense to exclusively play the second bandit. But is this the

right strategy?

13



The main problem with our two-armed bandit problem is that after 18 plays we still do not

know which bandit pays out the most in the long run. Maybe after 100 plays the payouts will be

again different, this time favouring once again the first bandit. The problem is that you’d have

to play each bandit an infinite number of times to find the true value of each action. Playing a

“game” infinitely many times is impossible for real-world reinforcement learning problems.

While the exploration–exploitation problem seems relatively simple, it is important to note

that it has not been solved for general reinforcement learning problems. Whether you notice or

not, the exploration–exploitation problem is a constant companion in your day-to-day life.

Example 4. Suppose you move to a new city and spend the first few weeks exploring different

restaurants. Having tried 5 different restaurants once, you then pick your favourite 2 restaurants

and go to them exclusively in the future. How can you be sure that you really found the 2 best

restaurants in town (or, for that matter, even the 2 best among the 5 you tried)?

Example 5. You have to pick a section for your Calculus I course. You browse through the

student evaluations of the 3 instructors that are offering the course and find the following

numerical ratings (with 5 being the highest):

1. Instructor A: 4.2 (from 3 evaluations)

2. Instructor B: 4.0 (from 10 evaluations)

3. Instructor C: 5.0 (from 1 evaluation)

Exploitation would compel you to choose Instructor C, since this one gives the highest reward

(a perfect rating of 5), but there was only one student rating for this instructor. In other words,

this could have been a lucky (for the Instructor) outlier. Instructor A has still a quite good score

but 3 evaluations is again rather little and if your experience would be negative and you would

finally add this to the score, Instructor A would drop below Instructor B (as would Instructor

C). So should you choose Instructor B, which has the lowest overall score but this score being

overall the most established?

Regardless of your problem, at each step t you can maintain an estimate of all the action

values, which will become more and more accurate the larger t becomes. Then there is at any

time step at least one action that would give you the highest estimated value. We call this the

greedy action. Exploitation means that you always choose the greedy action. Exploration refers

to choosing a nongreedy action.

A main challenge balancing exploration and exploitation is that most real-world reinforcement

learning problems are not stationary. In our bandit problem, non-stationary would mean that

over time the mean payout of each bandit changes. Since the environment is constantly changing,

maintaining some level of exploration is usually advantageous.

One simple way of balancing exploration and exploitation is to use an ε-greedy strategy.

Suppose we set ε = 0.1 this would mean that from 10 actions we choose 9 times the greedy

action and 1 time randomly any of the other actions available; in other words, we explore 10%

of the time and exploit the remaining 90% of the time. The larger ε, the larger the rate of

exploration will be. If we set ε = 1 then we will explore all the time and never exploit. If we set

ε = 0 then we are always using the greedy action, i.e. we exploit all the time and never explore.

Remark 5. For the single bandit case we estimated the value of the single action a = 1 at time

step t = n by forming the arithmetic mean of all the rewards Ri obtained up to time t = n− 1,

14



i.e.

Qn =
1

n− 1

n−1∑
i=1

Ri.

If we play the bandit one more time, i.e. moving to t = n+ 1 we get one additional reward Rn.

To compute the new estimate Qn+1 it is luckily not required to compute

Qn+1 =
1

n

n∑
i=1

Ri.

Instead, we note that

Qn+1 =
1

n

n∑
i=1

Ri =
1

n

(
Rn +

n−1∑
i=1

Ri

)

=
1

n

(
Rn + (n− 1)

1

n− 1

n−1∑
i=1

Ri

)

=
1

n
(Rn + (n− 1)Qn) =

1

n
(Rn + nQn −Qn)

= Qn +
1

n
(Rn −Qn).

In other words, having computed Qn and after having received the new reward Rn, we simply

compute Qn+1 by

Qn+1 = Qn +
1

n
(Rn −Qn), (4.1)

which is much quicker to compute than having to evaluate the sum over all past rewards again

and again.

Remark 6. Note that Eq. (4.1) has to be adapted to the k-armed bandit case! In particular,

a k-dimensional counter array n has to be maintained, with the value n(a) being increased by

one if action a is selected at step t.

4.3 Project

Here we assess the effectiveness of the greedy and ε-greedy strategies for a 10-armed bandit

problem.

4.3.1 Epsilon-greedy strategy

Write a Python routine that sets the true action values q∗(a), a = 1, . . . , 10 for each bandit as

taken randomly from a normal distribution with mean 0 and variance 1. This will give you one

specific bandit configuration, see Fig. 4.1 for an example. Set Q1(a), i.e. your estimate for the

value of each action a at the first time step t = 1 (i.e. before any action was taken) to zero for

all a.

Run this bandit problem for a total of 1000 steps using the greedy and ε-greedy strategies

for various values of ε, such as ε = 0.01, ε = 0.1 and ε = 0.2. Each learning method will

select a particular action At (i.e. a particular bandit) at step t, which will give you a particular

reward Rt, which we choose to be selected from a normal distribution with mean q∗(At) and

15



Figure 4.1: One particular bandit problem, with mean reward q∗(a) distribution selected as

qstar = np.random.rand(10). The actual reward at each step t is then selected from a normal

distribution with mean q∗(At) and variance 1.

variance 1. In other words, the mean reward you will obtain from each bandit is indeed the

mean true reward q∗(At), but there will be some variance to this reward as well. You can then

track the obtained rewards over all of the 1000 steps. This will give you the performance of

these strategies for that particular bandit problem.

To assess the mean performance of each strategy, repeat this experiment for 2000 randomly

generated 10-armed bandits. That is, select 2000 different 10-armed bandits (with true action

values q∗(a), a = 1, . . . , 10 for each bandit selected from a normal Gaussian distribution with

mean 0 and variance 1) and then run each 10-armed bandit problem for 1000 steps, picking the

reward Rt at step t for taking action At from the associated normal distribution with mean q∗(At)

and variance 1. Then average the reward Rt as a function of t over all 2000 bandit problems.

To give you some idea of the results you may obtain, Fig. 4.2 shows the mean performance of

the greedy action selection strategy as a function of the time step.

Figure 4.2: Average performance of the greedy action (ε = 0) selection strategy over 2000

different realizations of a 10-armed bandit problem. Reproduce this result and also add the

respective curves for ε = 0.01, ε = 0.1 and ε = 0.2.

Since in this particular case we have access to the true reward distribution q∗(a), we also

know which bandit is the optimal for each 10-armed bandit problem, namely the one giving

the highest mean reward. In the particular bandit problem depicted in Fig. 4.1 this would be

bandit 9. You can thus assess the percentage of time each action selection strategy gave you

the optimal action, i.e. whether the learning algorithm has learned which bandit is the most

16



profitable. An example of the results you may obtain is depicted in Fig. 4.3 for the greedy action

selection strategy.

Figure 4.3: Mean percentage of times the greedy action (ε = 0) selection strategy found the

optimal action over 2000 different realizations of a 10-armed bandit problem. Reproduce this

result and also add the respective curves for ε = 0.01, ε = 0.1 and ε = 0.2.

Interpret all of the results you obtain!

4.3.2 Optimistic initial values

In the previous experiment we have assumed that the initial estimate Q1(a), before playing any

bandit at all, for all action values is zero. Indeed, in the present case we choose our bandit

reward distribution from a normal distribution with zero mean and unit variance, thus making

the initial assumption for Q1(a) realistic. However, without prior knowledge of the true reward

distribution (which for a real-world bandit problem we just would not have), the particular

choice of the initial value estimates injects some assumed prior knowledge of the action values

that is not always justified.

To assess the influence of the initial value estimateQ1(a) on the long-term reward distribution,

repeat the above experiments by setting Q1(a) = 5. We refer to this as optimistic initial values.

Indeed this value is extremely optimistic since we choose q∗(a) from a normal distribution with

zero mean and unit variance. For reference, also try these experiments with Q1(a) = −5, which

would be an extremely pessimistic initial guess for the present setting.

Can you explain these results in terms of how the initial value estimates could encourage the

agent to explore its environment?

Remark 7. The results more generally underpin a mindset which may be summarized as opti-

mistic in the face of uncertainty : Faced with an uncertain situation, it is better to be optimistic

rather than realistic (or even pessimistic).

4.4 Why this project is relevant

While a vastly simplified form of the full reinforcement learning problem, the multi-armed bandit

problem introduced important concepts such as the exploration–exploitation dilemma and the

need for defining an explicit learning rule for how the agent interacts with its environment. The

next project expands on these concepts in substantial ways.

17


