Practical Assignment (24 + 12 Points)

Multimedia Retrieval (Basic Concepts) — SS21

DATA ANALYSIS AND VISUALIZATION GROUP

Submission deadline: Sun., 4 July 2021, 23:55
Upload of ZIP (Code, Model, PDF) in ILIAS as Group Submission

1 Introduction

The aim of this assignment is to develop a content-based image retrieval pipeline.
In contrast to manual feature extraction techniques, this assignment will be
based on the autoencoder deep learning architecture to automatically extract
features from the dataset. An autoencoder is an unsupervised deep learning
model, consisting of an encoder and a decoder network. As shown in Figure 1,
the encoder decreases the dimensionality of the input up to the layer with the
fewest neurons, called latent space. The decoder then tries to reconstruct the
input from this low-dimensional representation. This way, the latent space forms
a bottleneck, which forces the autoencoder to learn a compression representation
of the data.

@
o . /@

input : : : : output

@

encoder decoder

Figure 1: The abstract architecture of an autoencoder. The encoder compresses
the input to a low-dimensional representation in the latent space, the decoder
tries to reconstruct the output from the latent activation.

https://ilias.uni-konstanz.de/
Ayesh Riz

2 General Information

e You have to form groups of 2-3 persons. Please get in touch with one of
the supervisors if you cannot find a partner.

e You should finish the project in two weeks, and present your solution
in the next exercise which will be on Thur., 24th June 2021 in the
regular slot. After that you will have one more week to improve your
implementation and tune your pipeline based on the feedback from the
presentation. The final submission deadline is Sun., 4th July 2021,
23:55.

e The practical assignment will be introduced in the exercise slot on Thur.,
17th June 2021. Each task will be described in detail and you can ask
questions on things that are unclear. Please make sure to take a close look
at the assignment and get started on it until then.

e You may only use standard functionalities in your code, unless exter-
nal libraries are explicitly allowed in the exercise description. Such
external packages are marked as pip:<package name>. If you are un-
sure about if you can use some library, get in touch with the supervisors.
We can only support programs written in Python. You have to provide
additional documentation on where to find your code and how it works.
Missing or incomplete documentation will lead to point reduction.

e For this practical assignment you can achieve 24 points plus 12 bonus
points for additional work. The bonus task is optional; the achieved
points are added to your overall exercise points without affecting the de-
nominator.

e Please upload your results to ILTAS as a ZIP file, containing the trained
model as HDF5 file, the Python code, as well as a PDF file with the report
of each task (results, images, descriptions). Upload only one file per group
in the form of an ILIAS group submission.

e Make sure to read the full assignment sheet before starting with your work.
You might have to iterate the model building, training and evaluation steps
until you reach a satisfying performance. For example, after creating an
initial architecture for your autoencoder (Section 3.2), you should train the
model (Section 3.3), and check the intermediate results (Section 4). From
these check you will most likely detect issues, which bring you back to the
model building process. Therefore, the tasks are not strictly sequential.
Instead, they serve as an outline for the general procedure.

3 Feature Encoding (16 Points)

In this exercise we will create and train an autoencoder to find a low-dimensional
representation of the dataset images. For this, you can either use the Tensor-
Flow (pip:tensorflow) or the PyTorch (pip:pytorch) deep learning framework.
The following explanations are based on TensorFlow. However, there are many
learning resources and blog posts for both frameworks available on the internet.

3.1 Dataset Preparation (1/16 P)

We will use the CIFAR10 dataset. It consists of small images of 32 x 32 pixels
from 10 different classes. Due to its simplicity, the CIFAR10 dataset will keep
the training times for our network relatively low, while still being sufficient to
showcase the full image retrieval pipeline.

1. Getting the dataset — You can either use the example CIFAR10 dataset
of Keras or download the dataset from the University of Toronto.

2. Loading the dataset — Load the dataset into Numpy (pip:numpy) ar-
rays. We recommend organizing the data as shown in Table 1.

3. Loading the dataset — Convert the pixel values from uint8 numbers in
the range [0, 255] to £loat32 numbers in the range [0, 1].

4. Checking the results — Verify that the data shows the following prop-
erties:
e The value range of the image arrays should be [0, 1].
e The dtype of the image arrays should be float32.
e The shape of the arrays should be as shown in Table 1.

Variable ‘ Description ‘ Shape
x_train | The images of the training dataset. | (50000, 32,32, 3)
y_train | The labels of the training dataset. (50000, 1)
X_test The images of the testing dataset. (10000, 32, 32, 3)
y_test | The labels of the testing dataset. (10000, 1)

Table 1: Organizing the training and testing datasets as Numpy arrays.

What to submit? Submit the Python code for this exercise, as well as a
short description of your approach and the results in the PDF document.

3.2 Building the Autoencoder (11/16 P)

Search for resources on how to build an autoencoder in the deep learning frame-
work of your choice (TensorFlow or PyTorch). Use the same image as input
and output of the model. You can start with a simple architecture. As soon as
you have a working model (i.e., the network trains) you can further improve the
complexity of your architecture. As the final result, you should present a con-
volutional deep neural network, i.e., a network including multiple convolutional
layers for feature extraction in the encoder. The latent layer should feature

https://pypi.org/project/tensorflow/
https://pypi.org/project/pytorch/
https://www.tensorflow.org/api_docs/python/tf/keras/datasets/cifar10
https://www.tensorflow.org/api_docs/python/tf/keras/datasets/cifar10
https://www.cs.toronto.edu/~kriz/cifar.html
https://pypi.org/project/numpy/

an output capacity of 10 neurons, resulting in a ten-dimensional feature
encoding for each image. The following hints should help you in the process of
building the autoencoder.

e Start with a simple architecture, e.g., two dense layers for both encoder
and decoder. When training goes well, increase the complexity of the
architecture step by step.

e To later encode the features, you will need to execute only the encoder
part of your network. Therefore, it will help to directly modularize the
autoencoder accordingly. In Keras (as part of TensorFlow 2.x) this can
be done by creating three models: the encoder model, the decoder model,
and the full autoencoder as the composition of the encoder and decoder
models.

e After each modification to your model, train it for a few epochs to detect
possible issues (see Section 3.3).

e If the model trains well, check the reconstruction results and analyze the
distributions of the latent activations (see Section 4). This will help you to
refine the hyperparameter settings (layer sizes, parameter for convolutions,
or activation functions) of your model.

What to submit? Provide a description on how you model evolved in the
iterative model building and refinement process in the PDF file. Add the Python
code of the final model. Also submit a visual representation of the final models
architecture (e.g., by using TensorFlow’s model to_dot function) in the PDF
file.

3.3 Training the Auto-Encoder (4/16 P)

Training a model can be a time-consuming task. To monitor the training pro-
cess, log training metrics (loss and accuracy) using a monitoring system like
TensorBoard. In Keras, this can easily done by using the TensorBoard callback.
Please include screenshots of the plots visualizing the metrics for the final train-
ing of your model, as shown in Figure 2. The following hints should help you in
minimizing the effort for training.

e Do not fully train a model that has obvious issues or is not finished yet.
After starting the training, observe loss and accuracy metrics over the first
few epochs using a monitoring system like TensorBoard. Figure 2 shows,
how a healthy training process looks like. Be sure to check both training
and testing accuracy and loss. If the training accuracy still increases, but
the testing accuracy drops, this is a sign of overfitting.

e Save data whenever possible. There is nothing more annoying than hav-
ing trained a model for hours to realize that the result was never saved.
Keras makes model logging easy by providing callback mechanisms that
are executed at certain steps during training. Using a ModelCheckpoint
you can easily save the full model configuration, including trained weights
and model architecture.

https://www.tensorflow.org/api_docs/python/tf/keras/utils/model_to_dot
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/TensorBoard
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ModelCheckpoint

e Only fully train your model if you are confident that it will re-
sult in a reasonable performance. The final training might take
several hours until a convergence of accuracy and loss is reached.

0.625 0.64
06 DTV

0.615 056
0605 052

0.48
0.595 040

0O 20 40 60 80 100 0 20 40 60 80 100
(a) Loss (b) Accuracy

Figure 2: Metrics logged in TensorBoard.

What to submit? Add the plot of the performance metrics to your PDF
report and describe how the training process went for the final model. Submit
the trained model as HDF5 file.

4 Sanity Check (4 Points)

There are many sources of errors when building and training a deep learning
model. Therefore, checking the results is essential to finally create a working
model that solves the task sufficiently well. In this exercise, we will evalu-
ate the results of our model. Note, that you will need to execute this step
not only for you final model, but also during the iterative model building and
refinement process. For the visualizations in this exercise, you can use the mat-
plotlib package (pip:matplotlib). Furthermore, for data representation, Numpy
(pip:numpy) and Pandas (pip:pandas) are allowed. For data processing, such
as normalization or pairwise distance computation, you can use ScikitLearn
(pip:scikit-learn).

What to submit? For each sub-task, add the results to your PDF report.
This includes a description of how the results were achieved, as well as the plots.
Submit the Python code for each task.

4.1 Visualizing Reconstruction Results (1/4 P)

The final goal of an autoencoder is to reconstruct the input image as well as
possible. Therefore, examining the reconstruction results is vital to assess the
quality of our model asides of abstract metrics like accuracy and loss. Plot the
first ten images of the testing dataset together with their reconstruction result,
as shown in Figure 3. The relatively bad reconstruction quality comes from the
high compression in the latent space down to ten dimensions. However, as we
will see, this is already sufficient to encode the features for data querying.

= N o r7
"~ A

Figure 3: Reconstruction results for the first 10 images of the test dataset.

4.2 Distribution Analysis (1/4 P)

To allow for meaningful distance measures in the latent space, the value distribu-
tion of the latent activations should look somehow “well-behaved”. Therefore, we
will examine the distribution of the latent activations over the testing dataset.
Use the encoder part of your network to encode 50 random images from the test
dataset. Visualize the results using seaborn’s (pip:seaborn) pairplot function.
The result should look similar to the plot shown in Figure 4.

4.3 Projecting Results (2/4 P)

Finally, we want to make sure that our autoencoder has learnt something mean-
ingful. Assuming that two images of the same dataset class will likely share more
features than two images of different classes, we use the class information of the

https://pypi.org/project/matplotlib/
https://pypi.org/project/numpy/
https://pypi.org/project/pandas/
https://pypi.org/project/scikit-learn/
https://pypi.org/project/seaborn/

Figure 4: SPLOM of the latent values of the test dataset, including the distri-
bution of each dimension.

dataset to assess the autoencoders performance. Project the encodings for the
images of the test dataset to 2D using UMAP (pip:umap-learn). Visualize the
results in a scatterplot, coloring the dots according to the class information of
the data entity. You should at least see a rough separation of the different
classes, as shown in Figure 5.

https://pypi.org/project/umap-learn/

AT
e bl
ety
& .
Y e
S
L o2
C e
> :
Ty
R,
X oy e

i o e

oS

o BA U vy

%

%
2o
S

Figure 5: UMAP-projected latent values of the test dataset, colored by class

label.

5 Data Querying (4 Points)

Finally, we want to use our encoder to query for similar images in the dataset.
Select 20 arbitrary query images from the test dataset and encode them us-
ing your encoder model, resulting in the ten-dimensional encodings ¢, - . -, g20-
Then encode all 60.000 images from the combined test and training datasets,
resulting in the ten-dimensional encodings d,...,dgg.000. For each query en-
coding ¢,, compute the pairwise distance to all dataset encodings d,,. Sort
the distances ascending, and plot the ten most similar images for each of the
query images. The result for each query image should look similar to the plot
in Figure 6.

Figure 6: The ten most similar images to the query image in the top row.
Use at least three different distance measures and compare the results.

What to submit? Describe your approach in the PDF report, including the
resulting visualizations. Submit the Python code.

6 Bonus: Improving Stability (12 Points)

So far, we are only training our model with the same image as in- and output.
However, an autoencoder can achieve more! By distorting our input data, we
can teach the model to “correct” the image for us. For example, we could add
noise to our input image and train the autoencoder to still restore the original
image. Thereby, the model learns to distinguish relevant features from irrele-
vant features that are not needed or have to be discarded for the reconstruction.
Besides reducing noise, we can also train the autoencoder to recognize input im-
ages that were transformed. For this exercise, you can use any image processing
library of your choice.

6.1 Pre-processing (6/4 P)

Implement two generator functions yielding distorted variations of an image.
The first function should generate images from the training dataset, containing
an arbitrary amount of additive gaussian noise. The second function should
return images from the training dataset where an arbitrary projective transfor-
mation has been applied. The images should maintain their size, i.e., 32 x 32
pixels. You can set background pixels that do not contain any image data after
the transformation to black (0,0,0).

What to submit? Submit the python code for the image transformation
functions. Add examples for the distorted images to your PDF report and
describe your approach and the results.

6.2 Re-training (4/4 P)

Continue the training of your already existing model while mixing in a certain
amount of distorted images. It is important that you do not start the training
process from scratch, since the network might not be able to pick up the more
complex features without pre-training. Log performance metrics and verify that
your model trains well. With increasing accuracy you can mix in more distorted
images or increase the complexity of the transformations that are applied to the
inputs.

What to submit? Add the plots of the performance metrics during training
process to the PDF report. Describe, how you mixed in the transformed images
and how this affected the loss/accuracy of the model during training. Submit
the final model as HDF5 file.

6.3 Querying Modified Data (2/4 P)

Evaluate the robustness of the old model against the retrained one. How do
both models respond to transformed images? Are the most similar results also
visually similar?

What to submit? Add the results to your PDF report, including a descrip-
tion of what you experienced during the evaluation of the improved model.
Compare the old model to the new one and describe how their performance
differs. Provide the Python code for the image querying.

10

	Introduction
	General Information
	Feature Encoding(16 Points)
	Dataset Preparation(1/16 P)
	Building the Autoencoder(11/16 P)
	Training the Auto-Encoder(4/16 P)

	Sanity Check(4 Points)
	Visualizing Reconstruction Results(1/4 P)
	Distribution Analysis(1/4 P)
	Projecting Results(2/4 P)

	Data Querying(4 Points)
	Bonus: Improving Stability(12 Points)
	Pre-processing(6/4 P)
	Re-training(4/4 P)
	Querying Modified Data(2/4 P)

