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Decision trees are widely used in the banking industry due to their high accuracy 
and ability to formulate a statistical model in plain language. Since government 
organizations in many countries carefully monitor lending practices, executives 
must be able to explain why one applicant was rejected for a loan while others were 
approved. This information is also useful for customers hoping to determine why 
their credit rating is unsatisfactory.

It is likely that automated credit scoring models are employed for instantly 
approving credit applications on the telephone and the web. In this section, we will 
develop a simple credit approval model using C5.0 decision trees. We will also see 
how the results of the model can be tuned to minimize errors that result in a financial 
loss for the institution.

Step 1 – collecting data
The idea behind our credit model is to identify factors that make an applicant at 
higher risk of default. Therefore, we need to obtain data on a large number of  
past bank loans and whether the loan went into default, as well as information  
about the applicant.

Data with these characteristics are available in a dataset donated to the UCI Machine 
Learning Data Repository (http://archive.ics.uci.edu/ml) by Hans Hofmann  
of the University of Hamburg. They represent loans obtained from a credit agency  
in Germany.

The data presented in this chapter has been modified 
slightly from the original one for eliminating some 
preprocessing steps. To follow along with the examples, 
download the credit.csv file from Packt Publishing's 
website and save it to your R working directory.

The credit dataset includes 1,000 examples of loans, plus a combination of numeric 
and nominal features indicating characteristics of the loan and the loan applicant. 
A class variable indicates whether the loan went into default. Let's see if we can 
determine any patterns that predict this outcome.
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Step 2 – exploring and preparing the data
As we have done previously, we will import the data using the read.csv() function. 
We will ignore the stringsAsFactors option (and therefore use the default value, 
TRUE) as the majority of features in the data are nominal. We'll also look at the 
structure of the credit data frame we created:

> credit <- read.csv("credit.csv")

> str(credit)

The first several lines of output from the str() function are as follows:

'data.frame':1000 obs. of  17 variables:

 $ checking_balance : Factor w/ 4 levels "< 0 DM","> 200 DM",..

 $ months_loan_duration: int  6 48 12 ...

 $ credit_history      : Factor w/ 5 levels "critical","good",..

 $ purpose             : Factor w/ 6 levels "business","car",..

 $ amount              : int  1169 5951 2096 ...

We see the expected 1,000 observations and 17 features, which are a combination of 
factor and integer data types.

Let's take a look at some of the table() output for a couple of features of loans that 
seem likely to predict a default. The checking_balance and savings_balance 
features indicate the applicant's checking and savings account balance, and are 
recorded as categorical variables:

> table(credit$checking_balance)

    < 0 DM   > 200 DM 1 - 200 DM    unknown 

       274         63        269        394

> table(credit$savings_balance)

     < 100 DM > 1000 DM  100 - 500 DM 500 - 1000 DM   unknown 

          603        48           103            63       183

Since the loan data was obtained from Germany, the currency is recorded in 
Deutsche Marks (DM). It seems like a safe assumption that larger checking and 
savings account balances should be related to a reduced chance of loan default.
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Some of the loan's features are numeric, such as its term (months_loan_duration), 
and the amount of credit requested (amount).

> summary(credit$months_loan_duration)

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

    4.0    12.0    18.0    20.9    24.0    72.0 

> summary(credit$amount)

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

    250    1366    2320    3271    3972   18420

The loan amounts ranged from 250 DM to 18,420 DM across terms of 4 to 72 months, 
with a median duration of 18 months and amount of 2,320 DM.

The default variable indicates whether the loan applicant was unable to meet the 
agreed payment terms and went into default. A total of 30 percent of the loans went 
into default:

> table(credit$default)

 no yes 

700 300

A high rate of default is undesirable for a bank because it means that the bank is 
unlikely to fully recover its investment. If we are successful, our model will identify 
applicants that are likely to default, so that this number can be reduced.

Data preparation – creating random training and 
test datasets
As we have done in previous chapters, we will split our data into two portions: 
a training dataset to build the decision tree and a test dataset to evaluate the 
performance of the model on new data. We will use 90 percent of the data for 
training and 10 percent for testing, which will provide us with 100 records to 
simulate new applicants.

As prior chapters used data that had been sorted in a random order, we simply 
divided the dataset into two portions by taking the first 90 percent of records for 
training, and the remaining 10 percent for testing. In contrast, our data here is not 
randomly ordered. Suppose that the bank had sorted the data by the loan amount, 
with the largest loans at the end of the file. If we use the first 90 percent for training 
and the remaining 10 percent for testing, we would be building a model on only 
the small loans and testing the model on the big loans. Obviously, this could be 
problematic.
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We'll solve this problem by randomly ordering our credit data frame prior to 
splitting. The order() function is used to rearrange a list of items in ascending or 
descending order. If we combine this with a function to generate a list of random 
numbers, we can generate a randomly-ordered list. For random number generation, 
we'll use the runif() function, which by default generates a sequence of random 
numbers between 0 and 1.

If you're trying to figure out where the runif() function 
gets its name, the answer is due to the fact that it chooses 
numbers from a uniform distribution, which we learned 
about in Chapter 2, Managing and Understanding Data.

The following command creates a randomly-ordered credit data frame. The  
set.seed() function is used to generate random numbers in a predefined sequence, 
starting from a position known as a seed (set here to the arbitrary value 12345). It 
may seem that this defeats the purpose of generating random numbers, but there 
is a good reason for doing it this way. The set.seed() function ensures that if the 
analysis is repeated, an identical result is obtained.

> set.seed(12345)

> credit_rand <- credit[order(runif(1000)), ]

The runif(1000) command generates a list of 1,000 random numbers. We need 
exactly 1,000 random numbers because there are 1,000 records in the credit data 
frame. The order() function then returns a vector of numbers indicating the sorted 
position of the 1,000 random numbers. We then use these positions to select rows in 
the credit data frame and store in a new data frame named credit_rand.

To better understand how this function works, note that 
order(c(0.5, 0.25, 0.75, 0.1)) returns the sequence 
4 1 2 3 because the smallest number (0.1) appears fourth, 
the second smallest (0.25) appears first, and so on.

To confirm that we have the same data frame sorted differently, we'll compare 
values on the amount feature across the two data frames. The following code shows 
the summary statistics:

> summary(credit$amount)

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

    250    1366    2320    3271    3972   18420 

> summary(credit_rand$amount)

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

    250    1366    2320    3271    3972   18420
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We can use the head() function to examine the first few values in each data frame:

> head(credit$amount)

[1] 1169 5951 2096 7882 4870 9055

> head(credit_rand$amount)

[1] 1199 2576 1103 4020 1501 1568

Since the summary statistics are identical while the first few values are different, this 
suggests that our random shuffle worked correctly.

If your results do not match exactly with the previous ones, 
ensure that you run the command set.seed(214805) 
immediately prior to creating the credit_rand data frame.

Now, we can split into training (90 percent or 900 records), and test data (10 percent 
or 100 records) as we have done in previous analyses:

> credit_train <- credit_rand[1:900, ]

> credit_test  <- credit_rand[901:1000, ]

If all went well, we should have about 30 percent of defaulted loans in each of  
the datasets.

> prop.table(table(credit_train$default))

       no       yes 

0.7022222 0.2977778 

> prop.table(table(credit_test$default))

  no  yes 

0.68 0.32

This appears to be a fairly equal split, so we can now build our decision tree.

Step 3 – training a model on the data
We will use the C5.0 algorithm in the C50 package for training our decision  
tree model. If you have not done so already, install the package with  
install.packages("C50") and load it to your R session using library(C50).
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The following syntax box lists some of the most commonly used commands for 
building decision trees. Compared to the machine learning approaches we have 
used previously, the C5.0 algorithm offers many more ways to tailor the model to a 
particular learning problem, but even more options are available. The ?C5.0Control 
command displays the help page for more details on how to finely-tune the algorithm.

For the first iteration of our credit approval model, we'll use the default C5.0 
configuration, as shown in the following code. The 17th column in credit_train is 
the class variable, default, so we need to exclude it from the training data frame as 
an independent variable, but supply it as the target factor vector for classification:

> credit_model <- C5.0(credit_train[-17], credit_train$default)
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The credit_model object now contains a C5.0 decision tree object. We can see some 
basic data about the tree by typing its name:

> credit_model

Call:

C5.0.default(x = credit_train[-17], y = credit_train$default)

Classification Tree

Number of samples: 900 

Number of predictors: 16 

Tree size: 67

The preceding text shows some simple facts about the tree, including the function 
call that generated it, the number of features (that is, predictors), and examples 
(that is, samples) used to grow the tree. Also listed is the tree size of 67, which 
indicates that the tree is 67 decisions deep—quite a bit larger than the trees we've 
looked at so far!

To see the decisions, we can call the summary() function on the model:

> summary(credit_model)

This results in the following output:
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The preceding output shows some of the first branches in the decision tree. The first 
four lines could be represented in plain language as:

1.	 If the checking account balance is unknown, then classify as not likely  
to default.

2.	 Otherwise, if the checking account balance is less than zero DM, between  
one and 200 DM, or greater than 200 DM and…

3.	 The credit history is very good or perfect, and…
4.	 There is more than one dependent, then classify as likely to default.

The numbers in parentheses indicate the number of examples meeting the criteria 
for that decision, and the number incorrectly classified by the decision. For instance, 
on the first line, (358/44) indicates that of the 358 examples reaching the decision, 
44 were incorrectly classified as no, that is, not likely to default. In other words, 44 
applicants actually defaulted in spite of the model's prediction to the contrary.

Some of the tree's decisions do not seem to make logical sense. 
Why would an applicant whose credit history is very good 
be likely to default, while those whose checking balance is 
unknown are not likely to default? Contradictory rules like this 
occur sometimes. They might reflect a real pattern in the data, 
or they may be a statistical anomaly.

After the tree output, the summary(credit_model) displays a confusion matrix, 
which is a cross-tabulation that indicates the model's incorrectly classified records in 
the training data:

Evaluation on training data (900 cases):

    Decision Tree   

  ----------------  

  Size      Errors  

    66  125(13.9%)   <<

   (a)   (b)    <-classified as

  ----  ----

   609    23    (a): class no

102   166    (b): class yes
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The Errors field notes that the model correctly classified all but 125 of the 900 
training instances for an error rate of 13.9 percent. A total of 23 actual no values were 
incorrectly classified as yes (false positives), while 102 yes values were misclassified 
as no (false negatives).

Decision trees are known for having a tendency to overfit the model to the training 
data. For this reason, the error rate reported on training data may be overly 
optimistic, and it is especially important to evaluate decision trees on a test dataset.

Step 4 – evaluating model performance
To apply our decision tree to the test dataset, we use the predict() function as 
shown in the following line of code:

> credit_pred <- predict(credit_model, credit_test)

This creates a vector of predicted class values, which we can compare to the actual 
class values using the CrossTable() function in the gmodels package. Setting the 
prop.c and prop.r parameters to FALSE removes the column and row percentages 
from the table. The remaining percentage (prop.t) indicates the proportion of 
records in the cell out of the total number of records.

> library(gmodels)

> CrossTable(credit_test$default, credit_pred,

             prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,

             dnn = c('actual default', 'predicted default'))

This results in the following table:
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Out of the 100 test loan application records, our model correctly predicted that 57 
did not default and 16 did default, resulting in an accuracy of 73 percent and an error 
rate of 27 percent. This is somewhat worse than its performance on the training data, 
but not unexpected, given that a model's performance is often worse on unseen data. 
Also note that the model only correctly predicted 50 percent of the 32 loan defaults 
in the test data. Unfortunately, this type of error is a potentially very costly mistake. 
Let's see if we can improve the result with a bit more effort.

Step 5 – improving model performance
Our model's error rate is likely to be too high to deploy it in a real-time credit scoring 
application. In fact, if the model had predicted "no default" for every test case, it 
would have been correct 68 percent of the time—a result not much worse than our 
model, but requiring much less effort! Predicting loan defaults from 900 examples 
seems to be a challenging problem.

Making matters even worse, our model performed especially poorly at identifying 
applicants who default. Luckily, there are a couple of simple ways to adjust the C5.0 
algorithm that may help to improve the performance of the model, both overall and 
for the more costly mistakes.

Boosting the accuracy of decision trees
One way the C5.0 algorithm improved upon the C4.5 algorithm was by adding 
adaptive boosting. This is a process in which many decision trees are built, and the 
trees vote on the best class for each example.

The idea of boosting is based largely upon research by 
Rob Schapire and Yoav Freund. For more information, 
try searching the web for their publications or their 
recent textbook: Boosting: Foundations and Algorithms 
Understanding Rule Learners (The MIT Press, 2012).

As boosting can be applied more generally to any machine learning algorithm, it is 
covered in more detail later in this book in Chapter 11, Improving Model Performance. 
For now, it suffices to say that boosting is rooted in the notion that by combining 
a number of weak performing learners, you can create a team that is much 
stronger than any one of the learners alone. Each of the models has a unique set of 
strengths and weaknesses, and may be better or worse at certain problems. Using a 
combination of several learners with complementary strengths and weaknesses can 
therefore dramatically improve the accuracy of a classifier.



Chapter 5

[ 139 ]

The C5.0() function makes it easy to add boosting to our C5.0 decision tree. We 
simply need to add an additional trials parameter indicating the number of 
separate decision trees to use in the boosted team. The trials parameter sets an 
upper limit; the algorithm will stop adding trees if it recognizes that additional trials 
do not seem to be improving the accuracy. We'll start with 10 trials—a number that 
has become the de facto standard, as research suggests that this reduces error rates 
on test data by about 25 percent.

> credit_boost10 <- C5.0(credit_train[-17], credit_train$default,

                         trials = 10)

While examining the resulting model, we can see that some additional lines have 
been added indicating the changes:

> credit_boost10

Number of boosting iterations: 10 

Average tree size: 56

Across the 10 iterations, our tree size shrunk. If you would like, you can see all 10 
trees by typing summary(credit_boost10) at the command prompt.

Let's take a look at the performance on our training data:

> summary(credit_boost10)

     (a)   (b)    <-classified as

    ----  ----

     626     6    (a): class no

      25   243    (b): class yes

The classifier made 31 mistakes on 900 training examples for an error rate of 3.4 
percent. This is quite an improvement over the 13.9 percent training error rate we 
noted before adding boosting! However, it remains to be seen whether we see a 
similar improvement on the test data. Let's take a look:

> credit_boost_pred10 <- predict(credit_boost10, credit_test)

> CrossTable(credit_test$default, credit_boost_pred10,

             prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,

             dnn = c('actual default', 'predicted default'))
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The resulting table is as follows:

Here, we reduced the total error rate from 27 percent prior to boosting down to 23 
percent in the boosted model. It does not seem like a large gain, but it is reasonably 
close to the 25 percent reduction we hoped for. On the other hand, the model is still 
not doing well at predicting defaults, getting 15 / 32 = 47% wrong. The lack of an 
even greater improvement may be a function of our relatively small training dataset, 
or it may just be a very difficult problem to solve.

That said, if boosting can be added this easily, why not apply it by default to every 
decision tree? The reason is twofold. First, if building a decision tree once takes 
a great deal of computation time, building many trees may be computationally 
impractical. Secondly, if the training data is very noisy, then boosting might not 
result in an improvement at all. Still, if greater accuracy is needed, it's worth giving  
it a try.

Making some mistakes more costly than others
Giving a loan out to an applicant who is likely to default can be an expensive 
mistake. One solution to reduce the number of false negatives may be to reject a 
larger number of borderline applicants. The few years' worth of interest that the bank 
would earn from a risky loan is far outweighed by the massive loss it would take if 
the money was never paid back at all.

The C5.0 algorithm allows us to assign a penalty to different types of errors in order 
to discourage a tree from making more costly mistakes. The penalties are designated 
in a cost matrix, which specifies how many times more costly each error is, relative to 
any other. Suppose we believe that a loan default costs the bank four times as much 
as a missed opportunity. Our cost matrix then could be defined as:

> error_cost <- matrix(c(0, 1, 4, 0), nrow = 2)
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This creates a matrix with two rows and two columns, arranged somewhat 
differently than the confusion matrixes we have been working with. The  
value 1 indicates no and the value 2 indicates yes. Rows are for predicted values  
and columns are for actual values:

> error_cost

     [,1] [,2]

[1,]    0    4

[2,]    1    0

As defined by this matrix, there is no cost assigned when the algorithm classifies a 
no or yes correctly, but a false negative has a cost of 4 versus a false positive's cost of 
1. To see how this impacts classification, let's apply it to our decision tree using the 
costs parameter of the C5.0() function. We'll otherwise use the same steps as before:

> credit_cost <- C5.0(credit_train[-17], credit_train$default,

                            costs = error_cost)

> credit_cost_pred <- predict(credit_cost, credit_test)

> CrossTable(credit_test$default, credit_cost_pred,

             prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,

             dnn = c('actual default', 'predicted default'))

This produces the following confusion matrix:

Compared to our best boosted model, this version makes more mistakes overall: 32 
percent here versus 23 percent in the boosted case. However, the types of mistakes 
vary dramatically. Where the previous models incorrectly classiifed nearly half of the 
defaults incorrectly, in this model, only 25 percent of the defaults were predicted to 
be non-defaults. This trade resulting in a reduction of false negatives at the expense 
of increasing false positives may be acceptable if our cost estimates were accurate.


