Chapter 5

Decision trees are widely used in the banking industry due to their high accuracy
and ability to formulate a statistical model in plain language. Since government
organizations in many countries carefully monitor lending practices, executives
must be able to explain why one applicant was rejected for a loan while others were
approved. This information is also useful for customers hoping to determine why
their credit rating is unsatisfactory.

It is likely that automated credit scoring models are employed for instantly
approving credit applications on the telephone and the web. In this section, we will
develop a simple credit approval model using C5.0 decision trees. We will also see
how the results of the model can be tuned to minimize errors that result in a financial
loss for the institution.

Step 1 — collecting data

The idea behind our credit model is to identify factors that make an applicant at
higher risk of default. Therefore, we need to obtain data on a large number of
past bank loans and whether the loan went into default, as well as information
about the applicant.

Data with these characteristics are available in a dataset donated to the UCI Machine
Learning Data Repository (http://archive.ics.uci.edu/ml) by Hans Hofmann

of the University of Hamburg. They represent loans obtained from a credit agency
in Germany.

The data presented in this chapter has been modified
M slightly from the original one for eliminating some
Q preprocessing steps. To follow along with the examples,
download the credit . csv file from Packt Publishing's
website and save it to your R working directory.

The credit dataset includes 1,000 examples of loans, plus a combination of numeric
and nominal features indicating characteristics of the loan and the loan applicant.
A class variable indicates whether the loan went into default. Let's see if we can
determine any patterns that predict this outcome.

[129]




Divide and Conquer - Classification Using Decision Trees and Rules

Step 2 — exploring and preparing the data

As we have done previously, we will import the data using the read.csv () function.
We will ignore the stringsAsFactors option (and therefore use the default value,
TRUE) as the majority of features in the data are nominal. We'll also look at the
structure of the credit data frame we created:

> credit <- read.csv("credit.csv")

> str(credit)

The first several lines of output from the str () function are as follows:

'data.frame':1000 obs. of 17 wvariables:

$ checking balance : Factor w/ 4 levels "< 0 DM","> 200 DM",..

$ months loan duration: int 6 48 12

$ credit_history : Factor w/ 5 levels "critical","good",..
$ purpose : Factor w/ 6 levels "business","car",..
$ amount : int 1169 5951 2096

We see the expected 1,000 observations and 17 features, which are a combination of
factor and integer data types.

Let's take a look at some of the table () output for a couple of features of loans that
seem likely to predict a default. The checking balance and savings_balance
features indicate the applicant's checking and savings account balance, and are
recorded as categorical variables:

> table(credit$checking balance)
< 0 DM > 200 DM 1 - 200 DM unknown
274 63 269 394
> table(credit$savings balance)
< 100 DM > 1000 DM 100 - 500 DM 500 - 1000 DM unknown
603 48 103 63 183

Since the loan data was obtained from Germany, the currency is recorded in
Deutsche Marks (DM). It seems like a safe assumption that larger checking and
savings account balances should be related to a reduced chance of loan default.

[130]



Chapter 5

Some of the loan's features are numeric, such as its term (months_loan duration),
and the amount of credit requested (amount).

> summary (credit$months loan duration)
Min. 1lst Qu. Median Mean 3rd Qu. Max.
4.0 12.0 18.0 20.9 24.0 72.0
> summary (credit$amount)
Min. lst Qu. Median Mean 3rd Qu. Max.
250 1366 2320 3271 3972 18420

The loan amounts ranged from 250 DM to 18,420 DM across terms of 4 to 72 months,
with a median duration of 18 months and amount of 2,320 DM.

The default variable indicates whether the loan applicant was unable to meet the
agreed payment terms and went into default. A total of 30 percent of the loans went
into default:

> table(credit$default)
no yes

700 300

A high rate of default is undesirable for a bank because it means that the bank is
unlikely to fully recover its investment. If we are successful, our model will identify
applicants that are likely to default, so that this number can be reduced.

Data preparation — creating random training and
test datasets

As we have done in previous chapters, we will split our data into two portions:
a training dataset to build the decision tree and a test dataset to evaluate the
performance of the model on new data. We will use 90 percent of the data for
training and 10 percent for testing, which will provide us with 100 records to
simulate new applicants.

As prior chapters used data that had been sorted in a random order, we simply
divided the dataset into two portions by taking the first 90 percent of records for
training, and the remaining 10 percent for testing. In contrast, our data here is not
randomly ordered. Suppose that the bank had sorted the data by the loan amount,
with the largest loans at the end of the file. If we use the first 90 percent for training
and the remaining 10 percent for testing, we would be building a model on only
the small loans and testing the model on the big loans. Obviously, this could be
problematic.

[131]




Divide and Conquer - Classification Using Decision Trees and Rules

We'll solve this problem by randomly ordering our credit data frame prior to
splitting. The order () function is used to rearrange a list of items in ascending or
descending order. If we combine this with a function to generate a list of random
numbers, we can generate a randomly-ordered list. For random number generation,
we'll use the runif () function, which by default generates a sequence of random
numbers between 0 and 1.

o If you're trying to figure out where the runif () function
~ gets its name, the answer is due to the fact that it chooses
Q numbers from a uniform distribution, which we learned
about in Chapter 2, Managing and Understanding Data.

The following command creates a randomly-ordered credit data frame. The
set.seed () function is used to generate random numbers in a predefined sequence,
starting from a position known as a seed (set here to the arbitrary value 12345). It
may seem that this defeats the purpose of generating random numbers, but there

is a good reason for doing it this way. The set.seed () function ensures that if the
analysis is repeated, an identical result is obtained.

> set.seed(12345)

> credit_rand <- creditlorder (runif(1000)), 1

The runif (1000) command generates a list of 1,000 random numbers. We need
exactly 1,000 random numbers because there are 1,000 records in the credit data
frame. The order () function then returns a vector of numbers indicating the sorted
position of the 1,000 random numbers. We then use these positions to select rows in
the credit data frame and store in a new data frame named credit_rand.

\ To better understand how this function works, note that
~ order(c(0.5, 0.25, 0.75, 0.1)) returns the sequence
Q 4 1 2 3 because the smallest number (0. 1) appears fourth,
the second smallest (0 . 25) appears first, and so on.

To confirm that we have the same data frame sorted differently, we'll compare
values on the amount feature across the two data frames. The following code shows
the summary statistics:

> summary (credit$amount)

Min. 1lst Qu. Median Mean 3rd Qu. Max.
250 1366 2320 3271 3972 18420

> summary (credit rand$amount)
Min. 1lst Qu. Median Mean 3rd Qu. Max.
250 1366 2320 3271 3972 18420

[132]




Chapter 5

We can use the head () function to examine the first few values in each data frame:

> head(credit$amount)
[1] 1169 5951 2096 7882 4870 9055
> head(credit rand$amount)

[1] 1199 2576 1103 4020 1501 1568

Since the summary statistics are identical while the first few values are different, this
suggests that our random shuffle worked correctly.

M If your results do not match exactly with the previous ones,
(:1 ensure that you run the command set . seed (214805)
immediately prior to creating the credit_rand data frame.

Now, we can split into training (90 percent or 900 records), and test data (10 percent
or 100 records) as we have done in previous analyses:
> credit_train <- credit_rand[1:900, ]

> credit_test <- credit rand[901:1000, ]

If all went well, we should have about 30 percent of defaulted loans in each of
the datasets.
> prop.table(table(credit train$default))
no yes
0.7022222 0.2977778
> prop.table(table(credit test$default))
no yes

0.68 0.32

This appears to be a fairly equal split, so we can now build our decision tree.

Step 3 — training a model on the data

We will use the C5.0 algorithm in the c50 package for training our decision
tree model. If you have not done so already, install the package with
install.packages ("C50") and load it to your R session using 1ibrary (C50).

[133]




Divide and Conquer - Classification Using Decision Trees and Rules

The following syntax box lists some of the most commonly used commands for
building decision trees. Compared to the machine learning approaches we have

used previously, the C5.0 algorithm offers many more ways to tailor the model to a
particular learning problem, but even more options are available. The »c5. 0Control
command displays the help page for more details on how to finely-tune the algorithm.

C5.0 decision tree syntax

using the €5.0() function in the C50 package

Building the classifier:
m <- C€5.0(train, class, trials = 1, costs = NULL)

trainis a data frame containing training data
class is a factor vector with the class for each row in the training data

+ trialsis an optional number to control the number of boosting iterations (by
default, 1)
& costs is an optional matrix specifying costs associated with types of errors

The function will return a C5.0 model object that can be used to make predictions.
Making predictions:
p <- predict(m, test, type = "class")

* misamodel trained by the €5.0() function

= test is a data frame containing test data with the same features as the training
data used to build the classifier.

» typeiseither "class" or "prob" and specifies whether the predictions
should be the most likely class value or the raw predicted probabilities

The function will return a vector of predicted class values or raw predicted probabilities
depending upon the value of the type parameter.

Example:
credit_model <- C5.0(credit_train, loan_default)
credit_prediction <- predict(credit_model, credit_test)

For the first iteration of our credit approval model, we'll use the default 5.0
configuration, as shown in the following code. The 17th column in credit_trainis
the class variable, default, so we need to exclude it from the training data frame as
an independent variable, but supply it as the target factor vector for classification:

> credit model <- C5.0(credit train[-17], credit train$default)

[134]




Chapter 5

The credit_model object now contains a 5. 0 decision tree object. We can see some
basic data about the tree by typing its name:

> credit model

Call:
C5.0.default(x = credit_train[-17], y = credit_train$default)

Classification Tree
Number of samples: 900
Number of predictors: 16

Tree size: 67

The preceding text shows some simple facts about the tree, including the function
call that generated it, the number of features (that is, predictors), and examples
(that is, samples) used to grow the tree. Also listed is the tree size of 67, which
indicates that the tree is 67 decisions deep —quite a bit larger than the trees we've
looked at so far!

To see the decisions, we can call the summary () function on the model:

> summary (credit model)

This results in the following output:

C5.0 [Release 2.07 GPL Edition]

Class specified by attribute “outcome’
Read 900 cases (17 attributes) from undefined.data
Decision tree:

checking_balance = unknown: no (358/44)
checking_balance in {< O DM,> 200 DM,1 - 200 DM}:
:...cregit_history in {perfect,very good}:
:...dependents = 1: yes (10,/1)
dependents <= 1:
i...s5avings_balance = < 100 DM: yes (39/11)
savings_balance in {> 1000 p™,500 - 1000 DM,unknown}: no (B/1)
savings_balance = 100 - 500 DM:
...checking_balance = < 0 DM: no (1)
checking_balance in {> 200 DM,1 - 200 DM}: yes (5/1)

[135]




Divide and Conquer - Classification Using Decision Trees and Rules

The preceding output shows some of the first branches in the decision tree. The first
four lines could be represented in plain language as:

1. If the checking account balance is unknown, then classify as not likely
to default.

2. Otherwise, if the checking account balance is less than zero DM, between
one and 200 DM, or greater than 200 DM and...

The credit history is very good or perfect, and...

There is more than one dependent, then classify as likely to default.

The numbers in parentheses indicate the number of examples meeting the criteria
for that decision, and the number incorrectly classified by the decision. For instance,
on the first line, (358/44) indicates that of the 358 examples reaching the decision,
44 were incorrectly classified as no, that is, not likely to default. In other words, 44
applicants actually defaulted in spite of the model's prediction to the contrary.

Some of the tree's decisions do not seem to make logical sense.
o Why would an applicant whose credit history is very good
~ be likely to default, while those whose checking balance is
Q unknown are not likely to default? Contradictory rules like this
occur sometimes. They might reflect a real pattern in the data,
or they may be a statistical anomaly.

After the tree output, the summary (credit_model) displays a confusion matrix,
which is a cross-tabulation that indicates the model's incorrectly classified records in
the training data:

Evaluation on training data (900 cases):

Decision Tree

Size Errors

66 125(13.9%) <<

(a) (b) <-classified as
609 23 (a) : class no
102 166 (b) : class yes

[136]




Chapter 5

The Errors field notes that the model correctly classified all but 125 of the 900
training instances for an error rate of 13.9 percent. A total of 23 actual no values were
incorrectly classified as yes (false positives), while 102 yes values were misclassified
as no (false negatives).

Decision trees are known for having a tendency to overfit the model to the training
data. For this reason, the error rate reported on training data may be overly
optimistic, and it is especially important to evaluate decision trees on a test dataset.

Step 4 — evaluating model performance

To apply our decision tree to the test dataset, we use the predict () function as
shown in the following line of code:

> credit pred <- predict(credit model, credit test)

This creates a vector of predicted class values, which we can compare to the actual
class values using the crossTable () function in the gmodels package. Setting the
prop.c and prop.r parameters to FALSE removes the column and row percentages
from the table. The remaining percentage (prop.t) indicates the proportion of
records in the cell out of the total number of records.

> library (gmodels)

> CrossTable(credit test$default, credit pred,
prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,
dnn = c('actual default', 'predicted default'))

This results in the following table:

predicted default
actual default no ves | Row Total
no 7 11 68
0.57 0.110
yes 16 16 32
0.160 0.160
Column Total 73 27 100

[137]



Divide and Conquer - Classification Using Decision Trees and Rules

Out of the 100 test loan application records, our model correctly predicted that 57
did not default and 16 did default, resulting in an accuracy of 73 percent and an error
rate of 27 percent. This is somewhat worse than its performance on the training data,
but not unexpected, given that a model's performance is often worse on unseen data.
Also note that the model only correctly predicted 50 percent of the 32 loan defaults
in the test data. Unfortunately, this type of error is a potentially very costly mistake.
Let's see if we can improve the result with a bit more effort.

Step 5 — improving model performance

Our model's error rate is likely to be too high to deploy it in a real-time credit scoring
application. In fact, if the model had predicted "no default" for every test case, it
would have been correct 68 percent of the time —a result not much worse than our
model, but requiring much less effort! Predicting loan defaults from 900 examples
seems to be a challenging problem.

Making matters even worse, our model performed especially poorly at identifying
applicants who default. Luckily, there are a couple of simple ways to adjust the C5.0
algorithm that may help to improve the performance of the model, both overall and
for the more costly mistakes.

Boosting the accuracy of decision trees

One way the C5.0 algorithm improved upon the C4.5 algorithm was by adding
adaptive boosting. This is a process in which many decision trees are built, and the
trees vote on the best class for each example.

The idea of boosting is based largely upon research by
Rob Schapire and Yoav Freund. For more information,

try searching the web for their publications or their

recent textbook: Boosting: Foundations and Algorithms
Understanding Rule Learners (The MIT Press, 2012).

As boosting can be applied more generally to any machine learning algorithm, it is
covered in more detail later in this book in Chapter 11, Improving Model Performance.
For now, it suffices to say that boosting is rooted in the notion that by combining

a number of weak performing learners, you can create a team that is much

stronger than any one of the learners alone. Each of the models has a unique set of
strengths and weaknesses, and may be better or worse at certain problems. Using a
combination of several learners with complementary strengths and weaknesses can
therefore dramatically improve the accuracy of a classifier.

[138]




Chapter 5

The c5.0 () function makes it easy to add boosting to our C5.0 decision tree. We
simply need to add an additional trials parameter indicating the number of
separate decision trees to use in the boosted team. The trials parameter sets an
upper limit; the algorithm will stop adding trees if it recognizes that additional trials
do not seem to be improving the accuracy. We'll start with 10 trials —a number that
has become the de facto standard, as research suggests that this reduces error rates
on test data by about 25 percent.

> credit boostl0 <- C5.0(credit train[-17], credit train$default,
trials = 10)

While examining the resulting model, we can see that some additional lines have
been added indicating the changes:

> credit boostl0
Number of boosting iterations: 10

Average tree size: 56

Across the 10 iterations, our tree size shrunk. If you would like, you can see all 10
trees by typing summary (credit_boost10) at the command prompt.

Let's take a look at the performance on our training data:

> summary (credit boost10)

(a) (b) <-classified as
626 6 (a) : class no
25 243 (b) : class yes

The classifier made 31 mistakes on 900 training examples for an error rate of 3.4
percent. This is quite an improvement over the 13.9 percent training error rate we
noted before adding boosting! However, it remains to be seen whether we see a
similar improvement on the test data. Let's take a look:

> credit boost predl0 <- predict(credit boostl0, credit test)

> CrossTable(credit test$default, credit boost predloO,
prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,
dnn = c('actual default', 'predicted default'))

[139]




Divide and Conquer - Classification Using Decision Trees and Rules

The resulting table is as follows:

predicted default
actual default no yes | Row Total
o 60 g 68
0.600 0.080
yes 15 7 32
0.150 0.17
column Total 75 25 100

Here, we reduced the total error rate from 27 percent prior to boosting down to 23
percent in the boosted model. It does not seem like a large gain, but it is reasonably
close to the 25 percent reduction we hoped for. On the other hand, the model is still
not doing well at predicting defaults, getting 15 /32 = 47% wrong. The lack of an
even greater improvement may be a function of our relatively small training dataset,
or it may just be a very difficult problem to solve.

That said, if boosting can be added this easily, why not apply it by default to every
decision tree? The reason is twofold. First, if building a decision tree once takes

a great deal of computation time, building many trees may be computationally
impractical. Secondly, if the training data is very noisy, then boosting might not
result in an improvement at all. Still, if greater accuracy is needed, it's worth giving
itatry.

Making some mistakes more costly than others

Giving a loan out to an applicant who is likely to default can be an expensive
mistake. One solution to reduce the number of false negatives may be to reject a
larger number of borderline applicants. The few years' worth of interest that the bank
would earn from a risky loan is far outweighed by the massive loss it would take if
the money was never paid back at all.

The C5.0 algorithm allows us to assign a penalty to different types of errors in order
to discourage a tree from making more costly mistakes. The penalties are designated
in a cost matrix, which specifies how many times more costly each error is, relative to
any other. Suppose we believe that a loan default costs the bank four times as much
as a missed opportunity. Our cost matrix then could be defined as:

> error cost <- matrix(c(0, 1, 4, 0), nrow = 2)

[140]




Chapter 5

This creates a matrix with two rows and two columns, arranged somewhat
differently than the confusion matrixes we have been working with. The
value 1 indicates no and the value 2 indicates yes. Rows are for predicted values
and columns are for actual values:
> error cost
[,11 [,2]
[1,] 0 4
[2,1] 1 0

As defined by this matrix, there is no cost assigned when the algorithm classifies a
no or yes correctly, but a false negative has a cost of 4 versus a false positive's cost of
1. To see how this impacts classification, let's apply it to our decision tree using the
costs parameter of the c5.0 () function. We'll otherwise use the same steps as before:
> credit cost <- C5.0(credit train[-17], credit train$default,
costs = error cost)

> credit cost pred <- predict(credit cost, credit test)
> CrossTable(credit test$default, credit cost pred,

prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,

dnn = c('actual default', 'predicted default'))

This produces the following confusion matrix:

predicted default
actual default no ves | Row Total
nao 42 26 68
0.420 0.260
yes 6 26 32
0. 060 0. 260
Column Total 48 52 100

Compared to our best boosted model, this version makes more mistakes overall: 32
percent here versus 23 percent in the boosted case. However, the types of mistakes
vary dramatically. Where the previous models incorrectly classiifed nearly half of the
defaults incorrectly, in this model, only 25 percent of the defaults were predicted to
be non-defaults. This trade resulting in a reduction of false negatives at the expense
of increasing false positives may be acceptable if our cost estimates were accurate.

[141]




