
• Design your own slides and do not copy (pictures, too)!

Group efforts in solving the sub tasks are encouraged and expected, but we will collect
the solutions of all groups at the end of the lab and test your personal knowledge about
your solution. The goal of this lab is to enhance your ability to break down bigger tasks
into smaller steps, organize your work and research for yourself. If you just copy the
solution of other groups, you will simply limit your own benefit.

2.2 What to expect from the tutors?

The tutors will help you understand the tasks, may give you help finding the right
information and evaluate your work to judge if you have passed or not.

Most importantly:

• Tutors will not write MATLAB or PYTHON code for you!

• Tutors will give you hints and tips to help you to find the solution yourself !

• Tutors will only help you if you follow the guidelines and API descriptions given
in this document!

2.3 Required Performance

To pass ICT lab 2, your code will be firstly checked by the tutor in a code pretest
after the code upload deadline, then your performance will be finally rated on the date
of the video review.

2.3.1 Code Pretest

According to the time line in Fig. 1, you must upload your ready-to-run code to the cor-
rect StudIP folder in time for a code pretest, where your code will be checked according
to the following expectations:

• Each block must be implemented according to the API definition and requirements.

• We expect you to write clean and well documented MATLAB or PYTHON code
that is easily readable by the tutor. Consider this lab to be part of a job that will
be carried on by another team after you finish.

• You should write your code strictly following the programming and simulation
guidelines in 3.2 and 3.3.

Only the students who pass the code pretest have the chance to attend the final video
conference for evaluation.

3



2.3.2 Video Review

Additionally to the code pretest to measure the API functionality, on the date of the
video review, the tutor will ask you 3 main questions about your implementation to test
your individual grasp of the solution.

3 Task Description

3.1 General Description

Baseband
Transmitter

Bandpass
Processing

Bandbass
Channel

Bandpass
Processing

Baseband
Receiver

Baseband Channel

Figure 2: Overview of a point-to-point communication setup. Shaded and gray marked
blocks will be provided.

The general idea of this lab is the implementation of a complete point-to-point OFDM
communication chain as illustrated in Fig. 2, including transmitter, channel and receiver.
To restrict the breadth of this task, only the baseband processing at transmitter and
receiver indicated by white blocks has to be implemented by each group. An equivalent
baseband channel model will be provided to test the overall communication chain. This
model summarizes all channel and hardware effects that are attributed to bandpass
processing, including but not limited to up/down conversion, amplification, antenna
patterns, and so on. However, some of the bandpass effects will be included into the lab
by equivalent baseband descriptions as “non-linear hardware” (see the following sections
for more details).

The baseline OFDM system has to be implemented of the lab according to the specifi-
cations in Section 3.4.

3.2 Programming Guidelines

You can choose either MATLAB or Python to program.

• Use a main program like provided in the file main, where the main parameters are
defined and in which all functions are called

• Create one function per API block, e.g. digital_source is one function

• Follow the API definitions exactly, i.e. all functions and parameters must be named
as specified!

4



• Avoid available implementations of communication functions, e.g. do not use a
function like modulate or quantize

3.3 Simulation of BER and PAPR

In addition to the transmitter and receiver implementation a simulation environment
has to be created that uses the transmitter and receiver implementations to numerically
analyze the performance of the whole multi-point-to-point communication chain. The
following requirements have to be fulfilled:

• Your main script should be able to support simulation for different SNRs and
generate BER vs SNR plots.
• Choose a set of meaningful SNRs, e.g., the range of SNRs for BERs between 0 and

10−4.
• Save the results in terms of uncoded/coded bit error rate (BER) for the chosen set

of SNRs in a vector and plot the results.
• Compare and plot PAPRs with different non-linear hardware conditions, including

“high distortion”, “low distortion” and “no distiontion”.
• Observe and explain changes with frequency offsets switched on

Note that the number of simulated packets, i.e. the total number of bits simulated,
defines the quality of the simulation results. For low BER values a high number of bits
must be simulated, e.g. at least 104 bits for BERs of 10−3.

3.4 Basic OFDM transmission

3.4.1 Transmitter Model

Digital
Source

Channel
Coding

Modulation
Pilot

Insertion

OFDMTx Filter
Non-linear
Hardware

Baseband
Channel

Figure 3: General structure of the Baseband Transmitter as introduced in Fig. 2 with
interface to Baseband Channel. Gray blocks will be provided, white ones are
to be implemented according to the specifications.

In this phase of this lab, the transmitter and receiver (see, Section 3.4.3) of a basic point-
to-point communication chain has to be implemented according the the specifications
below. Fig. 3 shows the building blocks of such a transmitter of which all white blocks
need to be implemented, whereas the gray blocks will be provided. Each block is defined

5



by its inputs and outputs and a short requirements list that describes the functionality
in Section 3.4.2. Your task is the fulfillment of these requirements for each block while
adhering to the specified inputs, outputs and function names. Please note, that some
blocks are marked as “switchable” by a parameter switch_off, which means that such
a block should not change the input data in any way if switched “off” by switch_off=1,
i.e., output=input.

Additionally to functional requirements, e.g., a specific Tx filtering, also optional graph-
ical output may be required. For example, the Tx filter input and output may be plotted
in a figure to show changes in the shape of the spectrum. Graphical output should al-
ways be optional, i.e., controlled by a switching variable switch_graph, to analyze your
implementation and the results as needed.

3.4.2 Transmitter API Definitions

b = generate_frame(frame_size, switch_graph)

Digital
Source

b

This block as digital source generate frames of random
binary data.
Parameters:
frame_size indicates the frame length
Requirements:

1. Choose the frame length frame_size according to
the OFDM parameters.

2. Generate a mean free binary sequence of equally
probable zeros and ones.

3. Show a figure of the binary pattern of one frame.

6



c = encode_hamming(b, parity_check_matrix, n_zero_padded_bits, switch_off)

Channel
Coding

b c

This block facilitates Channel Coding by a [7,4] Hamming
code.
Parameters:
parity_check_matrix code parity check matrix
n_zero_padded_bits number of zeros should be

added after encoding
Requirements:

1. Correct channel encoding with generator matrix
calculated by parity_check_matrix.

2. Restructure the binary signal b into blocks of chan-
nel coding block length and encode blocks via the
[7,4] Hamming block code.

Note: the required number of bits may not be exactly
achievable due to the coding. Add n_zero_padded_bits

zeros after encoding to alleviate this effect.

d = map2symbols(c, constellation_order, switch_graph)

Modulation
c d

This block facilitates Bit to Symbol mapping (sometimes
also called Modulation) of the encoded bit sequence to
either 4-, 16-, or 64-QAM.
Parameters:
constella-

tion_order

adjust modulation;
constellation_order=2 4-QAM,
constellation_order=4 16-QAM,
constellation_order=6 64-QAM.

Requirements:
1. Correct modulation with Grey mapping.
2. Show a figure of the modulated symbols of one

block. Annotate each symbol with the correspond-
ing bit sequence.

3. Normalize the average symbol power to 1.

7



D = insert_pilots(d, fft_size, N_blocks, pilot_symbols)

Pilot
Insertion

d D

This block facilitates the framing of data into N_blocks

blocks of fft_size symbols and prepends pilot data for
one OFDM pilot symbol.
Parameters:
fft_size FFT length /OFDM symbol length
N_blocks number of blocks
pilot_symbols generated pilot symbols
Requirements:

1. Restructure the serial data stream d into blocks of
FFT length symbols as a matrix D.

2. Insert one block of known pilots for channel estima-
tion.

Use a standard FFT length fft_size=1024.

z = modulate_ofdm(D, fft_size, cp_size, switch_graph)

OFDM
D z

This block facilitates OFDM modulation and CP in-
sertion. The parameters should be chosen to achieve
Inter-Symbol Interference (ISI) free transmission given
the channel statistics.
Parameters:
cp_size CP length
Requirements:

1. Choose correct parameters to alleviate the effects of
the effective channel impulse response in the over-
sampled domain.

2. Correct OFDM molulation and CP insertion.
3. Serialize the N_blocks+1 OFDM symbols to a sin-

gle time sequence z.
4. Show a figure of one OFDM symbol in time and

frequency domain.

8



s = filter_tx(z, oversampling_factor, switch_graph, switch_off)

Tx Filter
z s

This block facilitates filtering of the OFDM symbols with
a digital low-pass filter to suppress out of band radiation
from OFDM modulation. This is relevant to decrease
interference on neighboring channels (e.g. in WLAN).
Parameters:
oversampling_factor oversampling factor
Requirements:

1. Filter sequence z with an appropriate filter to
reduce the out of band radiation 40dB below
the signal level using an oversampling factor
oversampling_factor=20.

2. Normalize the filter output signal appropriately to
ensure that the power of the signal is 1.

3. Show a figure of the designed low-pass filter with
bandwidth and side lobe suppression.

4. Show a figure of the filter output.
Note: Filter design tools can be used to design
an appropriate filter (see, e.g., DSP exercises, SciPy
scipy.signal.firwin).

x = impair_tx_hardware(s, clipping_threshold, switch_graph)

Non-Linear
Hardware

s x

This block models the influence of an amplifier on the
baseband signal by hard thresholding.
Parameters:
clipping_threshold tx clipping threshold
Requirements:

1. Implement a simple hard thresholding func-
tion that limits the absolute value of the
baseband signal s such that it is linearly
scaled up to values of clipping_threshold and
clipped to clipping_threshold if greater than
clipping_threshold.

2. Ensure that the phase of s is not changed by this
block.

3. Analyze distortions by this block with different
threshold levels (e.g., weak clipping, no clipping,
etc.).

4. Show a figure of (non-)clipped signal / Show that
(no) clipping is in effect.

9



y = simulate_channel(x, snr_db, channel_type)

Baseband
Channel

x y
This block models a frequency selective baseband channel
that distorts the wideband OFDM signal and adds white
Gaussian noise to the signal.
Parameters:
snr_db will be used to check the performance of the

transceiver chain at different SNRs (in dB).
channel¬
_type

type of channel. ’AWGN’: Additive White
Gaussian Noise, ’FSBF’: Frequency Selective
Block Fading.

3.4.3 Receiver Model

Baseband
Channel

Non-linear
Hardware

Rx Filter
OFDM De-
modulation

EqualizationDemodulation
Channel
Decoding

Digital Sink

Figure 4: General structure of the Baseband Receiver with interface to Baseband Chan-
nel. Gray blocks will be provided, white ones are to be implemented according
to the specifications.

The first phase of this lab also comprises the implementation of the OFDM receiver
for a frequency selective block-fading channel and the overall simulation. Fig. 4 shows
the building blocks of such a receiver and Section 3.4.4 details the individual blocks in
terms of inputs, outputs and requirements. To simplify the task some parameters can
be assumed as known at the receiver side, i.e., the scaling of the transmit signal is also
known. This also applies to modulation, channel code and frame length.

3.4.4 Receiver API Definitions

10



s_tilde = impair_rx_hardware(y, clipping_threshold, switch_graph)

Non-Linear
Hardware

y s̃

This block models the influence of an amplifier on the
baseband signal by hard thresholding.
Parameters:
clipping_threshold rx clipping threshold
Requirements:

1. Implement a simple hard thresholding function
block and choose a threshold that is high enough
to not cause distortion.

2. Show a figure of received signal and signal after
hardware indicating that no clipping is in effect

z_tilde = filter_rx(s_tilde, downsampling_factor, switch_graph, switch_off)

Rx Filter
s̃ z̃

This block facilitates filtering of the received signal with
a digital low-pass filter.
Parameters:
downsampling_factor downsampling factor
Requirements:

1. Filter the received signal with a matched low-
pass filter using an downsampling factor of
downsampling_factor=20, i.e., identical to the
transmitter side.

2. Normalize the filter output signal appropriately to
ensure that the power of the signal is not changed.

3. Show a figure of the filter output

D_tilde = demodulate_ofdm(z_tilde, fft_size, cp_size, switch_graph)

OFDM De-
modulation

z̃ D̃

This block facilitates OFDM demodulation, i.e. FFT and
cyclic prefix removal.
Requirements:

1. Use the same parameters as for OFDM modulation
2. Correct OFDM demodulation and CP removal
3. Show a figure in the symbol space

11



d_bar = equalize_ofdm(D_tilde, pilot_symbols, switch_graph)

Equalizer
D̃ d̄

This block facilitates channel estimation using the in-
serted pilots and equalizes the received symbols accord-
ingly.
Requirements:

1. Extract pilots and estimate channel using inserted
pilots

2. Equalize data for all OFDM channels
3. Show a figure of equalized symbols

c_hat = detect_symbols(d_bar, constellation_order, switch_graph)

Demodulation
d̄ ĉ

This block facilitates hard estimation of the code bits for
4-, 16- or 64-QAM.
Requirements:

1. Decide the received signal to 4-, 16- or 64-QAM
symbols with Gray mapping to estimate the code
bits.

2. Ensure proper processing in terms of the channel
encoded blocks afterwards.

3. Show a figure of the estimated symbols with deci-
sion thresholds

b_hat = decode_hamming(c_hat, parity_check_matrix, n_zero_padded_bits,

switch_off, switch_graph)

Channel
Decoding

ĉ b̂

This block facilitates Channel Decoding of a [7,4] Ham-
ming code.
Requirements:

1. Correct errors in the estimated code words of the
[7,4] Hamming block code by syndrome decoding.

2. Show a figure of exemplary code word indicating
corrected errors

Note: Do not forget to remove the additional zeros po-
tentially inserted at the encoder.

12



BER = digital_sink(b, b_hat,...)

Digital Sink
b̂

Processing of the reconstructed and original signal to an-
alyze the errors due to transmission. Here, the digital
sink represents the analysis of the received and recon-
structed signals. Knowledge of all other signals in the
system is implicitly assumed.
Requirements:

1. Calculate the error in terms of the coded and un-
coded bit error rate (BER).

2. Show a figure of binary estimate and the original
signal indicating erroneous positions.

3. Show a figure of BER curve w.r.t. different SNRs

13


