1) Introduction:

This practical work consists of developing a set of definitions of functions which make it
possible to generate mazes and draw them using the turtle.

In this work, you have to imagine that you are the programmer of a library that allows
you to generate labyrinths. You must write functions that will be used by other
programmers to make specific drawings. (create a labyrinth of a certain size).

The algorithm for generating mazes is imposed on you and is described in the next
section. Your task is to code this algorithm, and the necessary helper functions, in
Python using Turtle.

2) Labyrinths

The mazes you need to generate are based on a rectangular grid like this:

©

This grid is made up of square cells. In this example there are 8 columns and 4 rows of
cells. For a given cell there are 4 walls that we will call the North, East, South, and West
walls (to simplify \ N ", \ E", \ S ", \ O") of the cell. A labyrinth has a certain width in
number of cells (NX), a certain height in number of cells (NY), and a certain “step”(the
width and height of each square cell, in number of pixels). The labyrinth is therefore
created by eliminating certain walls from the grid. The outer wall of the grid is drilled at
the top left (the entrance to the labyrinth) and lower right (the exit from the labyrinth).



The creation of a labyrinth consists of determining which walls in each cell need to be
removed. For each cell it is necessary to eliminate at least one of its 4 walls, and
possibly all 4. Here is a labyrinth using the previous grid (i.e. with NX = 8, NY =4, step =
40):

The choice of the walls to eliminate cannot be done completely randomly because this
could generate a drawing. which is not a labyrinth, that is to say a drawing which does
not follow a path from the entrance to the exit. The algorithm you should use uses
random numbers to create the maze but ensures that there always is exactly one path
between entering and exiting the maze. In fact, the algorithm guarantees that there is
always exactly one path between any cell and any other cell (what is formally called

an underlying tree). Before explaining the algorithm we must first number each
horizontal wall and each vertical wall and give a coordinate (x, y) to each cell as follows:



0 1 2 3 4 5 & 7
0 (0,0} 1 (1,0 2 (2,0 3 (3,0) 4 (4,0) 5 (5,0) 6 (6,0) 7 (7,00
8 9 10 11 12 13 14 15
9 (0,1) 10 ¢1,1) 11 (2,1) 12 (3,1) 13 (4,1) 14 (5,1) 15 (6,1) 16 (7,1)
16 17 18 19 20 21 22 23
18 (0,2) 19 (1,2) 20 (2,2) 21 (3,2) 22 (4,2) 23 (5,2) 24 (6,2) 25 (7,2)
24 25 26 27 28 29 30 31
27 (0,3) 28 (1,3) 29 (2,3 30 (3,3) 31 (4,3) 32 (5,3) 33 (6,3) 34 (7,3
32 33 34 35 36 37 33 39

17

26

35

It should be noted that the coordinate system (x, y) of the cells places (0,0) at the top
left (x grows towards the right, and grows down there). Also notice that there are NX
(NY + 1) horizontal walls and (NX + 1) NY vertical walls. So the horizontal walls are
numbered from 0 to (NX (NY + 1)) 1 and the vertical walls from 0 to (NX + 1) NY) 1.
The relation between the (X, y) coordinate of a cell and the numbers of its walls N, E, S,
O is the next one :

N =x+yxNX

E=1+x+y x(NX+1)

S=x+(y+1) xNX

O=x+y x(NX+1)

Note that the wall number N can be used to uniquely identify a cell with
only one number. For example in the grid above the cell in position (5,2) has the number
21, thatis to say 5 + 2 NX.



The algorithm uses sets of numbers (in the mathematical sense of a set, i.e. a collection
of numbers without duplication). We can define wallsH as the set of horizontal walls
(and respectively wallsv as the set of vertical walls) which have not been removed by
the maze creation algorithm. The information contained in these sets can be combined
with the values of NX and NY to draw a labyrinth by tracing a horizontal line for each
horizontal wall whose number is always in wallsH and a vertical line for each vertical
wall whose number is always in wallsv.

The algorithm considers that the grid is an initially full space except for a randomly
chosen cell, which is empty (this is the initial cavity). At each iteration of the algorithm a
new cell will be chosen randomly among all the cells neighboring the cavity (but not
forming part of the cavity) and one of the walls (i.e. horizontal or vertical) which
separates it from the cavity will be removed randomly to form a larger cavity (i.e. from
the whole wallsH if it is a horizontal wall or of the wallsv assembly if it is a vertical wall).
This process is repeated until all the cells of the grid are part of the cavity.

The choice of the next cell to add to the cavity can be done simply by keeping at all
times two other sets of numbers: cellar and front. These are sets that contain cell
numbers. The cellar set is the set of cells that have been put into the cavity by the
algorithm. The forehead set is the set of cells that are neighboring cells in the cavity (but
not in the cavity). We can maintain and update these sets as new cells that are selected
to add to the cavity. Indeed if we have add to the cavity the cells with coordinates (x, y)
contained in the front set, we must add the neighboring cells with coordinates (x, y)
horizontally and vertically (but not in the cellar assembly) a the front assembly and
remove the cell (x, y) of the front set and add the cell (x, y) to the cellar set. Note that
we must remove or add from these sets the number of cells.

The coding of this algorithm will be greatly simplified by the writing of set manipulation
functions. These functions are described in the next section. Use them judiciously to
code the algorithm labyrinth creation. We will use lists of numbers to represent sets. For
example the table [9,2,5] represents the set which contains the three elements 2, 5 and
9.



3) Specifications:

Function lota (n):
This function takes a non-negative integer n as parameter and returns an array of length
n containing in order the integer values from 0 to n 1 inclusive. For example :

iota(5) = [0,1,2,3,4]
Function contain(tab,x):

This function takes as parameters an array of numbers (tab) and a number x and
returns a boolean indicating if x is contained in the array by traversing this array with a
loop (not the right to use the keyword in).

For example :

contain([9,2,5], 2) = True
contain([9,2,5], 7) = False

Function add(tab,x):
This function takes an array of numbers (tab) and a number x as parameters and

returns a new array with the same content as tab except that x is appended to the end if
it is not already contained in tab. For example :

add([9,2,5], 2) = [9,2,5]
add([9,2,5], 7) = [9,2,5,7]

Function remove(tab,x):
This function takes an array of numbers (tab) and a number x as parameters and
returns a new array with the same contents as tab except that x is removed from the

array. For example :

remove([9,2,5], 2) = [9,5]
remove([9,2,5], 7) = [9,2,5]

Function neighbors(x,y,nx,ny):



This function takes the coordinate (x, y) of a cell and the size of a grid (width = nx and
height = ny) and returns an array containing the number of neighboring cells. For
example :

neighbors(7, 2, 8, 4) =[15,22,31]

Function laby(nx,ny, step):

This procedure creates a random maze (width = nx and height = ny) and draws this
maze in the center of the drawing window using a grid with cells of pixel pitch width and
height. For example, here are two laby calls and the drawings obtained in each case:

laby(16, 9, 20); laby (34, 18, 10);

P E A

C

2
407

I
|

i584 fagamadnadd e EE AR M
A I 0 S B e o

B

20% bonus points for the implementation of the labySol procedure (nx, ny, pas) which
draws a labyrinth exactly like the laby procedure but which in addition draws in the
labyrinth, in red, the path

traversed by Pledge's algorithm to exit the labyrinth from the top left entrance.



