

CS261 Data Structures

Assignment 2
v 1.10 (revised 7/1/2021)

Your Very Own Dynamic Array
(plus Bag, Queue, Stack, and MaxStack)

self.size = 4
self.capacity = 4
self.data = [‘D’, ‘A’, ‘T’, ‘A’]

da = DynamicArray(list(“DATA”))

S T R U T C U R S E

da = DynamicArray(list(“STRUCTURES”))

self.size = 10
self.capacity = 16
self.data = [‘S’, ‘T’, ‘R’, ‘U’, ‘C’, ‘T’, ‘U’, ‘R’, ‘E’, ‘S’, None, None, None,
None, None, None]

D A T A

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 2 of 29

Contents

General Instructions .. 3

Part 1 - Dynamic Array Implementation

Summary and Specific Instructions 4
resize() .. 5
append()... 6
insert_at_index() ... 7
remove_at_index() .. 9
slice() .. 12
merge() ... 13
map() .. 14
filter() .. 15
reduce() ... 16

Part 2 - Bag ADT Implementation
Summary and Specific Instructions 17
add(), remove() ... 18
count(), clear() .. 19
equal() ... 20

Part 3 - Queue ADT Implementation
Summary and Specific Instructions 21
enqueue(), dequeue() ... 22

Part 4 - Stack ADT Implementation
Summary and Specific Instructions 23
push(), pop() ... 24
top() .. 25

Part 5 - Max Stack ADT Implementation
Summary and Specific Instructions 26
push(), pop() ... 27
top() .. 28
get_max() ... 29

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 3 of 29

General Instructions

1. Programs in this assignment must be written in Python v3 and submitted to
Gradescope before the due date specified in the syllabus. You may resubmit your
code as many times as necessary. Gradescope allows you to choose which
submission will be graded.

2. Your code will be run through several tests in Gradescope. Any failed tests will
provide a brief explanation of testing conditions to help you with troubleshooting.
Your goal is to pass all tests.

3. We encourage you to create your own test programs and cases even though this
work won’t have to be submitted and won’t be graded. Gradescope tests are limited
in scope and may not cover all edge cases. Your submission must work on all valid
inputs. We reserve the right to test your submission with more tests beyond
Gradescope.

4. Your code must have an appropriate level of comments. At a minimum, each method
should have a descriptive docstring. Additionally, put comments throughout the code
to make it easy to follow and understand.

5. You will be provided with a starter “skeleton” code, on which you will build your
implementation. Methods defined in the skeleton code must retain their names and
input / output parameters. Variables defined in the skeleton code must also retain
their names. We will only test your solution by making calls to methods defined in
the skeleton code and by checking values of variables defined in the skeleton code.
You can add more methods and variables as needed.

However, certain classes and methods cannot be changed in any way. Please see the
comments in the skeleton code for guidance. In particular, the content of any
methods pre-written for you as part of the skeleton code must not be changed.

6. Both the skeleton code and the code examples provided in this document are part of
the assignment requirements. They have been carefully selected to demonstrate
requirements for each method. Refer to them for a detailed description of expected
method behavior, input / output parameters, and the handling of edge cases. Code
examples may include assignment requirements not explicitly stated elsewhere.

7. For each method, you need to implement an iterative solution. There is no need for
recursion on this assignment and any use will result in a loss of points for that
section. We will specify the maximum input size that your solution must handle.

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 4 of 29

Part 1 - Summary and Specific Instructions

1. Implement a Dynamic Array class by completing the skeleton code provided in the
file dynamic_array.py. The DynamicArray class will use a StaticArray object as its
underlying data storage container and will provide many methods similar to those we
are used to when working with Python lists. Once completed, your implementation
will include the following methods:

resize()
append()
insert_at_index()
remove_at_index()
slice()
merge()
map()
filter()
reduce()

* Several class methods, like is_empty(), length(), get_at_index(), and
set_at_index() have been pre-written for you.

2. We will test your implementation with different types of objects, not just integers.
We guarantee that all such objects will have correct implementations of methods
__eq__, __lt__, __gt__, __ge__, __le__, and __str__.

3. The number of objects stored in the array at any given time will be between 0 and
1,000,000 inclusive. An array must allow for the storage of duplicate objects.

4. Variables in the DynamicArray class are not marked as private. For this portion of
the assignment, you are allowed to access and change their values directly. Note
that getter and setter methods have already been provided for you.

5. RESTRICTIONS: You are not allowed to use ANY built-in Python data structures
and/or their methods (lists, dictionaries, etc.). You must solve this portion of the
assignment by importing and using objects of the StaticArray class (prewritten for
you) and using class methods to write your solution.

You are also not allowed to directly access any variables of the StaticArray class (like
self.data._data[]). All work must be done by using only StaticArray class methods.

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 5 of 29

resize(self, new_capacity: int) -> None:
This method changes the capacity of the underlying storage for the array elements. It does
not change the values or the order of any elements currently stored in the dynamic array.

It is intended to be an “internal” method of the Dynamic Array class, called by other class
methods, such as append(), remove_at_index(), or insert_at_index(), to manage the
capacity of the underlying storage data structure.

The method should only accept positive integers for new_capacity. Additionally,
new_capacity cannot be smaller than the number of elements currently stored in the
dynamic array (which is tracked by the self.size variable). If new_capacity is not a
positive integer or if new_capacity < self.size, this method should not do any work and
should just exit.

Example #1:
da = DynamicArray()
print(da.size, da.capacity, da.data)
da.resize(8)
print(da.size, da.capacity, da.data)
da.resize(2)
print(da.size, da.capacity, da.data)
da.resize(0)
print(da.size, da.capacity, da.data)

Output:
0 4 STAT_ARR Size: 4 [None, None, None, None]
0 8 STAT_ARR Size: 8 [None, None, None, None, None, None, None, None]
0 2 STAT_ARR Size: 2 [None, None]
0 2 STAT_ARR Size: 2 [None, None]

NOTE: Example 2 below will not work properly until after the append() method is
implemented.

Example #2:
da = DynamicArray([1, 2, 3, 4, 5, 6, 7, 8])
print(da)
da.resize(20)
print(da)
da.resize(4)
print(da)

Output:
DYN_ARR Size/Cap: 8/8 [1, 2, 3, 4, 5, 6, 7, 8]
DYN_ARR Size/Cap: 8/20 [1, 2, 3, 4, 5, 6, 7, 8]
DYN_ARR Size/Cap: 8/20 [1, 2, 3, 4, 5, 6, 7, 8]

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 6 of 29

append(self, value: object) -> None:

This method adds a new value at the end of the dynamic array.

If the internal storage associated with the dynamic array is already full, you need to
DOUBLE its capacity before adding a new value.

Example #1:
da = DynamicArray()
print(da.size, da.capacity, da.data)
da.append(1)
print(da.size, da.capacity, da.data)
print(da)

Output:
0 4 STAT_ARR Size: 4 [None, None, None, None]
1 4 STAT_ARR Size: 4 [1, None, None, None]
DYN_ARR Size/Cap: 1/4 [1]

Example #2:
da = DynamicArray()
for i in range(9):
 da.append(i + 101)
 print(da)

Output:
DYN_ARR Size/Cap: 1/4 [101]
DYN_ARR Size/Cap: 2/4 [101, 102]
DYN_ARR Size/Cap: 3/4 [101, 102, 103]
DYN_ARR Size/Cap: 4/4 [101, 102, 103, 104]
DYN_ARR Size/Cap: 5/8 [101, 102, 103, 104, 105]
DYN_ARR Size/Cap: 6/8 [101, 102, 103, 104, 105, 106]
DYN_ARR Size/Cap: 7/8 [101, 102, 103, 104, 105, 106, 107]
DYN_ARR Size/Cap: 8/8 [101, 102, 103, 104, 105, 106, 107, 108]
DYN_ARR Size/Cap: 9/16 [101, 102, 103, 104, 105, 106, 107, 108, 109]

Example #3:
da = DynamicArray()
for i in range(600):
 da.append(i)
print(da.size)
print(da.capacity)

Output:
600
1024

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 7 of 29

insert_at_index(self, index: int, value: object) -> None:

This method adds a new value at the specified index position in the dynamic array. Index 0
refers to the beginning of the array. If the provided index is invalid, the method raises a
custom “DynamicArrayException”. Code for the exception is provided in the skeleton file. If
the array contains N elements, valid indices for this method are [0, N] inclusive.

If the internal storage associated with the dynamic array is already full, you need to
DOUBLE its capacity before adding a new value.

Example #1:
da = DynamicArray([100])
print(da)
da.insert_at_index(0, 200)
da.insert_at_index(0, 300)
da.insert_at_index(0, 400)
print(da)
da.insert_at_index(3, 500)
print(da)
da.insert_at_index(1, 600)
print(da)

Output:
DYN_ARR Size/Cap: 1/4 [100]
DYN_ARR Size/Cap: 4/4 [400, 300, 200, 100]
DYN_ARR Size/Cap: 5/8 [400, 300, 200, 500, 100]
DYN_ARR Size/Cap: 6/8 [400, 600, 300, 200, 500, 100]

Example #2:
da = DynamicArray()
try:
 da.insert_at_index(-1, 100)
except Exception as e:
 print("Exception raised:", type(e))
da.insert_at_index(0, 200)
try:
 da.insert_at_index(2, 300)
except Exception as e:
 print("Exception raised:", type(e))
print(da)

Output:
Exception raised: <class '__main__.DynamicArrayException'>
Exception raised: <class '__main__.DynamicArrayException'>
DYN_ARR Size/Cap: 1/4 [200]

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 8 of 29

Example #3:
da = DynamicArray()
for i in range(1, 10):
 index, value = i - 4, i * 10
 try:
 da.insert_at_index(index, value)
 except Exception as e:
 print("Cannot insert value", value, "at index", index)
print(da)

Output:
Cannot insert value 10 at index -3
Cannot insert value 20 at index -2
Cannot insert value 30 at index -1
DYN_ARR Size/Cap: 6/8 [40, 50, 60, 70, 80, 90]

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 9 of 29

remove_at_index(self, index: int) -> None:

This method removes the element at the specified index position from the dynamic array.
Index 0 refers to the beginning of the array. If the provided index is invalid, the method
raises a custom “DynamicArrayException”. Code for the exception is provided in the
skeleton file. If the array contains N elements, valid indices for this method are [0, N - 1]
inclusive.

When the number of elements stored in the array (before removal) is STRICTLY LESS than
¼ of its current capacity, the capacity must be reduced to TWICE the number of current
elements. This check / capacity adjustment must happen BEFORE removal of the element.

If the current capacity (before reduction) is 10 elements or less, reduction should not
happen at all. If the current capacity (before reduction) is greater than 10 elements, the
reduced capacity cannot become less than 10 elements. Please see the examples below,
especially example #3, for clarifications.

Example #1:
da = DynamicArray([10, 20, 30, 40, 50, 60, 70, 80])
print(da)
da.remove_at_index(0)
print(da)
da.remove_at_index(6)
print(da)
da.remove_at_index(2)
print(da)

Output:
DYN_ARR Size/Cap: 8/8 [10, 20, 30, 40, 50, 60, 70, 80]
DYN_ARR Size/Cap: 7/8 [20, 30, 40, 50, 60, 70, 80]
DYN_ARR Size/Cap: 6/8 [20, 30, 40, 50, 60, 70]
DYN_ARR Size/Cap: 5/8 [20, 30, 50, 60, 70]

Example #2:
da = DynamicArray([1024])
print(da)
for i in range(17):
 da.insert_at_index(i, i)
print(da.size, da.capacity)
for i in range(16, -1, -1):
 da.remove_at_index(0)
print(da)

Output:
DYN_ARR Size/Cap: 1/4 [1024]
18 32
DYN_ARR Size/Cap: 1/10 [1024]

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 10 of 29

Example #3:
da = DynamicArray()
print(da.size, da.capacity)
[da.append(1) for i in range(100)] # step 1 - add 100 elements
print(da.size, da.capacity)
[da.remove_at_index(0) for i in range(68)] # step 2 - remove 68 elements
print(da.size, da.capacity)
da.remove_at_index(0) # step 3 - remove 1 element
print(da.size, da.capacity)
da.remove_at_index(0) # step 4 - remove 1 element
print(da.size, da.capacity)
[da.remove_at_index(0) for i in range(14)] # step 5 - remove 14 elements
print(da.size, da.capacity)
da.remove_at_index(0) # step 6 - remove 1 element
print(da.size, da.capacity)
da.remove_at_index(0) # step 7 - remove 1 element
print(da.size, da.capacity)

for i in range(14):
 print("Before remove_at_index(): ", da.size, da.capacity, end="")
 da.remove_at_index(0)
 print(" After remove_at_index(): ", da.size, da.capacity)

Output:
0 4
100 128
32 128
31 128
30 62
16 62
15 62
14 30
Before remove_at_index(): 14 30 After remove_at_index(): 13 30
Before remove_at_index(): 13 30 After remove_at_index(): 12 30
Before remove_at_index(): 12 30 After remove_at_index(): 11 30
Before remove_at_index(): 11 30 After remove_at_index(): 10 30
Before remove_at_index(): 10 30 After remove_at_index(): 9 30
Before remove_at_index(): 9 30 After remove_at_index(): 8 30
Before remove_at_index(): 8 30 After remove_at_index(): 7 30
Before remove_at_index(): 7 30 After remove_at_index(): 6 14
Before remove_at_index(): 6 14 After remove_at_index(): 5 14
Before remove_at_index(): 5 14 After remove_at_index(): 4 14
Before remove_at_index(): 4 14 After remove_at_index(): 3 14
Before remove_at_index(): 3 14 After remove_at_index(): 2 10
Before remove_at_index(): 2 10 After remove_at_index(): 1 10
Before remove_at_index(): 1 10 After remove_at_index(): 0 10

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 11 of 29

Example #4:
da = DynamicArray([1, 2, 3, 4, 5])
print(da)
for _ in range(5):
 da.remove_at_index(0)
 print(da)

Output:
DYN_ARR Size/Cap: 5/8 [1, 2, 3, 4, 5]
DYN_ARR Size/Cap: 4/8 [2, 3, 4, 5]
DYN_ARR Size/Cap: 3/8 [3, 4, 5]
DYN_ARR Size/Cap: 2/8 [4, 5]
DYN_ARR Size/Cap: 1/8 [5]
DYN_ARR Size/Cap: 0/8 []

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 12 of 29

slice(self, start_index: int, size: int) -> object:

This method returns a new Dynamic Array object that contains the requested number of
elements from the original array, starting with the element located at the requested start
index. If the array contains N elements, a valid start_index is in range [0, N - 1] inclusive.
A valid size is a non-negative integer.

If the provided start index or size is invalid, or if there are not enough elements between
the start index and the end of the array to make a slice of the requested size, this method
raises a custom “DynamicArrayException”. Code for the exception is provided in the
skeleton file.

Example #1:
da = DynamicArray([1, 2, 3, 4, 5, 6, 7, 8, 9])
da_slice = da.slice(1, 3)
print(da, da_slice, sep="\n")
da_slice.remove_at_index(0)
print(da, da_slice, sep="\n")

Output:
DYN_ARR Size/Cap: 9/16 [1, 2, 3, 4, 5, 6, 7, 8, 9]
DYN_ARR Size/Cap: 3/4 [2, 3, 4]
DYN_ARR Size/Cap: 9/16 [1, 2, 3, 4, 5, 6, 7, 8, 9]
DYN_ARR Size/Cap: 2/4 [3, 4]

Example #2:
da = DynamicArray([10, 11, 12, 13, 14, 15, 16])
print("SOURCE:", da)
slices = [(0, 7), (-1, 7), (0, 8), (2, 3), (5, 0), (5, 3), (6, 1), (6, -1)]
for i, cnt in slices:
 print("Slice", i, "/", cnt, end="")
 try:
 print(" --- OK: ", da.slice(i, cnt))
 except:
 print(" --- exception occurred.")

Output:
SOURCE: DYN_ARR Size/Cap: 7/8 [10, 11, 12, 13, 14, 15, 16]
Slice 0 / 7 --- OK: DYN_ARR Size/Cap: 7/8 [10, 11, 12, 13, 14, 15, 16]
Slice -1 / 7 --- exception occurred.
Slice 0 / 8 --- exception occurred.
Slice 2 / 3 --- OK: DYN_ARR Size/Cap: 3/4 [12, 13, 14]
Slice 5 / 0 --- OK: DYN_ARR Size/Cap: 0/4 []
Slice 5 / 3 --- exception occurred.
Slice 6 / 1 --- OK: DYN_ARR Size/Cap: 1/4 [16]
Slice 6 / -1 --- exception occurred.

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 13 of 29

merge(self, second_da: object) -> None:

This method takes another Dynamic Array object as a parameter and appends all elements
from this second array to the current one, in the same order as they are stored in the
second array.

Example #1:
da = DynamicArray([1, 2, 3, 4, 5])
da2 = DynamicArray([10, 11, 12, 13])
print(da)
da.merge(da2)
print(da)

Output:
DYN_ARR Size/Cap: 5/8 [1, 2, 3, 4, 5]
DYN_ARR Size/Cap: 9/16 [1, 2, 3, 4, 5, 10, 11, 12, 13]

Example #2:
da = DynamicArray([1, 2, 3])
da2 = DynamicArray()
da3 = DynamicArray()
da.merge(da2)
print(da)
da2.merge(da3)
print(da2)
da3.merge(da)
print(da3)

Output:
DYN_ARR Size/Cap: 3/4 [1, 2, 3]
DYN_ARR Size/Cap: 0/4 []
DYN_ARR Size/Cap: 3/4 [1, 2, 3]

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 14 of 29

map(self, map_func) ->object:

This method creates a new Dynamic Array, where the value of each element is derived by
applying a given map_func to the corresponding value from the original array.

It works similarly to the built-in Python map() function. If you would like to review how
Python’s map() works, the following are good resources:
https://docs.python.org/3/library/functions.html#map
https://www.geeksforgeeks.org/python-map-function/

Example #1:
da = DynamicArray([1, 5, 10, 15, 20, 25])
print(da)
print(da.map(lambda x: (x ** 2)))

Output:
DYN_ARR Size/Cap: 6/8 [1, 5, 10, 15, 20, 25]
DYN_ARR Size/Cap: 6/8 [1, 25, 100, 225, 400, 625]

Example #2:
def double(value):
 return value * 2

def square(value):
 return value ** 2

def cube(value):
 return value ** 3

def plus_one(value):
 return value + 1

da = DynamicArray([plus_one, double, square, cube])
for value in [1, 10, 20]:
 print(da.map(lambda x: x(value)))

Output:
DYN_ARR Size/Cap: 4/4 [2, 2, 1, 1]
DYN_ARR Size/Cap: 4/4 [11, 20, 100, 1000]
DYN_ARR Size/Cap: 4/4 [21, 40, 400, 8000]

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 15 of 29

filter(self, filter_func) ->object:

This method creates a new Dynamic Array, populated only with those elements from the
original array for which filter_func returns True.

It works similarly to the built-in Python filter() function. If you would like to review how
Python’s filter() works, the following are good resources:
https://docs.python.org/3/library/functions.html#filter
https://www.geeksforgeeks.org/filter-in-python/

Example #1:
def filter_a(e):
 return e > 10

da = DynamicArray([1, 5, 10, 15, 20, 25])
print(da)
result = da.filter(filter_a)
print(result)
print(da.filter(lambda x: (10 <= x <= 20)))

Output:
DYN_ARR Size/Cap: 6/8 [1, 5, 10, 15, 20, 25]
DYN_ARR Size/Cap: 3/4 [15, 20, 25]
DYN_ARR Size/Cap: 3/4 [10, 15, 20]

Example #2:
def is_long_word(word, length):
 return len(word) > length

da = DynamicArray("This is a sentence with some long words".split())
print(da)
for length in [3, 4, 7]:
 print(da.filter(lambda word: is_long_word(word, length)))

Output:
DYN_ARR Size/Cap: 8/8 [This, is, a, sentence, with, some, long, words]
DYN_ARR Size/Cap: 6/8 [This, sentence, with, some, long, words]
DYN_ARR Size/Cap: 2/4 [sentence, words]
DYN_ARR Size/Cap: 1/4 [sentence]

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 16 of 29

reduce(self, reduce_func, initializer=None) ->object:

This method sequentially applies the reduce_func to all elements of the Dynamic Array and
returns the resulting value. The method takes an optional initializer parameter. If this
parameter is not provided, the first value in the array is used as the initializer. If the
Dynamic Array is empty, the method returns the value of the initializer (or None, if it was
not provided).

This method works similarly to the Python reduce() function. If you would like to review how
Python’s reduce() works, the following is a good starting point:
https://www.geeksforgeeks.org/reduce-in-python/

Example #1:
values = [100, 5, 10, 15, 20, 25]
da = DynamicArray(values)
print(da)
print(da.reduce(lambda x, y: x + y ** 2))
print(da.reduce(lambda x, y: x + y ** 2, -1))

Output:
DYN_ARR Size/Cap: 6/8 [100, 5, 10, 15, 20, 25]
1475
11374

Explanation:
 1475 = 100 + 52 + 102 + 152 + 202 + 252

 First value is not squared because it is used as an initializer.
 11374 = -1 + 1002+ 52 + 102 + 152 + 202 + 252

Example #2:
da = DynamicArray([100])
print(da.reduce(lambda x, y: x + y ** 2))
print(da.reduce(lambda x, y: x + y ** 2, -1))
da.remove_at_index(0)
print(da.reduce(lambda x, y: x + y ** 2))
print(da.reduce(lambda x, y: x + y ** 2, -1))

Output:
100
9999
None
-1

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 17 of 29

Part 2 - Summary and Specific Instructions

1. Implement a Bag ADT class by completing the skeleton code provided in the file
bag_da.py. You will use the Dynamic Array data structure that you implemented in
part 1 of this assignment as the underlying data storage for your Bag ADT.

2. Once completed, your implementation will include the following methods:

add()
remove()
count()
clear()
equal()

3. We will test your implementation with different types of objects, not just integers.
We guarantee that all such objects will have correct implementations of methods
__eq__, __lt__, __gt__, __ge__, __le__, and __str__.

4. The number of objects stored in the Bag at any given time will be between 0 and
1,000,000 inclusive. The bag must allow for the storage of duplicate objects.

5. RESTRICTIONS: You are not allowed to use ANY built-in Python data structures
and/or their methods. You must solve this portion of the assignment by importing
the DynamicArray class that you wrote in part 1 and using class methods to write
your solution.

You are also not allowed to directly access any variables of the DynamicArray class
(like self.size, self.capacity, and self.data in part 1). All work must be done by using
only class methods.

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 18 of 29

add(self, value: object) -> None:

This method adds a new element to the bag. It must be implemented with O(1) amortized
runtime complexity.

Example #1:
bag = Bag()
print(bag)
values = [10, 20, 30, 10, 20, 30]
for value in values:
 bag.add(value)
print(bag)

Output:
BAG: 0 elements. []
BAG: 6 elements. [10, 20, 30, 10, 20, 30]

remove(self, value: object) -> bool:

This method removes any one element from the bag that matches the provided “value”
object. The method returns True if some object was actually removed from the bag.
Otherwise, it returns False. It must be implemented with O(N) runtime complexity.

Example #1:
bag = Bag([1, 2, 3, 1, 2, 3, 1, 2, 3])
print(bag)
print(bag.remove(7), bag)
print(bag.remove(3), bag)
print(bag.remove(3), bag)
print(bag.remove(3), bag)
print(bag.remove(3), bag)

Output:
BAG: 9 elements. [1, 2, 3, 1, 2, 3, 1, 2, 3]
False BAG: 9 elements. [1, 2, 3, 1, 2, 3, 1, 2, 3]
True BAG: 8 elements. [1, 2, 1, 2, 3, 1, 2, 3]
True BAG: 7 elements. [1, 2, 1, 2, 1, 2, 3]
True BAG: 6 elements. [1, 2, 1, 2, 1, 2]
False BAG: 6 elements. [1, 2, 1, 2, 1, 2]

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 19 of 29

count(self, value: object) -> int:

This method counts the number of elements in the bag that match the provided “value”
object. It must be implemented with O(N) runtime complexity.

Example #1:
bag = Bag([1, 2, 3, 1, 2, 2])
print(bag, bag.count(1), bag.count(2), bag.count(3), bag.count(4))

Output:
BAG: 6 elements. [1, 2, 3, 1, 2, 2] 2 3 1 0

clear(self) -> None:

This method clears the contents of the bag. It must be implemented with O(1) runtime
complexity.

Example #1:
bag = Bag([1, 2, 3, 1, 2, 3])
print(bag)
bag.clear()
print(bag)

Output:
BAG: 6 elements. [1, 2, 3, 1, 2, 3]
BAG: 0 elements. []

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 20 of 29

equal(self, second_bag: object) -> bool:

This method compares the contents of a bag with the contents of a second bag provided as
a parameter. The method returns True if the bags are equal (have the same number of
elements and contain the same elements without regards to the order of elements).
Otherwise, it returns False. An empty bag is only considered equal to another empty bag.
This method should not change the contents of either bag.

The runtime complexity of this implementation should be no worse than O(N2). The
maximum test case size for this method will be limited to bags with 1,000 items in each.

Example #1:
bag1 = Bag([10, 20, 30, 40, 50, 60])
bag2 = Bag([60, 50, 40, 30, 20, 10])
bag3 = Bag([10, 20, 30, 40, 50])
bag_empty = Bag()

print(bag1, bag2, bag3, bag_empty, sep="\n")
print(bag1.equal(bag2), bag2.equal(bag1))
print(bag1.equal(bag3), bag3.equal(bag1))
print(bag2.equal(bag3), bag3.equal(bag2))
print(bag1.equal(bag_empty), bag_empty.equal(bag1))
print(bag_empty.equal(bag_empty))
print(bag1, bag2, bag3, bag_empty, sep="\n")

bag1 = Bag([100, 200, 300, 200])
bag2 = Bag([100, 200, 30, 100])
print(bag1.equal(bag2))

Output:
BAG: 6 elements. [10, 20, 30, 40, 50, 60]
BAG: 6 elements. [60, 50, 40, 30, 20, 10]
BAG: 5 elements. [10, 20, 30, 40, 50]
BAG: 0 elements. []
True True
False False
False False
False False
True
BAG: 6 elements. [10, 20, 30, 40, 50, 60]
BAG: 6 elements. [60, 50, 40, 30, 20, 10]
BAG: 5 elements. [10, 20, 30, 40, 50]
BAG: 0 elements. []
False

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 21 of 29

Part 3 - Summary and Specific Instructions

1. Implement a Queue ADT class by completing the skeleton code provided in the file
queue_da.py. You will use the Dynamic Array data structure that you implemented
in part 1 of this assignment as the underlying data storage for your Queue ADT.

2. Once completed, your implementation will include the following methods:

enqueue()
dequeue()

3. We will test your implementation with different types of objects, not just integers.
We guarantee that all such objects will have correct implementations of methods
__eq__, __lt__, __gt__, __ge__, __le__, and __str__.

4. The number of objects stored in the Queue at any given time will be between 0 and
1,000,000 inclusive. The queue must allow for the storage of duplicate elements.

5. RESTRICTIONS: You are not allowed to use ANY built-in Python data structures
and/or their methods. You must solve this portion of the assignment by importing
the DynamicArray class that you wrote in part 1 and using class methods to write
your solution.

You are also not allowed to directly access any variables of the DynamicArray class
(like self.size, self.capacity, and self.data in part 1). All work must be done by using
only class methods.

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 22 of 29

enqueue(self, value: object) -> None:

This method adds a new value to the end of the queue. It must be implemented with O(1)
amortized runtime complexity.

Example #1:
q = Queue()
print(q)
for value in [1, 2, 3, 4, 5]:
 q.enqueue(value)
print(q)

Output:
QUEUE: 0 elements. []
QUEUE: 5 elements. [1, 2, 3, 4, 5]

dequeue(self) -> object:

This method removes and returns the value at the beginning of the queue. It must be
implemented with O(N) runtime complexity. If the queue is empty, the method raises a
custom “QueueException”. Code for the exception is provided in the skeleton file.

Example #1:
q = Queue()
for value in [1, 2, 3, 4, 5]:
 q.enqueue(value)
print(q)
for i in range(6):
 try:
 print(q.dequeue())
 except Exception as e:
 print("No elements in queue", type(e))

Output:
QUEUE: 5 elements. [1, 2, 3, 4, 5]
1
2
3
4
5
No elements in queue <class '__main__.QueueException'>

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 23 of 29

Part 4 - Summary and Specific Instructions

1. Implement a Stack ADT class by completing the skeleton code provided in the file
stack_da.py. You will use the Dynamic Array data structure that you implemented
in part 1 of this assignment as the underlying data storage for your Stack ADT.

2. Your Stack ADT implementation will include the following standard Stack methods:

push()
pop()
top()

3. We will test your implementation with different types of objects, not just integers.
We guarantee that all such objects will have correct implementations of methods
__eq__, __lt__, __gt__, __ge__, __le__, and __str__.

4. The number of objects stored in the Stack at any given time will be between 0 and
1,000,000 inclusive. The stack must allow for the storage of duplicate objects.

5. RESTRICTIONS: You are not allowed to use ANY built-in Python data structures
and/or their methods. You must solve this portion of the assignment by importing
the DynamicArray class that you wrote in part 1 and using class methods to write
your solution.

You are also not allowed to directly access any variables of the DynamicArray class
(like self.size, self.capacity, and self.data in part 1). All work must be done by using
only class methods.

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 24 of 29

push(self, value: object) -> None:

This method adds a new element to the top of the stack. It must be implemented with O(1)
amortized runtime complexity.

Example #1:
s = Stack()
print(s)
for value in [1, 2, 3, 4, 5]:
 s.push(value)
print(s)

Output:
STACK: 0 elements. []
STACK: 5 elements. [1, 2, 3, 4, 5]

pop(self) -> object:

This method removes the top element from the stack and returns its value. It must be
implemented with O(1) amortized runtime complexity. If the stack is empty, the method
raises a custom “StackException”. Code for the exception is provided in the skeleton file.

Example #1:
s = Stack()
try:
 print(s.pop())
except Exception as e:
 print("Exception:", type(e))
for value in [1, 2, 3, 4, 5]:
 s.push(value)
for i in range(6):
 try:
 print(s.pop())
 except Exception as e:
 print("Exception:", type(e))

Output:
Exception: <class '__main__.StackException'>
5
4
3
2
1
Exception: <class '__main__.StackException'>

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 25 of 29

top(self) -> object:

This method returns the value of the top element of the stack without removing it. It must
be implemented with O(1) runtime complexity. If the stack is empty, the method raises a
custom “StackException”. Code for the exception is provided in the skeleton file.

Example #1:
s = Stack()
try:
 s.top()
except Exception as e:
 print("No elements in stack", type(e))
s.push(10)
s.push(20)
print(s)
print(s.top())
print(s.top())
print(s)

Output:
No elements in stack <class '__main__.StackException'>
STACK: 2 elements. [10, 20]
20
20
STACK: 2 elements. [10, 20]

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 26 of 29

Part 5 - Summary and Specific Instructions

1. Implement a MaxStack ADT class by completing the skeleton code provided in the
file max_stack_da.py. You will use the Dynamic Array data structure that you
implemented in part 1 of this assignment as the underlying data storage for your
MaxStack ADT.

2. Your MaxStack ADT implementation will incorporate the same Stack methods (and

implementations) as your Stack class and add one new method - get_max():

push()
pop()
top()
get_max()

3. We will test your implementation with different types of objects, not just integers.
We guarantee that all such objects will have correct implementations of methods
__eq__, __lt__, __gt__, __ge__, __le__, and __str__.

4. The number of objects stored in the Stack at any given time will be between 0 and
1,000,000 inclusive. The stack must allow for the storage of duplicate objects.

5. RESTRICTIONS: You are not allowed to use ANY built-in Python data structures
and/or their methods. You must solve this portion of the assignment by importing
the DynamicArray class that you wrote in part 1 and using class methods to write
your solution.

You are also not allowed to directly access any variables of the DynamicArray class
(like self.size, self.capacity, and self.data in part 1). All work must be done by using
only class methods.

You may not use a Stack as an instance variable – carry over your implementation
from Part 4 and amend as necessary to support the get_max() functionality.

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 27 of 29

push(self, value: object) -> None:

This method adds a new element to the top of the stack. It must be implemented with O(1)
amortized runtime complexity.

Example #1:
s = MaxStack()
print(s)
for value in [1, 2, 3, 4, 5]:
 s.push(value)
print(s)

Output:
MAX STACK: 0 elements. []
MAX STACK: 5 elements. [1, 2, 3, 4, 5]

pop(self) -> object:

This method removes the top element from the stack and returns its value. It must be
implemented with O(1) amortized runtime complexity. If the stack is empty, the method
raises a custom “StackException”. Code for the exception is provided in the skeleton file.

Example #1:
s = MaxStack()
try:
 print(s.pop())
except Exception as e:
 print("Exception:", type(e))
for value in [1, 2, 3, 4, 5]:
 s.push(value)
for i in range(6):
 try:
 print(s.pop())
 except Exception as e:
 print("Exception:", type(e))

Output:
Exception: <class '__main__.StackException'>
5
4
3
2
1
Exception: <class '__main__.StackException'>

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 28 of 29

top(self) -> object:

This method returns the value of the top element of the stack without removing it. It must
be implemented with O(1) runtime complexity. If the stack is empty, the method raises a
custom “StackException”. Code for the exception is provided in the skeleton file.

Example #1:
s = MaxStack()
try:
 s.top()
except Exception as e:
 print("No elements in stack", type(e))
s.push(10)
s.push(20)
print(s)
print(s.top())
print(s.top())
print(s)

Output:
No elements in stack <class '__main__.StackException'>
MAX STACK: 2 elements. [10, 20]
20
20
MAX STACK: 2 elements. [10, 20]

 CS261 Data Structures Assignment 2: Your Very Own Dynamic Array

Page 29 of 29

get_max(self) -> object:

This method returns the maximum value currently stored in the stack. It must be
implemented with O(1) runtime complexity. If the stack is empty, the method raises a
custom “StackException”. Code for the exception is provided in the skeleton file.

Example #1:
s = MaxStack()
for value in [1, -20, 15, 21, 21, 40, 50]:
 print(s, ' ', end='')
 try:
 print(s.get_max())
 except Exception as e:
 print(type(e))
 s.push(value)
while not s.is_empty():
 print(s.size(), end='')
 print(' Pop value:', s.pop(), ' get_max after: ', end='')
 try:
 print(s.get_max())
 except Exception as e:
 print(type(e))

Output:
MAX STACK: 0 elements. [] <class '__main__.StackException'>
MAX STACK: 1 elements. [1] 1
MAX STACK: 2 elements. [1, -20] 1
MAX STACK: 3 elements. [1, -20, 15] 15
MAX STACK: 4 elements. [1, -20, 15, 21] 21
MAX STACK: 5 elements. [1, -20, 15, 21, 21] 21
MAX STACK: 6 elements. [1, -20, 15, 21, 21, 40] 40
7 Pop value: 50 get_max after: 40
6 Pop value: 40 get_max after: 21
5 Pop value: 21 get_max after: 21
4 Pop value: 21 get_max after: 15
3 Pop value: 15 get_max after: 1
2 Pop value: -20 get_max after: 1
1 Pop value: 1 get_max after: <class '__main__.StackException'>

