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least, Section 1.3 is dedicated to the introduction of hierarchical models that will further be used for the

analysis of the genotypic variability of a population of plants.

1.1 General state space models

Usually the term state space models refers to linear state space models, whereas the term general state space

models is used for their nonlinear equivalent. For convenience, general state space models will simply be

referred to as state space models in what follows. The state space of such models can be either discrete or

continuous. The SSMs considered througout this document will be continuous-valued and discrete in time.

If the equations modelling a system are continuous in time, they first need to be discretized for numerical

simulation.

1.1.1 Main equations

Starting from initial state variables (initial conditions) at time step n = 0, the system variables are updated

at each time step n ∈ J1, T K where T denotes the last time step of the simulation. For plant models, this

usually means that variables are updated daily, as is the case in the Log-Normal Allocation and Senescence

model for Beta vulgaris (Section 2.2) or wheat (Section 2.3), or hourly, for instance in the GreenLab model for

Arabidopsis thaliana (Section 2.4). At each time step n, a system of two equations summarizes the evolution

of the state variables and the observations of the system respectively. In their most general form, they read:{
xn+1 = fn(xn, un, θ, ηn),

yn = gn(xn, θ, ξn),
(1.1)

where the evolution of the system is considered between the initial timen = 0 and the final timen = T ∈ N⋆,

and where at time step n ∈ J0, T K:
■ xn ∈ Rdx represents the state variables of the model, x0 therefore denotes the inital state of the system.

Since these variables are a priori not accessible to measurement, they are also called hidden states;

■ yn ∈ Rdyn represents the observations on the system. It is worth noting here that the dimension of

the vector of observations depends on the time step n, this will be detailed in Section 1.1.3;

■ un ∈ Rdu represents the external variables influencing the system, for example control variables:

in plant science, these are typically environmental conditions in which the system evolves, such as

temperature, radiation, water resources or nutrients;

■ θ ∈ Rdθ represents the functional parameters, which intervene in the functional equations and can

either have a systemic meaning – they can originate from biology, for instance – or simply be para-

meters of empirical descriptive functions used because they constitute a convenient and sensible way

of modelling a physical process;



Chapter 1. Mathematical framework 11

■ ηn ∈ Rdη are process noises – or equivalently modelling noises – and are the values taken at each

time step by a random vector representing the stochastic factors that aim to account for either possible

model limitations or imperfections;

■ ξn ∈ Rdξ are observation noises: since the observed data is most of the time measured with some

uncertainty, observation noises are the values taken at each time step by the random vector defined so

as to reproduce this measurement error;

■ fn is the transition function, it drives the evolution of the state variables from one time step to another;

■ gn specifies how the system is observed and what the observations are in terms of the hidden states.

The fact that both the transition and observation functions are allowed to depend on the time index n is

referred to as non-homogeneous transitions. This is often the case in plant growth models since the plant has

different evolution stages (which mostly depends on the thermal time) where its behaviour can be drastically

different.

1.1.2 Hidden Markov models

In their stochastic formulation with random vectors defining the process and observation noises, SSMs are

equivalent to hidden Markov models (HMMs) [Rabiner, 1989] where xn represents the hidden states, yn
the observations and where:

x0 ∼ p(x0) is the initial distribution,

xn+1 ∼ p(xn+1|θ, xn) is the transition distribution,

yn ∼ p(yn|θ, xn) is the observation distribution.

(1.2)

The transition and observation distributions represented above by conditional probability density functions

can be rewritten using the process and observation noises as will be detailed in Section 1.2. It has to be noted

that each one of these distributions can be taken as a Dirac distribution. An important case is that of a model

without process noise, in which case Equation 5.2 reduces to:{
xn+1 = fn(xn, un, θ),

yn = gn(xn, θ, ξn).
(1.3)

In this case, the transition distribution is equivalent to a Dirac distribution so that p(xn+1|θ, xn)dxn+1 is re-

placed by δfn(xn,un,θ)(dxn+1) and for given parameters θ, initial state x0 and external variables (un)n∈J1,T K,
all state variables at all time steps (xn)n∈J1,T K are deterministically defined. A less common case would be that

of a model without observation noise, where p(yn|θ, xn)dyn would be replaced by δgn(xn,θ)(dyn), which

would be such that every measurement contains perfect information on the system. This scenario, however,

finds very few practical applications as most models deal with the measurement of continuous valued variables

and thus necessarily involves some uncertainty.
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1.1.3 Structure of the observations

At a given time step n, the observed variables can be of different nature: integers (the number of phytomers

of a plant), real numbers (the biomass of a leaf compartment), vectors (the areas of the different individual

leaves) or even matrices in some cases. Most of the time and for practical reasons in real world applications,

observations do not come up at every time step and the data available at a given time might not be the same

at another. Let us consider the example of a plant model for, say, sugar beet: the biomass of the leaves might

be available on days 10, 20 and 35 whereas the biomass of the roots might be available on days 12, 20, 33.

For an organ-scale plant model where observations on the different organs are obtained via image analysis, as

is the case of leaf areas, the latter might not be available on the same days because an algorithm deemed its

classification confidence to be insufficient. The size and content of the observations might therefore not be

the same through time, which poses no problem whatsoever as long as one knows what variables are observed

at what time. The merged experimental timeline, representing time steps at which any experimental data is

available, will be denoted by:

O = (tk)k∈J1:OK ∈ NO with 1 ≤ tk < tk+1 ≤ T for k ∈ J1, OK, (1.4)

where O ≥ 1 is the total number of experimental time steps. More formally, the observations at a given

time step n can be seen as a dictionary where keys would be the different observed variables through the

experiment and the values would be the actual observations of the corresponding variables. The operation

of converting a dictionary of observations into a vector and its inverse will be presented in more detail in

Section 5.4 when discussing the practical implementation of the storage of observations using the computing

platform. If ℓn denotes the total number of variables observed at time step n, vn = (vℓn)ℓ∈J1,ℓnK said variables

and yℓn denotes the observation relative to variable vℓn, then the vector of observations at time n can be defined

as the concatenation:

yn = (yℓn)ℓ∈J1,ℓnK ∈ Rdyn . (1.5)

Equivalently, all the observation vectors at each time in the experimental timeline can be concatenated and

the following notations are introduced:{
x1:T = (xn)n∈J1:T K,
y1→T = (ytk)k∈J1:OK. (1.6)

Some algorithms (least squares algorithms for example) require to deal with vector observations and it is

therefore important to be able to work with observations of such a nature. In fact, y1→T could also be seen

as a matrix of observations where each row would correspond to a time step and each column to a type of

observation, and elements of this matrix could be missing (since all variables are not observed at all times).

All the information about what variables are observed at what time is actually stored in the sequence of

observation functions (gn)n∈J1,T K. More details on how this is implemented in the computing platform can

be found in Sections 5.2.3 and 5.3 with examples. For now, one can assume that at each time step n, yn is

a vector of observations, that are not necessarily the same at different times, and that one knows what these

vector observations contain and how to exploit them.
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Figure 1.1: Representation of a general state space model. Wavy curves in the hidden layer
(respectively observable layer) represent the randomness introduced by the process noise (re-
spectively observaton noise). The external (or control) variables un are known at every time
step, the hidden states xn are unknown in real experiments but are accessible when the cor-
responding model is simulated, and the observations yn are both known in real experiments

and can also be simulated provided that an observation model error has been defined.

Process and observation noises are of stochastic nature, and the underlying parameters constant throughout a

model simulation are typically the mean or standard deviation of the statistical distribution from which they

are sampled. We distinguish the random variables η and ξ, from their realizations at a given time ηn and ξn
such that:. {

η : Ωη → Rdη

ωη → ηn ≡ η(ωη)
(1.7)

and: {
ξ : Ωξ → Rdξ

ωξ → ξn ≡ ξ(ωξ)
(1.8)

where Ωη and Ωξ are appropriate sample spaces. A simulation of the model can therefore be summarized as:

y1→T =M(x0, u, θ, η, ξ). (1.9)

where the model M contains the information on the sequences of transition and observation functions

(fn)n∈J1,T K and (gn)n∈J1,T K. Sometimes, one might abbreviate the output of the model as y .
= y1→T .

It is worth noting that the use of such a stochastic formulation for plants is not very common and dates back

to less than 20 years [Makowski et al., 2004], [Chen and Cournède, 2012], [Trevezas and Cournède, 2013].

A graphical representation of a general SSM is shown on Figure 1.1.
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1.1.4 Observation model

Considering a plant model, the biomass produced by the whole plant on a given day is not directly measurable,

it is thus considered to be a hidden state, whereas the biomass of green leaves on the same day is a measurable

data, making it an observation. As previously said, a measure on a system is very often inexact, and this

is almost always the case when dealing with continuous-valued models. For instance, measuring biomass

can be done using either destructive or non-destructive methods: in the first case, biomass is removed from

the plant and weighed while the second case is based on digital image analysis. The cutting point, the

weighing process, or imperfections of algorithms are as many factors implying that some measurement error

is made. The true value of the biomass is therefore never exactly measured, and a distinction must be made

between the hidden state of the biomass, which remains unknown, and its corresponding observation. A

given measurable variable will frequently be defined both as a hidden state and as an observation. In the case

of a biomass denoted by q, this would translate into:

qn ∈ xn and q̃n ∈ yn. (1.10)

How these two values are related constitute a model for the measurement error. A standard approach is to

consider that, on average, the hidden state is measured with some white noise following a normal distribution.

If the noise is proportional to the value of the hidden state – for instance if the greater the biomass, the greater

the measurement error – one might want to consider a multiplicative noise:

q̃n = qn (1 + ξn), with ξn ∼ N
(
0, (σq)2

)
and σq > 0, (1.11)

so that:

q̃n ∼ N
(
qn, (σ

qqn)
2
)
, (1.12)

whereas if the noise does not depend on the value of the hidden state, one might want to consider an additive

noise:

q̃n = qn + ξn, with ξn ∼ N
(
0, (σq)2

)
and σq > 0, (1.13)

so that:

q̃n ∼ N
(
qn, (σ

q)2
)
. (1.14)

Obviously, there can be situations where measured values are always underestimated or overestimated, in

which case these two measurement error models might not be relevant anymore. In the rest of this thesis, the

values that will be measured will be either biomasses or leaf areas, and it is therefore assumed that multiplic-

ative normal noises are the most adapted to such situations. However, more observation models have been

considered as will be emphasized in Chapter 5 when discussing the computing platform.

1.1.5 Extensions

The popularity of such models has generated many extensions. A common one concerns k-th order Markov

process, where k > 1: in this case the hidden state xn+1 does not depend only on xn but on (xn−j+1)j∈J1,kK.
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This can happen in plant growth models – such as in the STICS model [Brisson et al., 1998] for instance

– even though from a mathematical point of view it is always possible to redefine the system state as x′n =

(xn−j+1)j∈J1,kK to define a standard SSM again.

In Markov-switching models (also called Markov jump systems), at time step n the observation yn depends

not only on the hidden state xn but also on the previous observation yn−1 (and possibly on even older obser-

vations) [Cappé et al., 2005]. The sequence of observations (yn)n∈J1,T K can therefore be seen, conditional

on the sequence of hidden states (xn)n∈J1,T K, as a non-homogeneous Markov chain. Although this kind of

model has a lot in common with standard HMMs, their statistical analysis is much more complicated be-

cause the observed sequence (yn)n∈J1,T K is not directly related to that of the unobservable one (xn)n∈J1,T K.
Although Markov-switching models are not considered within this thesis, two reasons behind their potential

uses must be mentioned. First, when measurements are performed on a plant or in a field, the observer might

be influenced by the previous obtained results: if the biomass of an organ is surprisingly much lower than that

of a previous time, one might be tempted to correct the current measurement upwards. Second, the image

analysis algorithm used to estimate the individual leaf areas (see Chapter 7) does so by taking into account the

whole history of a given leaf. For the image of a given day, the decision to classify a given segment (i.e. a set of

connected pixels that was considered to represent a leaf occurrence) – whose area contains some observation

noise intrinsic to the segmentation algorithm – as belonging to a particular leaf of the plant depends on the

whole history of the said leaf, hence on previous observations. Nevertheless, this effect is considered to be

of minimal importance in the present case: when it is uncertain whether a segment belongs to a leaf, it is

considered as not being observed. Classification-related errors (and time-induced) will therefore be minimal

in the pool of actually observed data collected.

1.2 Generic probability distributions

As will be detailed in Chapter 3, parameter and state estimation algorithms require the use of the transition

and observation probability density functions (pdfs). The algorithms should be designed so as to be easily

used with different models. It therefore requires the calculation of the transition pdf p(xn+1|θ, xn) and the

observation pdf p(yn|θ, xn). What is more, the pdf of all the observations conditional to the parameters

and the hidden states p(y1→T |θ, x1:T ) can then easily be deduced from the observation pdf. For this aim,

a generic expression of the latter is derived and, as explained in Chapter 5, this will allow to automatically

compute their values provided that models are written using a predefined template.

1.2.1 Transition probability density function

In the models considered, it is always possible to arrange the state variables by their order of computation at

a given time step. The hidden state is therefore decomposed into (xjn)j∈J1,dxK where for all j ∈ J1, dx − 1K,
xjn is computed before xj+1

n . In particular, a variable xjn+1 can depend in practice on all variables computed

before, (xkn+1)k∈J1,j−1K – which have been expressed as functions of xn themselves – without breaking the



16 Chapter 1. Mathematical framework

dependence on only xn from a mathematical point of view. The transition pdf can therefore be expressed in

a hierarchical fashion:

p(xn+1|θ, xn) =
∏

j∈J1,dxK p(x
j
n+1|θ, xn, x

1:j−1
n+1 ). (1.15)

In the absence of process noise, the dynamics of the system is entirely deterministic, as a consequence

p(xjn+1|θ, xn, x
1:j−1
n+1 )dxjn+1 = δ

mj
n+1(xn,x

1:j−1
n+1 ,θ)

(dxjn+1)wheremj
n+1(xn, x

1:j−1
n+1 , θ) prescribes howxjn+1

is computed within the model. In a model without process noise, the transition pdf therefore becomes such

that:

p(xn+1|θ, xn)dxn+1 =
∏

j∈J1,dxK δmj
n+1(xn,x

1:j−1
n+1 ,θ)

(
dxjn+1

)
. (1.16)

In particular, one can choose to introduce as many intermediary variables in the hidden state xn without

fundamentally changing the model formulation in terms of transition distribution. In view of this remark,

when some process noise is involved, the only non-Dirac terms in Equation 1.15 are those affected by

the process noise and the corresponding random vector can also be arranged by order of use in the model

ηn = (ηjn)j∈J1,dηK. For now, we assume that all the process noises of the model are unidimensional.

Let mη : J1, dηK → J1, dxK be an application such that mη(J1, dηK) represents the sets of indices of the

state variables on which are set the process noises, i.e. there exists some function ϕj such that:

x
mη(j)+1
n = ϕj(x

mη(j)
n , ηjn), for j ∈ J1, dηK. (1.17)

For a particular process noise of index j and in the case of an additive normal noise, this would translate into:

x
mη(j)+1
n = x

mη(j)
n + ηjn with ηjn ∼ N

(
0, (σj)2

)
. (1.18)

It is possible to express the transition pdf by choosing only the dη state variables on which are set the process

noises:

p(xn+1|θ, xn)dxn+1 =

dη∏
j=1

p
(
x
mη(j)+1
n+1 |θ, xmη(j)

n+1

)
dx

mη(j)+1
n+1 ×

∏
j /∈mη(J1,dηK) δmj

n+1(xn,x
1:j−1
n+1 ,θ)

(
dxjn+1

)
where we recall thatmj

n+1(xn, x
1:j−1
n+1 , θ) is the value computed for the state variable xjn+1 within the model

considered. In what follows, since the variables that are deterministic functions of the stochastic variables are

computed directly by closure relationships in the simulation program, the Dirac distributions take values 1,

hence will be omitted in the following. In particular, we can restrain ourselves to the noised variables and

replace the transition pdf by:

p(x
mη(j)+1
n+1 , . . . , x

mη(dη)+1
n+1 |θ, xn) = p(ηn|θ) =

dη∏
j=1

p(x
mη(j)+1
n+1 |θ, xmη(j)

n+1 ). (1.19)

For the sake of simplicity and with a slight abuse of notation, in what follows we will denote

p(xn+1|θ, xn) = p(x
mη(j)+1
n+1 , . . . , x

mη(dη)+1
n+1 |θ, xn), implicitly assuming Dirac distributions for the vari-

ables computed in a deterministic fashion by model closure. This formulation generalizes in fact very well

to multidimensional noises. The decomposition of the state variable xn = (xjn)j∈J1,d′xK can be performed

in such a way that xjn can be a multidimensional quantity such as a vector or a matrix and so that d′x ≤ dx.
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Similarly, ηn = (ηjn)j∈J1,d′ηK can contain multidimensional quantities. For instance, the random vector of

process noises in the Kalman filter [Kalman, 1960] is drawn from a multivariate normal distribution with

non-zero off-diagonal components (i.e. this cannot be simplified to the use of unidimensional process noises),

which for some j would translate into:

x
mη(j)+1
n = x

mη(j)
n + ηjn with ηjn ∼ N (0,Σ) (1.20)

and where Σ can potentially be a full matrix.

1.2.2 Observation probability density function

Equivalently, one can decompose the observation noises as ξn = (ξjn)j∈J1,d′ξK and define an application

mξ : J1, d′ξK → J1, d′xK such that mξ(J1, d′ξK) represents the set of indices of the state variables on which

are set the observation noises, i.e. there exists some function ψj such that:

yjn = ψj(x
mξ(j)
n , ξjn), for j ∈ J1, dξ′K. (1.21)

Again, for a particular observation noise of index j and in the case of a unidimensional multiplicative noise,

this would translate into:

yjn = x
mξ(j)
n (1 + ξjn) with ξnj ∼ N

(
0, (σj)2

)
. (1.22)

It can also happen that observations on the system require multidimensional noises. This is notably the case

in [Baey et al., 2016] where the biomasses of the different organs are observed with correlation, this would

mean that:

yjn = x
mξ(j)
n · (1 + ξjn) with ξnj ∼ N (0,Σ) . (1.23)

where it is understood that in the case of multidimensional noises, operations on vectors such as · or / are

performed element-wise, and with Σ having some of its off-diagonal components non-zero. The observation

pdf can be expressed in the same way as for the transition pdf:

p(yn|θ, xn) = p(ξn|θ) =
dξ′∏
j=1

p(yjn|x
mξ(j)
n ) (1.24)

where the product runs on all indices j for which experimental data yjn is available and, again, possibly

contains multidimensional noises. The generic expression of the pdf of the observations conditional to the

parameters and the hidden states p(y1→T |θ, x1:T ) naturally follows from that of the observation pdf since:

p(y1→T |θ, x1:T ) =
O∏

k=1

p(ytk |θ, xtk) =
O∏

k=1

dξ′∏
j=1

p(yjtk |θ, x
mξ(j)
tk

). (1.25)

Equation 1.19 makes it possible to compute the transition pdf as long as are specified the nature of the

noises (are they additive or multiplicative, sampled from a normal, a log-normal or a uniform distribution?)

and lists of labels corresponding to the parameters necessary to compute the values of these pdfs. Likewise,

Equation 1.24 makes it possible to compute the observation pdf. The complete mechanism for the practical

computation of such values of the transition and observation pdfs are described in detail in Section 5.5.
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Examples of theoretical transition and observation pdfs are given in Chapter 2 in the case of two plant

growth models for Beta vulgaris and Arabidopsis thaliana.

1.3 Population models

In this section, we first describe the reasons behind the use of the population approach and emphasize its im-

portance in the context of genotypic variability. We then move on to introduce the two types of variability in

the context of plants and introduce hierarchical models, statistical models that are well-suited for dealing with

this dual variability for a population of plants, and finally show how the SSMs considered in Section 1.1 fit

in the mathematical description of population models before describing the complete two-stage hierarchical

models that will further be used for parameter inference in a population context.

1.3.1 Motivation

Most biological and physical phenomena observed within a set of different individuals exhibit variability:

they might manifest similar global behaviour and dynamics but with some variations. This is of practical use

in many fields such as biology, agronomy, econometrics, environmental and human sciences. For instance, in

pharmacometrics, one needs to develop models where different patients would react differently to the same

disease and the same drug. Lavielle [2014] gives the example of the effect of genetically modified corn on

the health of rats.

As far as plants are concerned, there exists a strong genetic variability even within individuals of the same

species, which notably allows for better resistance to diseases or bugs and provides stronger adapation to a wide

set of environmental conditions. Brouwer et al. [1993] showed that soil and crop growth micro-variability in

the semi-arid tropics of West Africa contributes to increased yield in case of droughts since parts of the field,

more resistant to water stress, could compensate for other parts performing poorly, meaning a satisfactory level

of assured production. The genetic variability of switchgrass was studied by Hopkins et al. [1995] in order to

develop improved populations, which highlighted the importance of genotype-environment interactions for

traits such as forage yield at heading, vegetative in vitro dry matter digestibility and heading date. For maize,

Maiti et al. [1996] showed that both genotypic variability and soil content were of highly significance for the

resistance to drought and salinity at the seedling stage. This study also allowed to speculate about the effect of

higher root growth under saline stress in some of the genotypes as a mechanism of resistance in maintaining

osmo-regulation. Isfan [1993] suggested that the index of physiological efficiency of absorbed nitrogen may

be used in order to identify the likely high yielding oat genotypes and those capable of exploiting nitrogen

input most efficiently.

All these examples indicate both the importance of such a genetic variability and the necessity to integrate it

within plant growth models. Similarly, in populations of plants in fields or forests, interindividual variability

can result from differences in the local environmental conditions of individual plants. The first plant growth
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models integrating this variability tried to simulate the growth of each individual with a competition index

between plants [Fournier and Andrieu, 1999], [Cournède et al., 2008].

Most of the time in plant applications, repeated measurements on different individuals of a population are

available, and a population approach is particularly suited to characterize and explain this kind of data. The

mathematical model used therefore needs to incorporate a growth model that depicts the dynamics of the

different state variables of the plant considered – biomasses mainly – and a statistical model that explains

the variations of this typical dynamics between the different individuals. There are in fact two sources of

variability to account for:

■ the intraindividual variability, which refers to how the state of a single individual might vary, because

of random processes and measurement errors. This kind of variability was introduced in Section 1.1

under the form of process and observation noises;

■ the interindividual variability, which arises because of differences between the genotypes or environ-

ments of different individuals. This corresponds to the variability of the different individuals’ curves

around a mean population curve.
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Figure 1.2: Yield curves of four different individuals. The individual curves are displayed
with solid lines and the mean curve (similar for all graphs) is displayed with dotted line.
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1.3.2 Hierarchical models

Hierarchical models provide a very suitable way of modelling this dual variability. This type of statistical

models have long been used in pharmacokinetics, epidemiology or ecology, although their use in dynamic

plant growth models is rather recent [Baey et al., 2013]. Broadly speaking, they are statistical models of

parameters that vary at several levels. First introduced in the context of linear regression, multilevel models

then consisted in doing a regression in which the parameters were given a probability model, and this second-

level model had parameters of its own, called hyperparameters, and all these parameters were inferred from

the same data.

Many names can be found for such models: multilevel models may be the more common, nested data mod-

els, random effects models (mixed effects models when some parameters are random and some are fixed in

the population) are also widely used. The hierarchical term seemed the most appropriate to our case since a

hierarchy is clearly established between the different stages of plant growth modelling where individual para-

meters are first derived from a given probability distribution describing the population, and these individual

parameters then drive the growth of a given plant via a noisy nonlinear SSM.

The two most simple and direct methods of parameter estimation in a population are known as complete

pooling and no pooling [Davidian and Giltinan, 1993]:

■ in complete pooling, differences between individuals are ignored, all are treated equally and the data

coming from different individuals is used for the estimation of parameters supposed to represent all

individuals. Disregarding the diversity of the sources for the data represents a significant oversimplific-

ation, not only will it fail to provide accurate predictions but it also misses variations in the population,

which is the main objective of many studies;

■ in no-pooling, data coming from different sources are analyzed separately. This procedure ignores the

information related to the diversity of the individuals in the population and can lead to unsatisfactorily

variable inferences for the model parameters, in particular when little data is available. It must be noted,

though, that individual estimates can still be of use for the initialization of prior of hyperparameters

in a Bayesian estimation procedure as will be described in Section 8.1.2.

Hierarchical modelling manages to combine the information provided by different individuals and overcome

the limitations introduced by these two simplistic methods.

The first stage of the model corresponds to the intraindividual variability and aims to explain how an indi-

vidual evolves given a set of parameters supposed to represent it. The dynamics of each individual iwithin the

population is then described by the same parametric model with a different set of parameters θi. Generalized

linear models are often used for convenient and straightforward inference, however, the highly nonlinear

nature of plant growth models suggested to proceed otherwise, and this first stage will be represented by

the dynamics of general SSMs described in Section 1.1. The typical dynamics of an individual is thus well

described with a parametric model such as those presented in Chapter 2 and a mean population dynamics

y is assumed to be obtained with a set of parameters θ. The second stage of the model corresponds to the



Chapter 1. Mathematical framework 21

interindividual variability and depicts the common probability distribution of the different sets of parameters

that control the time dynamics of the individuals. The interindividual variability of the curves around the

typical population curve can therefore be explained by the parameter variability around the mean population

parameters as can be observed on Figure 1.2 for the yield curves of 4 different individuals. The parameters of

the model can be considered either fixed or random. The random parameters are assumed to follow a statist-

ical distribution parameterized by the typical population parameters and individual parameters are therefore

random variables following the same population distribution. In a Bayesian framework, a third stage is finally

added for the prior distribution of the population parameters.

1.3.3 State space models for populations

For the sake of consistency with literature, the mathematical notations used in the population approach will

slightly differ from the single individual case. A population is made up ofN different individuals indexed by

i ∈ J1, NK. If θi ∈ Rdθ denotes the set of parameters for individual i, the state space Equations 1.1 become

in their most general form: {
xi,n+1 = fn(xi,n, ui,n, θi, ηi,n),

yi,n = gn(xi,n, θi, ξi,n).
(1.26)

Hopefully, some simplifications can be made. In the population approach, the nature of variability is two-

fold and can be assumed, for the sake of simplicity, to encompass randomness arising from both process and

observation noises. The process noise ηn,i will therefore be ignored. As all applications of this thesis will be

done within controlled environments, the control variables ui,n will be the same for all individuals and can

be omitted. The transition part of Equation 1.26 can thus be simplified to:

xi,n+1 = fn(xi,n, θi) (1.27)

which allows, by induction, to rewrite more simply for all n:

xi,n+1 = hn(xi,0, θi), (1.28)

or in an even simpler form by incorporating the initial state into the hn function – or the parameter vector

if it is unknown:

xi,n+1 = hi,n(θi). (1.29)

1.3.4 Intraindividual variability

As previously mentioned, when dealing with population models in the rest of this thesis, it will always be

assumed that all observed variables follow a multiplicative normal observation model, which means that the

measurement error associated to a given state is proportional to the latter. Note however that this assumption

is made without loss of generality from a methodological point of view. For each individual, there are ni
measurements indexed by j ∈ J1, niK and yij therefore denotes the j-th measurement on individual i,

although index j does not designate time per se. The observations for the different individuals need not
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be at the same times. In the context of population models, the vector of all observations from n = 1 to

n = T for a given individual i is denoted by yi = (yij)j∈J1,niK ∈ Rni . Although the notations look similar,

there is usually little confusion possible between the observations yn at time n for a single individual and the

whole vector of observations yi from n = 1 to n = T for a given individual i. Given the complexity of the

observations in the case of the GreenLab model for Arabidopsis thaliana within a population approach, details

about the conversion between the observations at each time and the concatenated vector of all observations

for the whole simulation are provided in Section 2.4. Assuming that the hidden state corresponding to the

j-th observation of the i-th individual is simulated and denoted by hij(θi), then the observation model

considered implies that:

yij = hij(θi)× (1 + ξij) with ξij ∼ N (0, σ2). (1.30)

More elaborate observation models specifying heterogeneous observation-related variances, such as the one

proposed in [Duval et al., 2009] could also be considered. It is worth noting that the standard deviation

associated to the observation noise depends neither on the individual nor on the observations within a given

individual. With the standard notations of hierarchical models, this becomes:

yij ∼ N (hij(θi), σ
2hij(θi)

2) (1.31)

for i ∈ J1, NK and j ∈ J1, niK. Another way of rewriting this model with the vector of all observations of

the i-th individual yi reads:

yi =


yi1
...

yini

 =


hi1(θi) + ξi1hi1(θi)

...

hini(θi) + ξinihini(θi)

 ∼ N (hi(θi), τ
−1Ωi) (1.32)

where hi(θi) ∈ Rni is the vector of the hidden states corresponding to the experimental data for the i-th

individual (given by the model), and τ = σ−2 ∈ R⋆+ is called the precision. The reason for using the

precision instead of the standard deviation will become apparent when prior distributions for the estimation

of parameters in a Bayesian framework are discussed in Chapter 4. For the multiplicative observation model

considered, it is straightforward that Ωi reduces to:

Ωi = diag{hi(θi)2}. (1.33)

More complicated covariance matrices could be used in practice, but this is not relevant to the case considered

thereafter: each measurement is considered independant of the others, whence the diagonal matrix.

1.3.5 Interindividual variability

As the first stage of the model describes the intraindividual variability, the second stage of the model deals

with the interindividual variability and prescribes how the individual parameters θi are distributed within the

population. One of the simplest yet most sensible way to do so is to consider that the individual parameters

θi ∈ Rdθ follow a normal distribution:

θi ∼ N (η,Σ) (1.34)


