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theoretical guarantees. For all these reasons, we will first investigate the case of synthetic data simulated

directly from the GreenLab model. This ensures that there is no uncertainty related to either the plant model

or the image analysis algorithm and that the Bayesian parameter estimation method effectively works.

8.1 Simulated data

Data were simulated using the GreenLab model presented in Section 2.4. The control variables were taken

to be the same as for the experimental conditions described in Section 7.1. The number of hours per day was

set to ns = 8h, and the daily temperature to tn = 21◦C. The photosynthetically active radiation was taken to

be rn = 2.52 10−5MJ · cm2 · h−1. Each leaf was attributed a specific time of appearance: the first two leaves

appeared at n = 1h, the third and fourth leaves appeared at n = 24h. The time of appearance for the fifth

leaf was set to n5 = 40h. After that, the 5 + i-th leaf, for i > 1, appears at time n5+i = n5 + i ϕ, where

ϕ = 12h is the phyllochron. We focus on the estimation of the parameters θ = (e, µ1, µ2), even though more

parameters will be estimated in Sections 8.1.8 and 8.2.

8.1.1 Simulation of synthetic data

The dimension of the estimation problem is therefore d = 3. All the other parameters were fixed at constant

values throughout both the simulation of data and the estimation procedure. These values were:

µ = 3.150 · 10+00,

s = 5.000 · 10+00,

k = 7.000 · 10−01,

σ1 = 4.593 · 10−01,

σ2 = 3.991 · 10−01,

ρ2 = 7.801 · 10−02,

q0 = 3.807 · 10−05.

(8.1)

The parameters varying in the population are given true values for their mean and covariance matrix. In the

present case:

ηtrue =


1.558 · 10−03

4.531 · 10+00

5.390 · 10+00

 (8.2)

and:

Σtrue =


6.069 · 10−09 0 0

0 5.131 · 10−02 0

0 0 7.263 · 10−02

 (8.3)
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and τ true = 100. The choice of the covariance matrix actually corresponds to Σtrue = diag{(ηtrue/20)2}

and that of the precision amounts to a multiplicative normal observation noise with standard deviation

σtrue = (τ true)
−1/2

= 0.1. Data were simulated for 24 individuals: this was done on a single process and then

broadcasted to all others, the underlying motivation being that all processes obviously need to have the same

experimental data for the different individuals. For the i-th individual, a set of true individual parameters

was first sampled from the true population distribution:

θtrue
i ∼ N (ηtrue,Σtrue) (8.4)

and then used for the simulation of true leaf areas (avi,n)1:νmax,1:ns:T (hidden states) and their corresponding

noised values (ãvi,n)1:νmax,1:ns:T (observations) where:

ãvi,n = avi,n (1 + ξv,n) with ξvi,n ∼ N
(
0, (τ true)

−1
)
. (8.5)

The areas of all leaves were observed on every day for 21 days which, taking into account that the phyllochron

ϕ is fixed and given the rate of appearance of each leaf, amounts to observing 16 leaves over the whole

growth and a number of observations of ni = 136 for each individual i, i.e. a total number of observations

of ntot =
∑N

i=1 ni = 3264. We denote by τvi =
(
tvi,1, . . . , t

v
i,nv

i

)
the timeline for the v-th leaf and by

α̃v
i =

(
ãvi,1, . . . , ã

v
i,nv

i

)
the corresponding observations on leaf area at these time steps. The vector of all

concatenated observations thus reads:

yi =
(
α̃1
i , . . . , α̃

νmax
i

)
∈ Rni with ni =

νmax∑
v=1

nvi . (8.6)

The calculations were performed on as many processes as individuals, i.e. on np = 24 processes. For repro-

ducibility issues, the seed of the random number generator was fixed so that the same data was generated all

the time. However, for the estimation part and as soon as the experimental data is loaded on the different

processes, the seed is reset to a random value on each process.

The flattened vector of experimental data for all individuals is denoted as Y = (y1, . . . , yN ) ∈ Rntot . Examples

of simulated data is displayed on Figures 8.1 and 8.2. On Figure 8.1, the leaf areas for each of the first eight

leaves are displayed for the 24 individuals and on Figure 8.2 are displayed some examples of typical growth

curves for the first eight leaves of several individuals. Despite the rather low population covariance used, there

is still a high variability in the leaf areas. This is easily seen from Figure 8.2 when comparing, for instance,

the 6th and 8th individuals, the latter having maximum leaf areas twice as high as the former.

8.1.2 Initialization of the prior distributions

Defining the prior distributions of the population parameters is of crucial importance. A first step consists

in obtaining realistic values for the individual parameters θi. This can be done rather easily by performing

a GLS procedure on each individual i. These first sets of parameters can be used to compute reasonable

estimates of the population mean vector η and covariance matrix Σ. A first estimate of the individual set is

therefore independently computed as:

θ̂GLS
i = arg min

θ∈Θ

(Yi − hi(θi))
T
Σ−1

i (Yi − hi(θi)) , (8.7)
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Figure 8.1: Leaf area variability for the first eight leaves. Each dashed line represents the true
leaf area (hidden state) of a given individual and filled circles represent the corresponding

noised data (observations).
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Figure 8.2: Leaf area for the first eight leaves for 8 different individuals. The hidden states
are represented by dashed lines and observations by filled circles.

e µ1 µ2

Ei(δi) 3.661 · 10−03 2.333 · 10−03 8.618 · 10−04

maxi(δi) 9.969 · 10−03 7.328 · 10−03 2.189 · 10−03

Table 8.1: Average and maximum value of the relative errors for all
individual parameters (θi)i∈J1,NK.

where Σi = blockdiagv∈J1,νmaxK{V (α̃v
i ) Inv

i
} is the heteroskedastic matrix of the variances for each leaf, and a

Gauss–Newton optimization procedure with a maximum of 1,000 iterations was used. In practice, a couple

of tens iterations suffice to reach a local minimum. To assess their relevance, one can simulate the hidden

states from the GreenLab model using the GLS estimates h(θ̂GLS
i ) and these results can further be compared

to the hidden states that would have been obtained without a GLS algorithm; such graphs are displayed on

Figure 8.3. Since the true values of the parameters are known, it is possible to compare θtrue
i to θ̂GLS

i . Relative

errors were calculated for each parameter and each individual. The mean and maximum values of (δei )i∈J1,NK,
(δµ1

i )i∈J1,NK and (δµ2

i )i∈J1,NK were calculated to illustrate the goodness of the GLS estimates.


