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REGRESSION

Regression allows the researcher to make 
predictions of the likely values of the 
dependent variable Y 

from known values of independent variable X in a 
simple linear regression, 

or from known values of a combination of 
independent variables D, E, and F in multiple 
linear regression.



Use of Regression

We often need to determine such issues as:

• the relationship between decrease in pollutant 
emissions  and a factory’s annual expenditure on 
pollution abatement devices. If we spend more 
on abatement can we decrease emissions even 
more?

• how investment varies with interest rates. Can 
we predict how much more investment occurs 
with a 1% interest rise?

• how unemployment varies with inflation. What 
level will unemployment reach if inflation 
increases by 5% this year ?



Examples of simple and multiple 
linear regression questions

• In simple linear regression – does the number of 
customers predict value of sales  - variations in 
one IV predicting  variations in one DV

• In multiple linear regression – does maximising
value of sales depend on a particular 
combination of the number of customers, price 
variations, number of sales outlets, number of 
salespersons…etc.



REGRESSION

• Regression therefore investigates relationships 
between IV and DV in terms of the predictive 
ability of the IV to predict (estimate) the DV

• It is therefore closely linked to correlation and 
shares many of the assumptions of ‘r’, e.g.  

* the relationships should be linear

* the measurements of both the IV and DV  variables must 
be interval or ratio (scale data) 



IMPORTANT CONCEPTS

• Predictor variable.     

A variable (IV) from which a value is used to 
estimate a value on another variable (DV)

• Criterion variable.   

A variable (DV) a value of which is estimated from a 
value of the predictor variable (IV)



When we look at two variables together we summarise that relationship with a 
straight line – the scattergraph showing the intersection of paired X and Y  
values.

USING A LINE TO SUMMARISE DATA



A straight line may be represented graphically (previous slide) or as an 
equation.  The general form of the equation of a straight line is:

Y  =  b0 + b1X

This is the Regression Equation and defines the Line of Best Fit 

Where: 

Y is the variable on the vertical axis

X is the variable on the horizontal axis

b0 is the value of Y where the line of best fit intercepts the Y axis ( 
also called the Constant)

b1 is the slope of the line (the bigger b, the steeper the line)

USING A LINE TO SUMMARISE DATA



LINE OF BEST FIT

• This is the straight line on a scattergraph that 
‘fits’ the scatter points best i.e. as closely 
possible

• This line of best fit minimises the deviations 
from the line of all the points on a scattergraph

• It make errors of prediction of Y as small as 
possible.



If our line was perfect,  each datapoint would lie on the line. We can examine 
the error in terms of the vertical discrepancy between each datapoint and the 
line.

We can think of these vertical 
distances as the “error” or 
“residual”.
By squaring these distances 
we have the “squared 
residuals”.
The “best” line is the line 
which has the smallest value 
of these squared residuals.
The method which determines 
the line of best fit is the 
“least squares” method.

Line of Best Fit and Least Squares 
Solution



The Least Squares Solution

• This is the model that minimises the sum of the squared 
deviations from each point to the regression line

• The regression line defined by the least squares model is 
the line of best fit.



ASSUMPTIONS OF REGRESSION

• A minimum requirement is to have at least 15 times more cases than 
IV’s i.e. with 3 IV’s - a minimum of 45 cases. This assumption should 
be checked before we proceed with the test. 

• Outliers should be removed. One extremely low or high value distorts 
the prediction by changing the angle of slope of the regression line. 
We do not practice this in this unit because of time restrictions. 

• Differences between obtained and predicted DV values should be 
normally distributed. We will test this after we obtain the results.

• variance of residuals the same for all predicted scores 
(homoscedasticity). We will test this after we obtain the results.

• Regression procedures assume that the dispersion of points is linear. 
This is needed to be tested before we proceed in simple liner 
regression and is assumed in multiple linear regression. 

• There is no implication that an increase in X causes an increase in Y. 
Simultaneous increase in X and Y may have been caused by an 
unknown third variable excluded from the study.
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Simple Linear Regression

Assumptions 
are met.

See if ‘F’ is 
significant 

in the 
ANOVA 
Table

yes

No

Stop and 
report

1. Interpret the R2 in the Model 
Summary Table.

2. Check the Sig. of the T statistics for 
each component of the model. 
Exclude any non significant T when 
reporting .

3. Write down the model 
equation(y=b0=b1X1).

4. Report the findings in a paragraph 
using the betas. 



Example

• Assume we want to predict ‘value of monthly sales’ 
from knowledge of ‘floor area in sq m.’ Access the 
data file Chapter 16 C from the LMS.

• First, test the assumptions of linearity and 
homoscedasticity by generating a scatter graph 
for the two variables



Testing linearity

Is this a linear relationship?
Yes, we can draw a line that 
can represent the direction 
of the relationship and is as 
close as to all the data 
points.



Testing homoscedasticity

Homoscedasticity makes 
the data take the shape of a 
funnel or a cigar. Our 
variables do not breach 
homoscedasticity.
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Simple Linear Regression  - SPSS

1. Assume we want to predict ‘value of monthly sales’ from knowledge of 
‘floor area in sq m.’ Access the data file Chapter 16 C from the LMS.

2. Select Analyse and then Regression.
3. Choose Linear to open the Linear Regression dialogue box
4. Click on the dependent variable (value of sales per month) and 

place it in the Dependent: box.
5. Select the independent variable(  floor area in sq mts) and 

move it into Independent [s]: box 
6. In Method box ensure Enter is selected. 



Simple Linear Regression  - SPSS

7. Select Statistics to obtain the Linear Regression: Statistics 
dialogue box.

8.  Choose Estimates, and Model fit. Check Casewise 
diagnostics box to detect outliers and accept default value of 
3 sd’s
 

 
 



Simple Linear Regression  - SPSS

 

9. Next click Plots.  Place ZRESID into Y box and ZPRED into X 
box, finally select histogram. 
10.Continue and finally OK



Check the normality of the

• A  histogram and standardized residual scattergraph are usually 
obtained because they are essential to address the issue of 
whether major assumptions for linear regression were met. 

• The histogram assesses normality and reveals no definite 
skewness or extreme outliers. 
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Simple Linear Regression
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equation(y=b0=b1X1).

4. Report the findings in a paragraph 
using the betas. 



INTERPRETATION OF OUTPUT

The ANOVA Table indicates that the regression equation is 
highly significant with an F = 121.009, p< .05. So in terms of 
variance explained and significance the regression equation ( 
‘model’) is excellent.  Should F not be significant  then the 
regression as a whole has failed  and no more interpretation is 
necessary. 



Simple Linear Regression
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INTERPRETATION OF OUTPUT

The Model Summary Table displays ‘R’ as +0.954 and adjusted 
R2 as 0.902 which are very high.  90.2% of the variance in 
monthly sales value is explained by the variance in floor area. 
Adjusted R2 is used as this refers to sample data.



Simple Linear Regression
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Output for Simple Linear 
Regression
• The coefficients table is crucial and displays the values for constant and 

beta from which the regression equation can be derived. 

• The constant (intercept), b0 = 901.247, but it is not significant. The 
unstandardised or raw score regression coefficient or slope (b1) 
displayed in SPSS under B as the second line =1.686.  The t value for B 
was significant and implies that this variable (floor area) is a significant 
predictor.   

• Think of B as the change in outcome associated with a unit change in 
the predictor. This means for every one unit rise (1 sq metre increase in 
floor space) in B, sales (the outcome) rise by $1686. 

• Management can now determine whether the cost of increasing floor 
area (e.g. building, rental, staffing etc) will bring sufficient returns over 
a defined time span. 



REGRESSION EQUATION

• The regression equation is:

Y  =  b0 +  b1              X 
Y =    0 +1.686     (X). 

• It enables us to predict expected values of Y for any new 
case of X. For example,  we can now ask and answer the 
question  “What is the expected monthly sales for 
increasing  floor area to 7000 sq m?”

• Y = 0  + 1.686(7000) = ?? (calculate it manually).



MULTIPLE REGRESSION

• Multiple Regression

a technique for estimating the value of the criterion 
variable (Y) from values on two or more other 
predictor variables (X’s)

• Multiple Correlation (R)

a measure of the correlation of one dependent 
variable with a combination of two or more 
predictor variables.

Coefficient of Multiple Determination is R2



MULTIPLE REGRESSION

• So far we have focussed on simple linear regression in 
which one independent or predictor variable was used to 
predict the value of a dependent or criterion variable. 

• But there can be many other potential predictors that 
might establish a better or more meaningful prediction. 
With more than one predictor variable we use multiple 
regression. 

• E.g. the prediction of individual income may depend on a 
combination of education, job experience, gender, age, etc.

• Multiple regression employs the same rationale as simple 
regression and the formula is a logical extension of that for 
linear regression:

Y = b0 + b1X1 + b2 X2 + b3 X3 +....  
etc



Assumptions of Multiple Regression

• Linearity: it is assumed when it comes to our work in this 
unit.

• Normality of the residuals: To be checked after we run the 
test as it will be part of the output.

• Homoscedasticity: To be checked after we run the test as 
it will be part of the output.

• Multicollinearity: Very high correlations between IV’s 
should be avoided. To be checked after we run the test as 
it will be part of the output.



TYPES OF MULTIPLE 
REGRESSION

There are three types of Multiple Regression

1. Standard Multiple regression

2. Hierarchical Multiple Regression

3. Stepwise Multiple Regression



Multiple Linear Regression
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Example

• We will be exploring the impact of respondents’ perceptions of control 
on their levels of perceived stress. The literature in this area suggests 
that if people feel that they are in control (IVs) of their lives, they are 
less likely to experience ‘stress’ (DV) (tpstress)

• Control = IVs = 

- the Mastery scale, which measures the degree to which people feel they have control 
over the events in their lives (tmast)

- the Perceived Control of Internal States Scale (PCOISS), which measures the degree to 
which people feel they have control over their internal states 

• Example of research questions

- 1. How well do the two measures of control (mastery, PCOISS) predict perceived stress?  
How much variance in perceived stress scores can be explained by scores on these two 
scales?

- 2. Which is the best predictor of perceived stress: control of external events (Mastery 
scale), or control of internal states (PCOISS)?



Procedure for standard multiple regression

• 1. From the menu at the top of the screen click on: Analyze, then 
click on Regression, then on Linear.

• 2. Click on your continuous dependent variable (e.g. total 
perceived stress: tpstress) and move it into the Dependent box.

• 3. Click on your independent variables (total mastery: tmast; 
total PCOISS: tpcoiss) and move them into the Independent 
box.

• 4. For Method, make sure Enter is selected (this will give you 
standard multiple regression).

• 5. Click on the Statistics button:

- Tick the box marked Estimates, Confidence Intervals, Model fit, Descriptives, Part and 

partial correlations and Collinearity diagnostics.

- In the Residuals section tick the Casewise diagnostics and Outliers outside 3 standard 
deviations.

- Click on Continue.



Procedure for standard multiple regression

6. Click on the Options button. In the Missing Values section click 
on Exclude cases pairwise.

7. Click on the Plots button.

• Click on *ZRESID and the arrow button to move this into the Y box.

• Click on *ZPRED and the arrow button to move this into the X box.

• In the section headed Standardized Residual Plots, tick the Normal probability plot 
option.

• Click on Continue.

8. Click on the Save button.

• • In the section labelled Distances tick the Mahalanobis box (this will identify multivariate 
outliers for you) and Cook’s, then Click on Continue.

9.  Click OK



Check for the assumption of Multicollinearity

* Go for the Correlation table.

* Check that your independent 
variables show at least some 
relationship with your dependent 
variable (above 0.3 preferably).

* Also check that the correlation 
between each of your independent 
variables is not too high (no more 
than 0.7).

* In cases with more than (0.7), you 
need to omit one of the variables.

* Go for table “collinearity
diagnostics” .

* A condition index greater than 

15 indicates a possible problem

* An index greater than 30 suggests a 
serious problem with collinearity.  



Check for the assumption of Multicollinearity >>> Cont.  

is an indicator of how much of the variability of 
the specified independent is not explained by 
the other independent variables in the model 
and is calculated using the formula 1–R2 for 
each variable. If this value is very small (less 
than .10), it indicates that the multiple 
correlation with other variables is high, 
suggesting the possibility of multicollinearity.

The other value given is the VIF (Variance 
inflation factor), which is just the inverse of 
the Tolerance value (1 divided by 
Tolerance). VIF values above 10 would be a 
concern here, indicating multicollinearity.



Check for the assumption of normality and homoscedasticity

In the Normal Probability Plot you are hoping 
that your points will lie in a reasonably straight 
diagonal line from bottom left to top right.

In the Scatterplot of the standardised
Residuals you are hoping that the residuals 
will be roughly rectangularly distributed, 
with most of the scores concentrated in the
centre (along the 0 point).



Multiple Linear Regression
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Interpretation of the output

• Evaluating the Model

(Sig = .000, this really means p<.0005).
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Interpretation of the output

• Evaluating the Model

When a small sample is involved, the R square 
value in the sample tends to be a rather optimistic 
overestimation of the true value in the population. 
The Adjusted R square statistic ‘corrects’
this value to provide a better estimate of the true 
population value. If you have a small sample you 
may wish to consider reporting this value, rather 
than the normal R Square value.

How much of the variance 
in the DV (stress) is 

explained by the model.

Research question
1. How well do the two measures of control 
(mastery, PCOISS) predict perceived stress?  
How much variance in perceived stress scores 
can be explained by scores on these two 
scales?



Multiple Linear Regression
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Interpretation of the output
• Evaluating each of the independent variables

Standardized coefficients refer to how many standard deviations a 
dependent variable will change, per standard deviation increase in 
the predictor variable.  Standardization of the coefficient is usually 
done to answer the question of which of the independent variables 
have a greater effect on the dependent variable in a multiple 
regression analysis, when the variables are measured in different 
units of measurement (for example, income measured in dollars 
and family size measured in number of individuals).

If you square this value (whatever 
it is called) you get an indication of 
the unique contribution of that 
variable to the total R squared

(Sig = .000, this really 
means p<.0005) for each IV

Research question
2. Which is the best predictor of perceived 
stress: control of external events (Mastery 
scale), or control of internal states (PCOISS)?



Interpretation of the output

• More interpretations

Interpreting Estimated Coefficient

tpstress = 50.971 + (-.175 × tPCOISS) + (-.625 × t Mastery)

This is the model of prediction of  the tpstress by the two variables.

This relationship is in the original units (scores of PCOISS, and scores of 
Mastery). This is useful for predicting things in the real world, but it is difficult 
to compare different predictors. Predictors might have large B values just 
because they are measured on a larger scale (compare minutes to hours in 
the above example). 



Reporting the results (APA style)

Multiple regression analysis was used to test if the two measures of 
control (mastery, PCOISS) significantly predicted the perceived 
stress predicted. The results of the regression indicated the two 
predictors explained 46.8% of the variance (R2=.468, 
F(2,423)=186.341, p<.05). It was found that Mastery significantly 
predicted total perceived stress (β= -.424, p<.05), as did PCOISS 
(β= -.36, p<.05). 


