ECONOMETRICS ASSIGNMENT 4

1) Itis asimple linear regression between labour wage and years of education. From the
standard error of regression value, it can be said that the estimated model is not a bad fit .
The intercept term comes as 5.83. So that means that if we keep the years of education as
constant then the labour wage will increase by 5.83 dollars. The slope coefficient is 0.065.
That means that with 1 year increase in the years of education, the labour wage will
increase by 0.065 dollars. The R2 value is 0.155 or the 15.5%. This describes that this
regression equation can explain 15.5% variability of the model with certainty. The standard
error of the regression is 0.42, which is low. The smaller the value of the standard error of
the regression the better the model is. The P-value of the slope coefficient is less than 0.05
so we infer that there is significant evidence that the ED has an impact on the labour wage. If
education is increased by one standard deviation, then the labour wage will increase by
0.0023 dollars. After running the coefficient test, the p value is very less than 0.05, so there
is heteroskedasticity which means that the systematic change is in the spread of the
residuals over the range of measured values. The table below shows the results described
above.

call:
Im(formula = LWAGE ~ ED, data = df)

Residuals:
Min 1@ Median 3Q Max
-1.92996 -0.26863 0.00931 0.28453 1.83076

Coefficients:

Estimate Std. Error t value Pr(|t])
(Intercept) 5.838779 0.030997 188.37 <2e-16 *#*%
ED 0.065204 0.002358 27.65 <2e-16 ***

Signif. codes: 0 ‘***’ 0,001 ‘**’ 0.01 “*’ 0.05 *.” 0.1 * * 1

Residual standard error: 0.4243 on 4163 degrees of freedom
Multiple R-squared: 0.1552, Adjusted R-squared: 0.155
F-statistic: 764.5 on 1 and 4163 DF, p-value: < 2.2e-16

Table 1: Panel Regression table between LWAGE and ED

2) | extend the model by including individual or entity fixed effects and time fixed effects.
Years of education, weeks worked, and years of full-time experience are the time fixed
effects and the rest are entity fixed effects. | run a panel regression and find that all the
variables have p value less than 0.05 which states that all have them have some kind of
impact on the labour wage. Also, the R square value of the model is 45%, which is relatively

high. | have attached the table below.

call:

pIm(formula = LWAGE ~ EXP + WKS + ED + OCC + IND + SOUTH + SMSA +
MS 4+ UNION + FEM + BLK, data = df, model = "within",
index = c("YEAR", "ID"), effects = "twoways")



3)

Coefficients:
Estimate sStd. Error t-value Pr(|t])

EXP 0.00697427 0.00047458 14.6957 < 2.2e-16
WKS 0.00442363 0.00096347 4.5913 4.535e-06

ED 0.05417333 0.00232724 23.2779 < 2.2e-16
[e]ala -0.14293191 0.01303951 -10.9614 < 2.2e-16
IND 0.05898222 0.01049250 5.6214 2.019e-08
SOUTH -0.05848294 0.01115090 -5.2447 1.644e-07
SMSA 0.16054192 0.01074415 14.9423 < 2.2e-16

MS 0.09680071 0.01829639 5.2907 1.28le-07
UNION 0.09208680 0.01138406 8.0891 7.82le-16

FEM -0.34004867 0.02232483 -15.2319 < 2.2e-16

BLK -0.16055401 0.01962144 -8.1826 3.659e-16 ***
Signif. codes: 0 “***’ 0,001 ‘**’ 0.01 “*’ 0.05 “.” 0.1 “ " 1
Total Sum of Squares: 729.43

Residual Sum of Squares: 401.05

R-Squared: 0.45019

Adj. R-Squared: 0.44793
F-statistic: 308.689 on 11 and 4147 DF, p-value: < 2.22e-16

Table 2: Panel Regression involving Fixed Effect Variables

| filtered the original dataset to get the data for the year 1. | then estimate the model as
given in the question. The R? value of the regression model comes as 28.2% and a low
standard error of regression value of 0.33 which tells us that the individual variables and the
joint interaction terms explain the model better. We then create two regression equations
one for male (i.e., FEM=0) and another for female (i.e., FEM=1). The regression equation for
male is Im(formula = LWAGE ~ BLK + UNION + OCC, data = year_1) by putting FEM =0 in the
main equation shown in the box below. For female we have replace the fem with 1 and

rearrange the equation.

Tm(formula = LWAGE ~ FEM + BLK + UNION + OCC + FEM * BLK + FEM *
UNION + FEM * 0OCC, data = year_1)

Residuals:
Min 1Q Median 3Q Max
-1.1108 -0.2095 0.0441 0.2535 0.6676

coefficients:
Estimate std. Error t value Pr(>|t]|)

(Intercept) 6.54886 0.02216 295.519 < 2e-16 ***

FEM -0.42396 0.05998 -7.068 4.47e-12

BLK -0.16534 0.06449 -2.564 0.0106

UNION 0.13461 0.03236  4.159 3.67e-05 *

occ -0.31069 0.03149 -9.865 < 2e-16 *¥*

FEM:BLK 0.15469 0.12719 1.216 0.2244

FEM:UNION 0.02828 0.10793 0.262 0.7934

FEM:0CC -0.09696 0.09849 -0.984 0.3253

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 * ° 1

Residual standard error: 0.3312 on 587 degrees of freedom
Multiple R-squared: 0.2817, Adjusted R-squared: 0.2731
F-statistic: 32.88 on 7 and 587 DF, p-value: < 2.2e-16

Table 3: Regression Table with Interaction terms

Now | estimate the main equation with FEM=0 and run the regression. | see that the R? value
has reduced t016.6% and the residual sum of squares has increased from 0.33 to 0.35. This
clearly shows that the female variables had considerable effect on the labour wage in the
regression equation. | conduct an Anova test between these two-regression equations and
find that p value is less than 0.05 which confirms the fact that female has an impact on the



regression equation. Below are the charts for Regression without female and the Anova
table.

call:
Im(formula = LWAGE ~ BLK + UNION + OCC, data = year_1)

Residuals:
Min 1@ Median 3Q Max
-1.17968 -0.23728 0.03433 0.26030 0.71543

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 6.48776 0.02207 293.915 < 2e-16 °

BLK -0.24693 0.05651 -4.370 1.47e-05 °

UNION 0.16945 0.03261 5.195 2.82e-07 *

occ -0.29744 0.03145 -9.458 < 2e-16 ***

Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 “.” 0.1 * ' 1

Residual standard error: 0.3556 on 591 degrees of freedom
Multiple R-squared: 0.1662, Adjusted R-squared: 0.162
F-statistic: 39.26 on 3 and 591 DF, p-value: < 2.2e-16

> anova(model31,model3)
Analysis of variance Table

Model 1: LWAGE ~ BLK + UNION + OCC
Model 2: LWAGE ~ FEM + BLK + UNION + OCC + FEM * BLK + FEM * UNION + FEM *
0cC
Res.Df RSS Df sum of Sq F Pr(>F)
1 591 74.726
2 587 64.377 4 10.349 23.592 < 2.2e-16 ***

signif. codes: 0 “*¥%’ 0,001 **+' 0.01 ‘*’ 0.05 *.” 0.1 * ' 1

Table 4: Regression table without Female and the Anova table

Now | try to find out the regression equation of the model without the interaction terms

i.e. making them equal to 0. We see that the p-value of the FEM coefficient is less than 0.05.
This says that the coefficient of FEM is statistically significant. Now in contrast | try to test
the joint significance of the interaction terms. To do this | conduct a anova test with the two
models namely the model without any interaction terms and the original model with all the
interaction terms. We see that the P value is 0.58 which is greater than 0.05 so fail to reject
the null hypothesis and say that the interaction terms does not have any effect on the
regression equation. Below are the tables for regression without the interaction terms and

the anova table involving the two models
call:
Im(formula = LWAGE ~ FEM + BLK + UNION + OCC, data = year_1)

Residuals:
Min 1@ Median 3Q Max
-1.11119 -0.20787 0.04788 0.25312 0.67468

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 6.54927 0.02151 304.458 < 2e-16
FEM -0.42736 0.04441 -9.622 < 2e-16
BLK -0.13216 0.05391 -2.451 0.0145
UNION 0.13957 0.03051 4.575 5.8e-06
occ -0.31820 0.02934 -10.845 < 2e-16
Signif. codes: 0 *#***’ 0,001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 * * 1

Residual standard error: 0.3309 on 590 degrees of freedom
Multiple R-squared: 0.2793, Adjusted R-squared: 0.2744
F-statistic: 57.16 on 4 and 590 DF, p-value: < 2.2e-16



> anova(mode132,model3)
Analysis of variance Table

Model 1: LWAGE ~ FEM + BLK + UNION + OCC
Model 2: LWAGE ~ FEM + BLK + UNION + OCC + FEM * BLK + FEM * UNION + FEM *
ocCC
Res.Df RSS Df sum of sq F Pr(>F)
1 590 64.590
2 587 64.377 3 0.21331 0.6483 0.5842

Table 5: Regression Table without interaction terms and the Anova Table

Using the subset from Question 3 | create two subsets, one for age greater than 30 and the
other less than 30. | run the regression for both the case which are showed in the tables

below.

call:
Im(formula = LWAGE ~ EXP, data = exp_greater_30)

Residuals:
Min 1Q Median 3Q Max
-0.98016 -0.20765 0.00225 0.24349 0.73136

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 7.38597 0.32567 22.680 < 2e-16 *#%
EXP -0.02754 0.00957 -2.877 0.00489 **

Signif. codes: 0 **

€ 0.001 ‘**’ 0.01 ‘¥’ 0,05 “.” 0.1 * " 1

Residual standard error: 0.3357 on 101 degrees of freedom
Multiple R-squared: 0.07576, Adjusted R-squared: 0.06661
F-statistic: 8.279 on 1 and 101 DF, p-value: 0.004894

Table : Regression table for experience greater than 30
call:
ITm(formula = LWAGE ~ EXP, data = exp_lesser_30)

Residuals:
Min 1Q Median 3Q Max
-1.29568 -0.24904 0.04975 0.29724 0.67896

Coefficients:

Estimate Std. Error t value Pr(>|[t])
(Intercept) 6.147261 0.032517 189.045 < 2e-16
EXP 0.015906 0.002092 7.604 1.48e-13 #%=%

Signif. codes: 0 ‘***’ (0,001 “**’ 0.01 ‘*’ 0.05 *.” 0.1 * " 1

Residual standard error: 0.3738 on 490 degrees of freedom
Multiple R-squared: 0.1055, Adjusted R-squared: 0.1037
F-statistic: 57.81 on 1 and 490 DF, p-value: 1.48le-13

Table : Regression table for experience less than 30
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Chart 2: Scatter Plot for age greater than 30

So, from the above chart 1 we can infer that people having age less than 30, experience and
labour wage are perfectly related but as the age goes beyond 30 experience does not only
effects the wage. There are other factors that come in the way and hence the regression line
is not perfectly linear as in our case in chart 2. Here regression lines are denoted by the red
line.

Using the original panel data, | estimate the regression equation that experience has both
time and entity fixed effect on labour wage. The p value of the slope coefficient is less than
0.05. But the R? value is very low, 2.2%. So, experience weakly describes labour wage. Now
we add another fixed effect variable, ED to this model. Now the R? value goes up to 25% and
the residual sum of squares goes down to 546 from 713. This shows that addition of one
more fixed effect drastically impacts the regression model and helps define the model more
efficiently. Wages increase with the work experience and this is true when we compare the
data to the real world. Without adding the experience as a predictor for wages the model’s
predictions have increased error.



call:
pIm(formula = LWAGE ~ EXP, data = df, model = "within",
index = c("YEAR", "ID"), effects = "twoways")

Balanced Panel: n =7, T = 595, N = 4165

Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-2.148385 -0.254883 0.037788 0.268494 1.906929

Coefficients:
Estimate Std. Error t-value Pr(>|t])
EXP 0.00577751 0.00059534 9.7045 < 2.2e-16 ***

Signif. codes:
0 “**%' 0,001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 ° ' 1

Total Sum of Squares: 729.43

Residual Sum of Squares: 713.27

R-Squared: 0.022153

Adj. R-Squared: 0.020507

F-statistic: 94.1778 on 1 and 4157 DF, p-value: < 2.22e-16

Table : Panel Regression table with Exp

pIm(tormula = LWAGE ~ EXP + ED, data
index = c("YEAR", "ID"), effects

dft, model = "within",
"twoways")

Balanced Panel: n =7, T = 595, N = 4165

Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-2.03768 -0.22758 0.03844 0.24221 1.95842

Coefficients:

Estimate Std. Error t-value Pr(>|t|)
EXP 0.01001214 0.00053411 18.745 < 2.2e-16 ***
ED 0.07379691 0.00206563 35.726 < 2.2e-16 ***
Signif. codes:
0 *#***’ 0,001 ***’ 0.01 *** 0,05 *.” 0.1 * " 1

Total sum of Squares: 729.43

Residual Sum of Squares: 545.69

R-Squared: 0.2519

Adj. R-Squared: 0.25046

F-statistic: 699.712 on 2 and 4156 DF, p-value: < 2.22e-16

Table : Panel Regression table with Exp and ED

R Codes

setwd("C:\\Users\\soham\\Desktop\\REcotrics1")

df <- read.csv('cornwellrupert1988_rev.csv')

install.packages("AER")

library(AER)

install.packages("ggplot2")

library(ggplot2)

install.packages("plm")

library(plm)

install.packages("sandwich")

library(sandwich)

install.packages("dplyr")

library(dplyr)

##Q1




# estimating LWAGE with Education

modell <- Im(LWAGE ~ED,data=df)

# Summary of the model

summary(modell)

# checking for heteroskedasticity

coeftest(modell, vcov = vcovHC, type = "HC1")

##Q2

model2 <- pIm(LWAGE~EXP+WKS+ED+OCC+IND+SOUTH+SMSA+MS+UNION+FEM+BLK,
data=df,index = ¢("YEAR","ID"), model="within", effects="twoways")

summary(model2)

##Q3

#Filter for year 1

year_1 <- df %>% filter(YEAR == 1)

model3<-Im(LWAGE~FEM+BLK+UNION+OCC+FEM*BLK+FEM*UNION
+FEM*OCC,data=year_1)

summary(model3)

model31<-Im(LWAGE~BLK+UNION+OCC,data=year_1)

summary(model31)

anova(model31,model3)

model32<-Im(LWAGE~FEM+BLK+UNION+OCC,data=year_1)

summary(model32)

anova(model32,model3)

##Q4

# Filtering out Experiance

exp_greater_30 <- year_1 %>% filter(EXP >=30)

exp_lesser_30 <- year_1 %>% filter(EXP <30)

exp_greater_30_model <- In(LWAGE ~ EXP,data = exp_greater_30)

plot(exp_greater_30_model)

summary(exp_greater_30_model)

exp_lesser_30_model <- Im(LWAGE ~ EXP,data = exp_lesser_30)

plot(exp_lesser_30_model)

summary(exp_lesser_30_model)

##Q5

#fitting with EXP

model5 <- piIm(LWAGE
~EXP,data=df,index=c("YEAR","ID"),model="within",effects="twoways")

#fitting with experince and also with education

model5_with_ED <- pIm(LWAGE
~EXP+ED,data=df,index=c("YEAR","ID"),model="within" effects="twoways")

summary(model5)

summary(model5_with_ED)




