
CIS606 Analysis of Algorithms

Fall Semester, 2021

Assignment 3: Prune and Search

Due Date: 11:59 p.m., Sunday, Nov. 7, 2020

1. (20 points) Suppose you are given an array A with n entries, with each entry holding a

distinct number (i.e., no two numbers of A are equal). You are told that the sequence of

values A[1], A[2], . . . , A[n] is down-up ordered: For some index p between 1 and n, the values

in the array entries decrease down to position p in A and then increase the remainder of the

way until position n. (So if you were to draw a plot with the array position j on the x-axis

and the value of the entry A[j] on the y-axis, the plotted points would decline until x-value

p, where they’d achieve their minimum, and then rise from there on.)

You’d like to find the “peak entry” p without having to read the entire array – in fact, by

reading as few entries of A as possible. Show how to find the entry p by reading at most

O(log n) entries of A. In other words, design an O(log n) time algorithm to find the peak

entry p.

For example, let A = {12, 11, 8, 6, 1, 10, 13, 19, 27}, which is be a down-up array. The peak

entry of A is 1. So the output of your algorithm is either 1 or the index of 1 in A.

2. (20 points) Suppose you are consulting for site location of an emergency exit of a shopping

street. There are n stores, represented by n points p1, p2, . . . , pn on the line. Let the line be

x-axis. We are given the x-coordinate of the n stores pi = (xi, 0) for i = 1, 2, . . . , n. Note

that the stores are not given in any sorted order. Our goal is to pick an optimal location for

the emergency exit (i.e., find the x-coordinate of the exit) such that the total sum of the

distances of stores to the exit is minimized. For simplicity, we assume no two stores have

the same x-coordinate.

Design an O(n) time algorithm to compute an optimal location for the emergency exit.

3. (30 points) Here is a generalized version of the selection problem, called multiple selection.

Let A[1 · · ·n] be an array of n numbers. Given a sequence of m sorted integers k1, k2, . . . , km,

with 1 ≤ k1 < k2 < · · · < km ≤ n, the multiple selection problem is to find the ki-th smallest

number in A for all i = 1, 2, . . . ,m. For simplicity, we assume that no two numbers of A are

equal.

For example, let A = {1, 5, 9, 3, 7, 12, 15, 8, 21}, and m = 3 with k1 = 2, k2 = 5, and k3 = 7.

Hence, the goal is to find the 2nd, the 5-th, and the 7-th smallest numbers of A, which are 3,

8, and 12, respectively.

(a) Design an O(n log n) time algorithm for the problem. (5 points)

1



(b) Design an O(nm) time algorithm for the problem. Note that this is better than the

O(n log n) time algorithm if m < log n. (5 points)

(c) Improve your algorithm to O(n logm) time, which is better than both the O(n log n)

time and the O(nm) time algorithms. (20 points)

Total Points: 70

2


