
EW7 Assignment: Linear programming

Note: A template will not be provided for this assignment. You still need to publish and submit your
m-file, so neatly organize it using code cells and comments as was done in the previous templates. The
autograder does not rely on the format of this file.

Turn in the following files (upload to Canvas; see Introduction module for step-by-step instruc-
tions):

• LP Firstname Lastname.m

• LP Firstname Lastname.pdf

• LP Score.mat

• All function files that you are asked to create in the assignment

1. (Not graded) The Matlab command fill (a specialized wrapper around patch) is used to display
polygonal regions in a plane. Examine and run the following code to acquaint yourself with the
behavior of fill, which you will use later in this assignment.

begin code

1 XYpts = [-1 0; -1 2; 0 3; 2 3; 2 0];

2 Xshift = 0.5;

3 Yshift = 0.25;

4 XYpts_shifted=[XYpts(:,1)+Xshift XYpts(:,2)+Yshift];

5 figure

6 hold on

7 fill(XYpts(:,1), XYpts(:,2),’-’);

8 fill(XYpts_shifted(:,1), XYpts_shifted(:,2),’-’);

9 axis([-2 3 -1 4])

10 hold off

11

12 figure

13 hold on

14 hf1 = fill(XYpts(:,1), XYpts(:,2),’-’);

15 get(hf1,’Type’)

16 hf2 = fill(XYpts_shifted(:,1), XYpts_shifted(:,2),’-’);

17 set(hf1,’Facecolor’,’cyan’,’Facealpha’,.1,’Edgealpha’,1,’Edgecolor’,’b’);

18 set(hf2,’Facecolor’,’cyan’,’Facealpha’,.1,’Edgealpha’,1,’Edgecolor’,’b’);

19 axis([-2 3 -1 4])

20 hold off

end code

1 of 8

2. A company makes and sells two different widgets, A and B. The demand for widgets is unlimited,
but the company is constrained by the machine capacity and government enforced emissions
restrictions. Production of A requires 3 machine hours/widget, and production of B requires
4 machine hours/widget. There are 20,000 machine hours available in the current production
period. The factory produces 3 lbs. of CO2 for each A produced, and 1 lb. of CO2 for each B
produced. The government has imposed a limit of the total CO2 produced by the factory to be
less than or equal to 12000 lbs. The production costs are $3/widget for A and $2/widget for B.
The sale price of A is $6/widget, and the sale price of B is $5.40/widget.

(a) Formulate a linear program (LP) to maximize profit, subject to the machine capacity and
emissions restrictions. The LP should be in the standard form

min
x

cTx

Subject to Ax ≤ b

where x is the vector of decision variables in Rn, c is the cost vector in Rn, A is a matrix in
Rm×n and b is a vector in Rm.

Note: You do not need to turn anything in for the following items i - vi, but will need to
determine them to complete part b, c, and d of this problem.

Consider the following as you proceed:

i. What are the decision variables?

ii. What is the inequality constraint imposed by the machine capacity?

iii. What is the inequality constraint imposed by the emission restrictions?

iv. Are there other constraints? If so, what are they?

v. What quantity should be maximized?

vi. Write the LP in standard form, including a description of the meaning of the decision
variable x. (NOTE: how do you transform a maximization into a minimization?)

(b) Solve the problem graphically (hand graded)

i. Using the plot command in MATLAB, plot the inequality constraints of the Linear
Program problem. Use the fill command to define the feasibility set. Use appropriate
axis limits when plotting the constraints.

ii. On the same graph, plot the α-levelset of the objective function to be minimized for
α = −18000, −20000, −22000. Definition: For any function f , the α-levelset is the
set of all x in the domain of f such that f(x) = α. For linear functions of n-variables,
level sets are (n−1)-dimensional planes. So, for functions of 2 variables, the α-levelsets
are straight lines in the 2-dimensional plane.

iii. What is the optimal solution of the Linear Program? HINT: The optimal solution is
the coordinate of some vertex of the feasibility set.

iv. Plot the α-levelset of the objective function to be minimized corresponding to the optimal
solution on the same graph of the inequality constraints.

(c) Solve the problem using a MATLAB LP solver.

The file lpsolver.m (along with lpLV.m) is available at the Linear Programming module.
The function defined in this file is a wrapper around an LP solver written by Prof. Lieven
Vandenberghe of UCLA. We can use this function to solve for x, the optimal solution of a
linear program in standard form, with the command:

2 of 8

begin code

1 [optx,lambda,status,gamma] = lpsolver(c,A,b);

end code

Use lpsolver to find the solution of the Linear Program you formulated in part (a). Verify
that the solution computed by lpsolver matches what you found in part (b).

(d) Suppose that the company could reduce the emissions produced for B to 0.5 lbs., but this
would increase the production time for B to 5 hours. Should they do it? (The answer is
“yes” if doing so would increase the achievable profit, and “no” otherwise.)

3. Suppose you want to invest a certain amount of money in the stock market. You would like
to maximize the expected return, but also limit the risk of the investment by having a diverse
portfolio. The available stocks and there expected return are listed in the table below.

Stock Industry Country Expected Return

BMW Automotive Germany 10.5%
Nissan Automotive Japan 10.1%
Apple Electronics USA 11.8%
Sony Electronics Japan 11.4%
State Farm Insurance USA 9.5%
Allianz Insurance Germany 9.3%

Suppose that in order to diversify the portfolio you also specify a minimum fraction (a single scalar
value) of the money that will be invested in each industry, and a maximum fraction (also a scalar)
of the money that should be invested in companies that are in a single country.

Using the given table above, write a function with the following declaration line

begin code

1 function [portfolio, expReturn] = maxReturn(money, industryDiv, countryDiv)

end code

where the input arguments are

• money: the amount of money to be invested,

• industryDiv: the minimum fraction of the money that should be invested in each industry,

• countryDiv: the maximum fraction of the money that should be invested in each country.

and the output arguments are

• portfolio: a 6-by-1 vector that contains the amount of money to be invested in each of
the stocks. The order of this vector should correspond to the order that the stocks are listed
in the table above.

• expReturn: a scalar value that is the expected return on the investment.

As an example, suppose you want to invest $5,000. You decide that at least 25% of the $5,000
should be invested in each industry, while no more than 40% of the $5,000 should be invested in
industries in a single country. Then the maxReturn function should be called as shown below and
the function should return the outputs shown below.

3 of 8

begin code

1 [portfolio, expReturn] = maxReturn(5000, 0.25, 0.4)

2

3 portfolio =

4

5 1.0e+03 *

6

7 1.2500

8 0.0000

9 1.5000

10 1.0000

11 0.5000

12 0.7500

13

14

15 expReturn =

16

17 539.5000

end code

In this function you should formulate and solve a linear program(LP) to maximize the expected
return, subject to the constraints described above. The LP should be in the standard form

min
x

cTx

Subject to Ax ≤ b

where x is the vector of decision variables in Rn, c is the cost vector in Rn, A is a matrix in
Rm×n and b is a vector in Rm. In your function you should call the lpsolver function, to find
the solution of the LP that you formulated. (Note: A more interesting/challenging problem
would be that the table is given in a struct array, with fields Stock, Industry, Country and
ExpectedReturn, and this would also be passed to the function maxReturn. For this introduction
though, you will simply write the function to addess the specific table listed above.)

Note: You do not need to turn anything in for the following items (a) - (e), but they should be
considered when you work on this problem.

Consider the following as you proceed:

(a) What are the decision variables?

(b) What is the inequality constraint imposed by the amount of money that will be invested?

(c) You can not invest negative amounts of money. What inequality constraints must be included
to enforce this?

(d) What inequality constraints are necessary to enforce that the portfolio is diverse?

(e) What quantity should be maximized? How do you transform a maximization into a mini-
mization problem?

4. In the previous few modules you studied the problem of minimizing ‖Ax− b‖2 by choice of x. So
far you’ve done this in Matlab using either the backslash operator or the command pinv. Now

4 of 8

that you’ve been exposed to linear programming, you have the tools to solve two variations on
this problem, namely minimizing

1. ‖Ax− b‖1
2. ‖Ax− b‖∞

Recall that the 1-norm of a vector v with components (v1, . . . , vN) is defined to be

‖v‖1 =
N∑
i=1

|vi|,

and the ∞-norm of the same vector is defined to be

‖v‖∞ = max
i
|vi|,

and minimization of either of these norms can be represented as a linear program.

We have provided partial code for the function

begin code

1 x = regressionNorms(A, b, nFlag)

end code

with inputs

1. A: the evaluated “basis” matrix in the regression problem

2. b: the “measurements” in the regression problem

3. nFlag: a number that is either 1, 2, or Inf, specifying which norm p to use when minimizing
‖Ax− b‖p

and output

1. x: minimizer of ‖Ax− b‖p

In particular, we have provided partial-code to set up and solve the case where p = 1 by transform-
ing it into a linear program in standard form. You will complete the function using the backslash
operator to solve the case where p = 2 (simple), and using the tools you learned in this module
to solve the case where p =∞ by transforming it into a linear program in standard form. For this
latter case (p =∞), your code will include a call to lpsolver.

5. Linear Classification: In this problem, a population P (often people, but not necessary) refers
to a collection of distinct objects, called its members. Associated with each member mk is a
vector vk of values of known, delineated traits of that member, called the member’s features. The
dimension of each feature vector is nF × 1. Hence, using this feature vector, each member of the
population can be represented as a point in nF dimensional space. Note though, it is possible for
two different members to have identical features.

Suppose the the population P is divided into two distinct groups, G1 and G2. The goal of linear
classification, is to find a linear function, L(v) := cT v + b, such that

cT vk + b > 0 for all vk ∈ G1

5 of 8

and
cT vk + b < 0 for all vk ∈ G2

In other words, the linear inequalities cT v+ b > 0 and cT v+ b < 0 split the nF -dimensional space
into two nonintersecting halfspaces, and one group of the population lies entirely in one halfspace,
while the other group lies in the other halfspace. The linear function L(v) := cT v + b is said to
classify the population into the two groups. Such a function is often used as a predictor for
another person, attempting to predict which group it belongs to, based on the value of
L(v), where v is the known vector of this person’s traits.

A concrete example will make the ideas clear. Suppose nF = 2, and the traits (features) are the
2-dimensional vector

v =

[
age
number of action movies seen this year

]
The population consists of nP people who have just viewed a pre-release showing of a new movie,
called “MovieX”. The two groups consists of the people who liked (based on a short exit survey)
“MovieX” (G1), and those people who did not like “MovieX” (G2). Using this data, the producers
of “MovieX” want to build a linear classifier (based on age and number of action movies seen
this year) which will predict if another person (outside this population set) will like the movie, so
they can target their promotions accordingly (eg., if they discover that older viewers who don’t
see many action movies prefer ”MovieX”, then they might do a pamphlet-handout to middle-aged
people buying non-action movie tickets a week before “MovieX” is released).

The generalization is as follows: Given two sets of points

G1 = (v1, v2, ..., vN), G2 = (vN+1, vN+2, ...vP)

where each vk ∈ RnF . The task is to find a linear constraint that ”separates” them. Specifically,
find c ∈ RnF and b ∈ R such that

cT vk + b > 0 for all k ≤ N

and
cT vk + b < 0 for all k > N.

Note that if this is possible, then simply by scaling c and b, it follows that

cT vk + b ≥ 1 for all k ≤ N

and
cT vk + b ≤ −1 for all k > N.

A serious problem is that there may be some“outliers” in the data so that the two sets G1 and
G2 simply can’t be separated by a hyperplane (ie., there is some discrete “overlap” in the points).
For those points, you need to add/subtract a nonnegative slack variable, tk ≥ 0 to make it work,
so perhaps we adjust the requirement to

cT vk + b ≥ 1− tk for all k ≤ N

and
cT vk + b ≤ −(1− tk) for all k > N.

6 of 8

But, hopefully most points don’t need this adjustment, so you force the use of such tk to a
minimum by minimizing

∑P
k=1 tk. This results in a linear program of the form

min
c,b,t1,...,tP

t1 + t2 + · · ·+ tP

subject to
t1 ≥ 0, t2 ≥ 0, . . . , tP ≥ 0

and
cT vk + b ≥ 1− tk for all k ≤ N

and
cT vk + b ≤ −(1− tk) for all k > N.

Write a function call buildLinClass, with function declaration line

begin code

1 function [c,b,t] = buildLinClass(G1, G2)

end code

The input arguments G1 and G2 are real-values arrays of dimension nF × p1 and nF × p2,
respectively. Each column is a feature vector of a particular person in that group.

The output arguments are a nF × 1 vector c and a scalar value b, such that the linear function
L(v) := cT v + b approximately classifies the two groups, with L(v) > 0 for members of G1 and
L(v) < 0 for members in G2. Of course, because of outliers, the classification is not necessarily
exact, but the linear program minimization has minimized the total amount of slack variables used
to create the separation. The 3rd output argument is the vector of required “corrections” t, and
is of dimension (p1 + p2)× 1.

You can try your function out on synthetic data (which has no outliers) below. Here there are
only 2 features, so we can visually see the classification (could also do in 3-dimenions). Note that
in practice, the number of features is usually much larger than 2, and hence cannot be visualized.

begin code

1 nF = 2;

2 nP = 100;

3 cTrue = randn(nF,1);

4 bTrue = randn(1,1);

5 Pop = randn(nF, nP);

6 LPop = cTrue’*Pop + bTrue;

7 G1 = Pop(:,LPop>0); % create the populations based on their L-value

8 G2 = Pop(:,LPop<0); % create the populations based on their L-value

9 [cEst, bEst, tAdjust] = buildLinClass(G1,G2);

10 max(abs(tAdjust)) % should be 0 (or very close)

11 f1Min = min(Pop(1,:));

12 f1Max = max(Pop(1,:));

13 f2Min = min(Pop(2,:));

14 f2Max = max(Pop(2,:));

15 plot([f1Min-1 f1Max+1],-(cEst(1)*[f1Min-1 f1Max+1]+bEst)/cEst(2),’b’,...

7 of 8

16 G1(1,:),G1(2,:),’b*’, G2(1,:),G2(2,:),’ro’)

17 ylim([f2Min-1 f2Max+1])

end code

We can add some random noise to 10% of the data, so that outliers appear. Now the classification
will likely not be perfect, but will still make good sense. Run this several times to gain intuition.

begin code

1 nF = 2;

2 nP = 100;

3 nOut = floor(0.1*nP);

4 cTrue = randn(nF,1);

5 bTrue = randn(1,1);

6 Pop = randn(nF,nP);

7 Noise = zeros(1,nP);

8 Noise(1:nOut) = randn(1,nOut);

9 LPop = (cTrue’*Pop + bTrue) + Noise; % corrupt some L-values with noise

10 G1 = Pop(:,LPop>0);

11 G2 = Pop(:,LPop<0);

12 if isempty(G1) || isempty(G2)

13 disp(’One population is empty, so there is nothing to separate’);

14 end

15 [cEst, bEst, tAdjust] = buildLinClass(G1,G2);

16 max(abs(tAdjust)) % likely nonzero, and >1, dealing with non-separability

17 f1Min = min(Pop(1,:));

18 f1Max = max(Pop(1,:));

19 f2Min = min(Pop(2,:));

20 f2Max = max(Pop(2,:));

21 plot([f1Min-1 f1Max+1],-(cEst(1)*[f1Min-1 f1Max+1]+bEst)/cEst(2),’b’,...

22 G1(1,:),G1(2,:),’b*’, G2(1,:),G2(2,:),’ro’)

23 ylim([f2Min-1 f2Max+1])

end code

8 of 8

