
CSE 231 Fall 2021
Computer Project #11

This assignment focuses on the design, implementation, and testing of a Python program using
classes.

It is worth 55 points (5.5% of course grade) and must be completed no later than 11:59 PM on
Wednesday, December 8, 2021.

Assignment Background

How does Google maps provide a route to travel? How does a phone call connect to a distant phone?
How does a packet of information find its way across the internet? The mathematical concept of graphs is
the underlying data structure.

This project is going to be about graphs. For this project, we will consider the task of finding a route
between two places.

Let us start by defining graphs. A graph is a collection of vertices. On paper, we represent vertices just by
single points. These vertices are connected to each other by edges. Two vertices connected by edges can
be seen as two points connected by lines. The following image shows an example of a graph.

From this graph, we can conclude some simple things about it. First is that there are 6 vertices in total,
and there are 5 edges in total. From the perspective of how the vertices are connected, to each other, we
can make the following observations.

(a) Vertex 0 is connected to vertex 2 and vertex 4.
(b) Vertex 1 is connected to vertex 2 and vertex 5.
(c) Vertex 2 is connected to vertex 0, vertex 1 and vertex 3.
(d) Vertex 3 is connected to vertex 2 only.
(e) Vertex 4 is connected to vertex 0 only.
(f) Vertex 5 is connected to vertex 1 only.

We should note, to be mathematically precise, that in this graph we have only these edges and no other
edges.

0 1

2 5

3 4

Such a model can be used to mimic several systems that we see around us. An example is as follows. We
can have places (state, city, house) represented by vertices. We are going to model the edges as follows.
For instance, if place a and place b are connected by a road directly, then we put an edge between vertex
a and vertex b. We can also show the length of that road. Note that one road is represented by one edge in
the graph. We can show the length of that road by labelling the edge with a number. We show an example
in the following figure.

We have colored red the numbers that we have used to label the edges. We also call those numbers the
weight of the edges, in the sense that they represent the cost of reaching from one vertex to another (cost
of travelling between those vertices). We can make the following observations about this graph.

(a) The cost of travelling between place 0 and place 2 is 4.
(b) The cost of travelling between place 0 and place 4 is 8.
(c) The cost of travelling between place 1 and place 2 is 5.
(d) The cost of travelling between place 1 and place 5 is 2.
(e) The cost of travelling between place 2 and place 3 is 1.

Remember that the weight of an edge, in this case, is representing the cost of travelling between a pair of
vertices.

We can represent a graph in Python by using a 2-D list (two-dimensional list), also known as a matrix.
Think about a matrix as an excel sheet. Each element in the outer list is a list that represents the row and
each element in the inner list is a cell. We can do this as follows: Given that the number of vertices is n,
then the list that we construct will be an n ⨉ n list. For this project, all matrices will be square, that is
every list in the two-dimensional list will be the same size. An example is as follows.

 0 1 2 3 4 5

0 0 0 4 0 8 0

1 0 0 5 0 0 2

2 4 5 0 1 0 0

3 0 0 1 0 0 0

4 8 0 0 0 0 0

5 0 2 0 0 0 0

1

2
5

4

0 1

2 5

3 4

8

Let this matrix (list-of-lists) be called G. We call G the adjacency matrix of the graph drawn above. In G,
the cell at a-th row and b-th index of that row is equal to the weight of the edge that is connecting the
vertex a and vertex b. So G[a][b] is equal to the weight of the edge, and so G[b][a] is also equal to the
same weight. This symmetry makes our task easier. This symmetry also signifies that not only we can
travel from a to b, we can also travel from b to a. For example,

(a) G[0][2] = G[2][0] = 4,
(b) G[1][5] = G[5][1] = 2,
(c) G[2][3] = G[3][2] = 1, and so on.

Observe that this matrix exactly corresponds to the graph drawn above.

Now let us suppose that we want to compute for each pair of places a and b, the shortest distance between
them. Let that G is the adjacency matrix constructed from the places and the distance to their nearest
neighbors, as given in the matrix above.

For example, the distance matrix (called D) of the above matrix will look like this.

 0 1 2 3 4 5

0 0 9 4 5 8 11

1 9 0 5 6 17 2

2 4 5 0 1 12 7

3 5 6 1 0 13 8

4 8 17 12 13 0 19

5 11 2 7 8 19 0

In D, the cell at a-th row and b-th index of that row is the distance between a vertex a and vertex bW even
if there is no edge between a and b. For example, there is no edge between vertex 0 and vertex 1.
However, there is an edge between vertex 0 and vertex 2 and there is an edge between vertex 1 and 2. So
the distance between vertex 0 and 1 is equal to the distance between 0 and 2 plus the distance between 2
and 1: 4 + 5 = 9.

Similarly, we can also construct the (shortest) path matrix for each pair of places a and b. This matrix will
contain a shortest path between place a and place b at position [a][b].

A path matrix (corresponding to the adjacency matrix and the distance matrix drawn above) looks like
this:

 0 1 2 3 4 5

0 0 [0, 2, 1] [0, 2] [0, 2, 3] [0, 4] [0, 2, 1, 5]

1 [1, 2, 0] 0 [1, 2] [1, 2, 3] [1, 2, 0, 4] [1, 5]

2 [2, 0] [2, 1] 0 [2, 3] [2, 0, 4] [2, 1, 5]

3 [3, 2, 0] [3, 2, 1] [3, 2] 0 [3, 2, 0, 4] [3, 2, 1, 5]

4 [4, 0] [4, 0, 2, 1] [4, 0, 2] [4, 0, 2, 3] 0 [4, 0, 2, 1, 5]

5 [5, 1, 2, 0] [5, 1] [5, 1, 2] [5, 1, 2, 3] [5, 1, 2, 0, 4] 0

We provide the function to compute both the distance matrix and path matrix; this function takes
the adjacency matrix as input, and returns both the distance matrix and path matrix.

This implies that, for example, if we have to travel from place 0 to place 5, then any shortest path will
have a length of 11, and there is a shortest path which is a sequence for 4 places, namely, 0,2,1, and 5.
(there can be other paths which are shortest paths, in the sense that their distance is equal to the shortest
path that we have computed).

Assignment Specifications

The assignment contains the construction of the following class which goes in your place.py file. Do
not put it in your proj11.py file.

class Place:

(a) __init__(self, name, i):
Initialize self.name as the parameter name, a string.
self.index is a unique identifier of this Place. Initialize self.index as the
parameter i, an int. This index identifies the index needed to index the “g” and “paths”
parameters in set_distances and set_paths.
self.dist is the list of distances from other Places. Initialize self.dist as
None. (We are initializing this list to None because we will be assigning a value to
self.dist, not appending to an existing list. Using None helps us remember to not
append.)
self.paths is the list of paths from other Places. Initialize self.paths as
None.
Argument: self, string, integer
Return: no return value

(b) get_name(self):
This method will simply return self.name.
Argument: self
Return: string

(c) get_index(self):
This method will simply return self.index.
Argument: self
Return: int

(d) set_distances(self, g):
This method sets the distances of this Place from other Places in the list
self.dist. The parameter g is a list of lists of those distances. The value of the
self.dist list is its index in the parameter g. That is, self.dist will be equal to
the (self.index)-th list in g.
Hint: use [:] to make a copy when assigning self.dist so this Place instance will
have its own copy of the list of distances from other Places. That is, use
g[self.index][:]

Argument: self, list of lists
Return: None

(e) set_paths(self, paths):
This method is nearly identical to the set_distances method. This method sets the
paths from this Place to other Places in the list self.paths. The parameter
paths is a list of lists of those paths. The value of the self.paths list is its index in
the parameter paths. That is, self.paths will be equal to the (self.index)-th list
in paths. As with the previous method, make a copy of the list of paths.
Argument: self, list of lists of lists
Return: None

(f) get_distance(self, j):
This method will return self.dist[j] which is the distance between this Place
instance, self, and Place j in the list of distances to other Places.
Argument: self, integer
Return: float

(g) get_path(self, j):
This method will return self.path[j] which is a shortest path between this Place,
self, and the Place j in the list of paths to other Places.
Argument: self, integer
Return: list

(h) __str__(self):
This method will return a formatted string representation of this Place instance. Begin
by making a tuple
 tup = (self.index, self.name, self.dist, self.paths)
These are the only four values which identify a place.
Return a string using the following format on that tuple:
"Node {}, {}: distances {}, paths {}"
Argument: self
Return: string

Hint: We can use * to “move” items out of a list/tuple, and into a formatted string.
Ex:
my_list = [“I”, “am”, “awesome”]
“{} {} {}”.format(*my_list)
 I am awesome

(i) __repr__(self):

This method will also return an unformatted string representation of this Place instance.
Create the same tuple created in __str__ but simply return str(tup).
Argument: self
Return: string

The assignment contains the following functions that go in your proj11.py file.

(a) open_file():
This function repeatedly prompts the user for a filename until the file is opened successfully. An
error message should be shown if the file cannot be opened. It returns a file pointer. Use try-
except to determine if the file can be opened.
Argument: no argument

Return: <file_pointer>

(b) read_file(fp):
This function reads a file pointer fp and returns a list of tuples L.
Each row of the file contains a pair of places and the distance between them (e.g., via a road
connected them both). Each tuple will have the following structure:

(<place_1>,<place_2>,<distance between place_1 and place_2>)
place_1 and place_2 must be arranged strictly as written in the file.
Remember that the places are strings and the distance between them is an int.
So your tuple will have
 (str, str, int)

For example, the file map0.csv is
 City 1,City 2,Distance
 A,X,7
 A,E,8
 Y,X,5
 Y,F,2
 X,D,1
So the list of tuples returned will be
[('A', 'X', 7), ('A', 'E', 8), ('Y', 'X', 5), ('Y', 'F', 2), ('X', 'D', 1)]

Argument: <file_pointer>
Return: <list_of_tuples>

(c) adjacency_matrix_construction(L):

This function takes a list of tuples L as argument where each tuple is of the structure we discussed
in read_file()). It will return two items: a list of places in L, and the adjacency matrix of
distances between places.

First, build the list of places (you will need this list for the second part of this function).
Let’s name the list: places_lst. It is a list of strings.
Read through the list of tuples L and make a list of all the places that appear in any tuple.
No place can be repeated in this list. Sort the list alphabetically (even if the places are digits).
Hint: a set is a useful intermediate data structure to get a collection of unique items.

For example, if L (from map0.csv) is
L = [('A', 'X', 7), ('A', 'E', 8), ('Y', 'X', 5), ('Y', 'F', 2), ('X', 'D', 1)]
Then places_lst will be
places_lst = ['A', 'D', 'E', 'F', 'X', 'Y']

Let that the length of places_lst be n.
Create an n x n matrix g initialized to zeros. Remember that an n x n matrix can be represented
by a list of lists where each row is a list. In this case, there will be n rows where each row will be
initialized to be a list of n zeros. So a 6x6 matrix will be initialized as
 g = [[0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0],
[0,0,0,0,0,0], [0,0,0,0,0,0]]

Next we need to fill the matrix g with values (noting that many zeros will remain as zeros).
The information we need is in the parameter L, the list of tuples, and in places_lst.
We use places_lst to get a place’s index, e.g. ‘A’ is at index 0; ‘X’ is at index 4, and so on.
We use L to get the distance, so the first tuple of L is ('A', 'X', 7)which tells us that the
distance between ‘A’ and ‘X’ is 7. Since ‘A’ is at index 0 in places_lst and ‘X’ is at index 4
in places_lst, we will assign g[0][4] = 7 and since the distance from ‘A’ to ‘X’ is the
same as the distance from ‘X’ to ‘A’ we also assign g[4][0] = 7. Walk through every tuple
in L, find the indices of the places in the tup, and then assign distances in g.

In this example, the resulting adjacency matrix g will be:
 [[0 , 0 , 8 , 0 , 7 , 0]
 [0 , 0 , 0 , 0 , 1 , 0]
 [8 , 0 , 0 , 0 , 0 , 0]
 [0 , 0 , 0 , 0 , 0 , 2]
 [7 , 1 , 0 , 0 , 0 , 5]
 [0 , 0 , 0 , 2 , 5 , 0]]

Argument: <list_of_tuples>
Return: <list_of_strings>, <list_of_lists_of_integers>

(d) make_objects(places_lst, g):

This function takes the list of places places_lst and the adjacency matrix g as
arguments and returns a dictionary of Place objects that are in the places_lst. Actually,
we will return two dictionaries: one indexed by name and one indexed by id because
sometimes we want to find a Place by name and sometimes by id.
This function will invoke the provided function apsp() on top of your draft file by passing
g to it, and it will take the return value in variables g, paths. The variable g is a matrix
that now contain the shortest distances between each pair of places; whereas paths is a
matrix that contain a shortest path between each pair of places.
Next create the dictionaries of Place objects:
 for each index i of places_lst, you will (Hint: use for … enumerate)

a) create an object a_place for a place by initializing it with the place’s name (found
in places_lst[i] and the place’s index i

b) Set the variable self.dist of this place by invoking the set_distances() method for
your a_place object by passing g to it.

c) Set the variable self.path of this place by invoking the set_paths() method for
your a_place object by passing paths to it.

d) Now add your a_place object to the indexed-by-name dictionary and the other
a_place object to the indexed-by-id dictionary. Note that because the places_lst
was created to have no duplicates (part of its specification), you do not have to
worry about handling duplicates when creating dictionary entries.

Argument: <list_of_strings>, <list_of_lists_of_integers>
Return: <dict_of_objects>, <dict_of_objects>

(e) main()

(i) Open file. Invoke open_file(). Store the return value in fp.
(ii) Read the file. Invoke read_file() by passing the argument fp to it. Store the return value

in L.
(iii) Construct the adjacency matrix. Invoke adjacency_matrix() by passing the argument L

to it. Store the return values in places_lst, g.
(iv) Make place objects. Invoke make_objects() by passing the arguments places_lst and g to

it. Store the return value in name_dict_of_places, id_dict_of_places.
You now have a dictionary of Place objects (two dictionaries to make life easier).

(v) Execute the following instructions again and again until the user terminates.
A. Display banner
B. Enter starting place. If it is ‘q’ , end the program, otherwise check the validity

of the outputIf not valid reprompt until it is valid.
C. Loop until the user enters `end’.

a. Enter next destination (a name as a string)
Error check: destination is in places_lst and this destination is not
the same as the previous destination

b. Store each destination (as a name string) in a list route_lst
You now have an ordered list of destinations on your route.
It is simply a list of names (strings).

D. Taking stock: You will need to determine two things that you need in Step E.
This code goes along with Step E, not separately. They are essentially the same
step, but we broke it down for understanding.

a. A path containing intermediate destinations to get to places on your
route. For example, to drive from Lansing to Chicago the shortest path
may take you by Benton Harbor. You need to find Lansing’s Place
object and get the path from Lansing to Chicago with the call:
Lansing_Place_Object.get_path(‘Chicago’)
but instead of “Chicago” you will use Chicago’s ID so it will actually be
Lansing_Place_Object.get_path(Chicago_ID)
How do you find Lansing’s Place Object? You have a dictionary of
place objects named name_dict_of_places that you can index by name so
Lansing’s Place Object will be at name_dict_of_places[‘Lansing’].
Similarly, you can find Chicago’s Place Object and then use that to get
its ID using Chicago_Place_Object.get_index().
Note that its ID is actually an index into the adjacency matrix.

b. A distance. Continuing our example, you need to find the distance from
Lansing to Chicago which you can find in
Lansing_Place_Object.get_distance(Chicago_ID)
(If you are wondering, the path such as through Benton Harbor is already
considered in this distance value.)

E. Initialize a path list. Initialize a distance. Then loop through your route list
a. Add to your path: the intermediate nodes to the next destination

Error check: if there is no path, print an error message (see Note II
below)

b. Add to the distance: the distance to the next destination.
F. If there is a path, output the path and its distance

Hints:

I. The coding standard for CSE 231 is posted on the course website:
 http://www.cse.msu.edu/~cse231/General/coding.standard.html
Items 1-9 of the Coding Standard will be enforced for this project.

http://www.cse.msu.edu/%7Ecse231/General/coding.standard.html

II. We have provided a function apsp().

apsp(g) This function will take the adjacency matrix g as argument, modifies g such that g will
now correspond to the shortest distances between each pair of places. This function also
constructs a list of lists of lists paths corresponding to g such that paths will contain a shortest
path between each pair of places. It returns the newly constructed g and paths.
Argument: list of lists
Return list of lists, list of list of lists

III. If a pair of places is not connected, say the a-th and the b-th places in l_places, then g[a][b] will
be 0.

IV. You may want to build your paths list in main(0 by iterating through route_lst backwards.

Assignment Deliverable

The deliverables for this assignment are the following TWO files:

 proj11.py – the source code for your Python program
 place.py – the file with your Place class

Be sure to use the specified file name and to submit it for grading via the Mimir system before
the project deadline.

Grading Rubric

Computer Project #11 Scoring Summary
General Requirements:
 (4 pts) Coding Standard 1-9

(descriptive comments, function headers, mnemonic identifiers,
format, etc...)

Implementation:
 (9 pts) Place Class test
 (3 pts) open_file function (No Mimir tests)
 (5 pts) read_file function
 (8 pts) adjacency_matrix function
 (10 pts) make_objects function
 (4 pts) Test 1
 (4 pts) Test 2
 (4 pts) Test 3
 (4 pts) Test 4

Test cases

Test Case 1

Enter the file name: map1.csv

Begin the search!
Enter starting place, enter 'q' to quit: 0
Enter next destination, enter ”end” to exit: 3
Enter next destination, enter ”end” to exit: 2
Enter next destination, enter ”end” to exit: 5
Enter next destination, enter ”end” to exit: end
Your route is:
 0
 2
 3
 2
 1
 5
Total distance = 13

Begin the search!
Enter starting place, enter 'q' to quit: q
Thanks for using the software

Test Case 2

Enter the file name: map2.csv

Begin the search.!
Enter starting place, enter 'q' to quit: 0
Enter next destination, enter ”end” to exit: 3
Enter next destination, enter ”end” to exit: 2
Enter next destination, enter ”end” to exit: 5
Enter next destination, enter ”end” to exit: end
Places 0 and 3 not connected.
Places 2 and 5 not connected.

Begin the search.!
Enter starting place, enter 'q' to quit: q
Thanks for using the software

Test Case 3

Enter the file name: map3.csv

Begin the search.!
Enter starting place, enter 'q' to quit: Ann Arbour

This place is not in the list.!
Enter starting place, enter 'q' to quit: Ann Arbor
Enter next destination, enter "end" to exit: Warren
Enter next destination, enter "end" to exit: Detroit
Enter next destination, enter "end" to exit: Detroit
This destination is not valid or is the same as the previous
destination!Enter next destination, enter "end" to exit: end
Your route is:
 Ann Arbor
 Warren
 Detroit
Total distance = 63

Begin the search.!
Enter starting place, enter 'q' to quit: Marquette
Enter next destination, enter "end" to exit: Flint
Enter next destination, enter "end" to exit: Lansing
Enter next destination, enter "end" to exit: Grand Rapids
Enter next destination, enter "end" to exit: end
places Marquette and Flint not connected.

Begin the search.!
Enter starting place, enter 'q' to quit: Lansing
Enter next destination, enter "end" to exit: Flint
Enter next destination, enter "end" to exit: Lansing
Enter next destination, enter "end" to exit: Grand Rapids
Enter next destination, enter "end" to exit: end
Your route is:
 Lansing
 Flint
 Lansing
 Grand Rapids
Total distance = 172

Begin the search.!
Enter starting place, enter 'q' to quit: Detroit
Enter next destination, enter "end" to exit: Kalamazoo
Enter next destination, enter "end" to exit: Traverse City
Enter next destination, enter "end" to exit: Kalamazoo
Enter next destination, enter "end" to exit: end
Your route is:
 Detroit
 Kalamazoo
 Grand Rapids
 Traverse City
 Grand Rapids
 Kalamazoo
Total distance = 523

Begin the search.!
Enter starting place, enter 'q' to quit: q
Thanks for using the software

Test Case 4

Enter the file name: map4.csv
Begin the search.!
Enter starting place, enter 'q' to quit: New York
Enter next destination, enter "end" to exit: Indiana
Enter next destination, enter "end" to exit: Arizona
Enter next destination, enter "end" to exit: Michigan
Enter next destination, enter "end" to exit: end
Your route is:
 New York
 Pennsylvania
 Ohio
 Indiana
 Illinois
 Missouri
 Oklahoma
 New Mexico
 Arizona
 New Mexico
 Oklahoma
 Missouri
 Illinois
 Michigan
Total distance = 3925

Begin the search.!
Enter starting place, enter 'q' to quit: Michigan
Enter next destination, enter "end" to exit: Washington
Enter next destination, enter "end" to exit: Alaska
Enter next destination, enter "end" to exit: end
places Washington and Alaska not connected.

Begin the search.!
Enter starting place, enter 'q' to quit: Michigan
Enter next destination, enter "end" to exit: Hawaii
Enter next destination, enter "end" to exit: Louisiana
Enter next destination, enter "end" to exit: Minnesota
Enter next destination, enter "end" to exit: end
places Michigan and Hawaii not connected.
places Hawaii and Louisiana not connected.

Begin the search.!
Enter starting place, enter 'q' to quit: Michigan

Enter next destination, enter "end" to exit: Idaho
Enter next destination, enter "end" to exit: Louisiana
Enter next destination, enter "end" to exit: Minnesota
Enter next destination, enter "end" to exit: end
Your route is:
 Michigan
 Minnesota
 North Dakota
 Montana
 Idaho
 Utah
 New Mexico
 Texas
 Louisiana
 Arkansas
 Missouri
 Iowa
 Minnesota
Total distance = 4358

Begin the search.!
Enter starting place, enter 'q' to quit: q
Thanks for using the software

