
ESSC3600 Ecosystems and Climate 

Lab 3: Surface Energy Balance and 
Biogeophysical Climate-Vegetation Interactions 

 
Due Date: 5:30pm, 15 Mar 2022 

 
Answer all the questions posted in this exercise and submit all your computer code. Please 
make sure all plots submitted should have a proper title, axis labels and (for maps) legend 
with the correct unit or labels. Remember to include your name and student ID. 
 
In class and described in greater detail in Wallace & Hobbs Ch.10.3 and Bonan Ch.27.3, the 
concept of biogeophysical feedback and the role of life in stabilizing climate can be 
heuristically illustrated by a hypothetical daisyworld. We will examine this further in this lab 
exercise. 
 
Let us imagine a planet without an atmosphere, but somehow one type of plant can grow on 
it, namely, white daisy. The daisy is completely reflective of solar radiation with an intrinsic 
albedo of one. The surface of the planet is otherwise black, completely absorptive of solar 
radiation with an intrinsic albedo of zero. Therefore, the planetary albedo (r) is simply 
equivalent to the fractional coverage of white daisy on the planet’s surface. The climate of 
the planet in terms of surface temperature (Ts, in °C) is governed by the surface energy 
balance equation: 

𝜎𝑇!" = (1 − 𝑟)𝐹# 
where F0 (in W m–2) is the solar insolation (i.e., incoming solar radiative flux) and σ = 
5.670×10–8 W m–2 K–4 is the Stefan-Boltzmann constant. The surface energy balance 
equation is shown as the blue curves in Fig. 1 for different values of F0. 
 
 

 
 
Figure 1. Graphical representation of climate-vegetation equilibria in the daisyworld. The 
blue curves represent the surface energy balance equation for different values of solar 
insolation (F0), and the red curve represents the fractional daisy coverages as a quadratic 
physiological function of surface temperature. An equilibrium is where the two curves 
intersect. 
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The abundance of white daisy is governed by plant physiology. Let us assume that fractional 
daisy coverage (r) takes the form of a quadratic function between a minimum (Tmin) and 
maximum (Tmax) temperature, below and above which coverage would be zero. That is, 
 for Ts ≤ Tmin:   𝑟 = 0 
 for Tmin < Ts < Tmax:  𝑟 = 𝑎𝑇!$ + 𝑏𝑇! + 𝑐 
 for Ts ≥ Tmax:   𝑟 = 0 
where a, b and c are quadratic coefficients that are dependent on Tmin, Tmax and the maximum 
possible fractional coverage, rmax. The physiological function is represented by the red curve 
as well as the parts of the x-axis that are below Tmin and above Tmax in Fig. 1. 
 
Theoretically, a climate-vegetation equilibrium exists at any point where the surface energy 
balance curve and physiological curve intersects (e.g., as represented by the points T1, T2, P, 
Q, P’, T3 and T4). However, numerically (and often in reality), only an equilibrium that is 
stable can be achieved, because any small perturbation (due to numerical errors in the 
computer, or climate fluctuations in reality) on an unstable equilibrium would kick off a 
cascade of feedback that leads the system further away from the unstable equilibrium. A 
perturbation on an unstable equilibrium can generally lead two possible outcomes. Either the 
system may simply diverge and then settle into another equilibrium that is stable; or the 
system may endlessly oscillate between two different states. If the curves are drawn properly, 
whether an equilibrium is stable or unstable, as well as which of the two outcomes will arise 
from a perturbation on an unstable equilibrium, can indeed be diagnosed graphically from the 
shapes of the curves. 
 
In this exercise, we will explore how a gradually increasing solar insolation would affect the 
climate-vegetation equilibrium in the daisyworld. To save you time, three functions are 
already provided to you in Lab03.R, as explained below. Please make sure you examine the 
code carefully to understand the algorithms and what they do. 
 
I. Plant physiological function: 

plant_physiol(Ts, Ts_min=0, Ts_max=50, alb_max=0.2) 
which calculates the fractional daisy coverage (i.e., planetary albedo) as a function of surface 
temperature Ts (variable Ts; in °C), with default parameter values for Tmin (Ts_min) = 0°C, 
Tmax (Ts_max) = 50°C and rmax (alb_max) = 0.2. 
 
II. Surface energy balance equation: 

energy_balance(albedo, insolation) 
which calculates the surface temperature (in °C) as a function of planetary albedo (variable 
albedo) and solar insolation (variable insolation, in W m–2). 
 
III. Stable climate-vegetation equilibrium: 

equilibrium(F0, alb0, tol=1e-9) 
which solves for the climate-vegetation equilibrium, i.e., to find a stable solution (Ts, r) 
between the plant physiological and surface energy balance equations, given a specific value 
of solar insolation (variable F0, in W m–2) and an initial guess value for planetary albedo 
(variable alb0). This function gives a vector of length two, with the first and second entry 
being the equilibrium Ts and r, respectively. In the case of oscillatory solutions without a 
stable equilibrium, the lower of the two temperatures and the corresponding albedo will be 
given as the output by default, but the other solution will also be printed out. Parameter tol is 
the numerical tolerance allowed for convergence to a solution. 
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1. Using the function plant_physiol(…) and the built-in function plot(…, type="l", col= 

"red"), plot the red curve for the physiological function with surface temperature (in °C) in 
the x-axis and daisy coverage in the y-axis from Ts = –10°C to Ts = 60°C. 

 
2. In the same plot, using energy_balance(…) and build-in function matplot(…, type="l", 

col="blue", add=TRUE) function, plot the blue curves for surface energy balance for 
different values of solar insolation, from F0 = 200 W m–2 to F0 = 700 W m–2 in increments 
of ΔF0 = +20 W m–2. You should be able to produce a plot that looks somewhat similar to 
Fig. 1. 

 
3. Now let us simulate what would happen to the climate of daisyworld as F0 increases from 

200 W m–2 to 700 W m–2. Using function equilibrium(…) and an initial guess value of r = 
0, first find the equilibrium surface temperature and planetary albedo for F0 = 200 W m–2. 
Then, for every increment of ΔF0 = +20 W m–2 until F0 = 700 W m–2, find the equilibrium 
(Ts, r) likewise, always using the equilibrium albedo for the previous F0 value as the initial 
guess value for r (if the equilibrium albedo is NaN for the previous F0 value, using r = 0 as 
the initial guess). 

 
4. Based on your results from part 3 above, plot the equilibrium temperature (in the y-axis) 

against different values of solar insolation (in the x-axis). Also draw in the same plot a 
dotted line for the hypothetic curve of equilibrium temperature vs. solar insolation if no 
white daisy exists at all (i.e., r = 0 always). Describe and explain physically how the very 
existence of white daisies affects the climate of this planet. Moreover, describe the 
relationship between the equilibrium temperatures you found here and the various 
intersection points in the figure you drew for part 2. 

 
 
 
 
 
 
 
 
 
 


