8CC00 2021/2022

Week 4: Clustering

Peter Hilbers
March 2022

1 Introduction on machine learning techniques

In weeks 4 through 7 the emphasis is on a second biomedical data analysis method,
viz. machine learning. Roughly stated machine learning techniques can be split into 2
parts:

* Supervised learning: As the name already suggests learning takes place in the
presence of a supervisor(teacher) meaning that some data is already tagged with
the correct answer. The labeled data, helps you to predict outcomes for unfore-
seen data.

* Unsupervised learning: In unsupervised learning the data is unlabeled.

A simple example to explain the difference is: If you see a chair in a furniture shop
you have never seen before, you immediately know that it is a chair. No supervisor
has to assist you in giving it that label, so you "learned’ it unsupervised.

In another case when you are not sure what object it is, you may ask for help to a
supervisor to tell you what kind of object it is, so you ask for the label, and then it
becomes supervised.

The most used supervised method is classification. In classification, we have data
points for which the groups are already known, and we analyze what differentiates
these groups (i.e., a classification function) to properly classify future data.

A popular unsupervised method is clustering. In clustering, we consider data points
for which groups are unknown and undefined, and we somehow divide them into
groups as well as determine what differentiates the groups from each other.

In both methods objects(data points) are grouped such that objects in the same group
are more similar to one another than they are to objects in other groups. Both in clus-
tering and classification we have to define what it means that 2 data points (objects) are
looking similar, hence when do they belong to the same group. To that end usually a
distance is defined. In this notes therefore the topic of distances will be discussed (see
section 4), but we start with two topics from computing science that are often used in
machine learning, viz. recursion (see section 2) and graphs (see section 3).

A fundamental notion in programming is repetition. In previous courses and lectures

1

iterative methods such as for and while-constructs have been introduced. Here we
discuss another repetition technique, viz. recursion. Informally speaking recursion is
a repetition method in which the object to be defined is used itself. That sounds maybe
somewhat confusing so an example may help.

2 Recursion

A fundamental notion in programming is repetition. In previous courses and lectures
iterative methods such as for and while-constructs have been introduced. Here we
discuss another repetition technique, viz. recursion. Informally speaking recursion is
a repetition method in which the object to be defined is used itself. That sounds maybe
somewhat confusing so an example may help.

2.1 Recursion example
Assume we have a sequence a(n),n = 0,1,..., of integer values starting with 1, and
each subsequent element is the sum of twice its predecessor and 1. Mathematically we
could define this sequence by

1 ifn =0
"7\ 2%a,_1+1 otherwise

This is an example of a recursive definition, since in the definition of the sequence a
the sequence a is used. Also notice that there is also a base case in which we know
the value immediately (without recursion). Here the base case is n == 0 since then
we know that a(n) = 1. If we would have to implement this definition in Python, we
could have:

def a(n):
if n==0: return 1
else:
h=a(n-1)

return 2*h+1

For educational purposes we introduced here a local auxiliary variable h. The reason
will soon become clear. Note also that we, against our philosophy, did not give a
specification of the method. Why will also below become clear.

Next assume that we would have to calculate the value of a(2). So we extend our
program with:
if __name__=="__main__":

print(a(2))

Simple, isn’t it?

For once and only for once let us describe what happens if that piece of code is run:

call a(2): The interpreter inspects its object space and finds a method called a. The
method has one parameter, called n. So the method matches the call 4(2) and
the parameter n gets the value 2 and it starts evaluating the method. The first
statement is the question whether n == 0 so here 2 == 0. The answer is no, so it
starts evaluating the else part. The first statement of the else-block is h=a(n-1),
so it introduces within this method evaluation an auxiliary variable /. Because

2

in the current evaluation of the method n = 2 and to discriminate the different
variables we will introduce, we will call, this specfic h: hy. So we could read
the statement h=a(n-1) as “Please assistant /1, get me the value of 4(1)” and the
assistant goes on its way to get a(1), and the execution of call a(2) is temporarily
stopped.

call a(1): The method a is found and a new parameter is introduced having the value
1. Please note that this n inside a(1) is another parameter, and is different from the
one inside call a(1). The method starts evaluating, the if-part is passed, since n
differs from 0, and a new assistant /; is introduced to get the value of a(0). The
call a(1) is paused...

call a(0): The method a is found and a new parameter 7 is introduced having the value
0, the method is evaluated and now the if-part is executed, since n == 0. So the
value 1 is returned to ... assistant k.

return to call a(1): Assistant /11 has the value 1, so the call a(1) can be continued. The
next statement is return 2*h+1, so the value 3 is returned to,, assistant h,, and
the call a(1) ends.

return to call a(2): Assistant /i has the value 3, so the call a(2) can be continued. The
next statement is return 2*h+1, so the value 7 is returned, to the print-statement
and on the screen the number 7 is shown.

This is a reasonable description of what happens in reality. We have shown it to
demonstrate the repetitive scheme, and for educational purposes, but note that in the
design we never should do it this way.

2.2 The solution

What we should do is give a specification of the method:
{parameter n is a non-negative integer}
a(n)

{a returns 1 if n=0, and for n>0: a(n)=2*a(n-1)+1}

If we have this specification then we do not have to bother about what happens behind
the scenes for i = a(n — 1). We simply may assume that / has the correct value and
then we can calculate a(n by 2 * h 4 1. That is all!

This specification scheme should always be given for any method, so also for recursive
methods. The special thing in dealing with a recursion is that there should always be
at least one base case in which there is no call to the recursive method. Otherwise the
method will be calling itself for ever.....

In the clustering and classification assighment a more complex recursive method is
to be designed. In order to practice the programming of a recursive method, the fol-
lowing exercise should be made. (These exercises are just meant for practicing, the
solutions do not have to be submitted.)

2.3 Recursion exercise 1

Implement the above recursive method a and include print statements that clarify the
different values the parameters & and n have during the evaluation of the method.

3

Demonstrate the correctness of your solution by calling a(4).

2.4 Recursion exercise 2
Given is a positive integer n. Design a recursive method to print the digits n consist of
in reverse order.

Example: if n=123, then on the screen 321 should be printed.

In your solution you should not first determine the number of decimals 7 has.

Hint: for integer 1, n%10 gives the last decimal...

3 Graphs

A graph is a notion from mathematics that is frequently used in biomedical data anal-
ysis. Next to creating meaningful visualisations, graphs are attractive to infer patterns
in the data. The fundamental element of graphs is that some kind of relation is used
between data points. Although you may have not realised it in daily life you are fre-
quently confronted with graphs such as the internet, in family trees, in the railway
system, and molecules.

A graph consists of 2 collections:

1. a set(collection) of nodes. Each of our data points forms a node.

2. aset of edges. Two nodes share an edge when the two nodes are related. Instead
of sharing we will also use the term "connected’, so two nodes are connected by
an edge.

The collection of nodes, also called vertices, are usually denoted in mathematics by
V, in object oriented terms by G.V. The collection of edges are usually denoted in
mathematics by E, in object oriented terms by G.E.

Although edges may have a direction as in a one way street, we assume that they are
undirected. That means that the relations we are considering are symmetric: if A is
related to B, then B is also related to A. The motivation for it, is that in clustering and
classification we use similarity between objects, and that relation has no direction. We
therefore are considering undirected graphs.

A simple example of a graph is the molecule phenol. It consists of 6 carbon atoms, 1
oxygen atom and 6 hydrogen atoms. So the 13 atoms form our collection of nodes. In
this phase we neglect the double bonds between two nodes(atoms) and consider the
atoms simply to be connected if they either have a single bond or a double bond. A
pictorial presentation of this molecule is shown in Figure 1.

3.1 Degtree

The number of nodes a node is connected to, may depend on the the node. In the
phenol example node 9, has only node 6 as neighbour, while node 1 share edges with
3 other nodes, viz. nodes 6, 2, and 8. The number of neighbours a node has is called
the degree.

0.8

06}

0.4t

02F

0.0F

0.8 I I I I
-1.0 -0.5 0.0 0.5 1.0 1.5

Figure 1: A drawing of the graph phenol. The oxygen atom is colored red, the carbons
grey and the hydrogen white.

In mathematical notation:

du) = Nv:ve GV:{uv}eGE),
where N is the notation for ‘the number of’.

3.2 Path

In most cases not every 2 nodes are connected, but by following a sequence of nodes
one can go from one node to the other. Consider for instance in the phenol example
nodes 3 and 6. They do not share an edge, but we can go from 3 to 6, by starting in
3, going to 2, then to 1, and finally to 6. Such a sequence of nodes in which each 2
consecutive nodes share an edge is called a path and the length of the path is defined
as the number of edges on the path.

A path of length n of G is a sequence v(i : 0 < i < n) of nodes such that
(Vi:0<i<mn:{o(i),v(i+1)} € G.E).

We define the distance between 2 nodes as the length of a shortest path between the
two nodes. As an example in the phenol graph the distance between nodes 6 and 7 is
3.

A graph is called connected if every pair of vertices is joined by a path. Most graphs are
connected, but for instance if our nodes would consists of the European countries and

5

we have as relation “share a border”, then we can go from the Netherlands to Poland
via Germany, but we cannot reach England from the Netherlands.

3.3 Subgraph

Given a graph G, consider a subset V of G.V. That means we select a collection of
nodes from G. We then can make a new graph by considering the edges from G that
have both endpoints of the edge in V. If we call this graph H, then we have H.V C
G.Vand HE C G.Eand (Vu,v:{u,v} e HE:u € HV andv € H.V).

Given a set V. A partition of V is a grouping of its elements into non-empty subsets,
in such a way that every element is included in exactly one subset. When considering
graphs, partitioning G.V into 2 subsets has a special name. It is called a cut. Any
cut determines a cut-set, the set of edges that have one endpoint in each subset of the
partition.

In mathematical notation: A cut C = (S,T) is a partition of G.V of a graph G =
(G.V,G.E) into two subsets S and T. The cut-set of a cut C = (S, T) is the set {{u, v} €
G.E | u € S,v € T} of edges that have one endpoint in S and the other endpoint in T.

If we consider our phenol example again, then an example of a cutis: S = {10} and
T ={1,2,3,4,5,6,7,8,9,11,12} with cut-set {{5,10}}, but of couse many other cuts
are possible.

In particular when dealing with cluster analysis we are interested in so-called mini-
mum cuts, the smallest number of edges that has to be removed such that G becomes
disconnected. The example cut-set given above is a minimum cut since after remov-
ing the edge {5,10}, node 10 can no longer be reached from for instance node 1 and
removing less edges does not lead to a disconnected graph.

3.4 Highly connected subgraph

For instance in clustering the task is to group similar objects together. Hence we want
within a cluster some kind of homogeneity. On the other hand between clusters their
should be some difference, hence a kind of heterogeneity. There are many possibilities
for defining a homogeneity characteristic, here we choose one that is also to be used
in the assignment: highly connectedness.

A graph with n nodes is called highly connected when its minimum cut has more
than n/2 edges or when n = 1. Its applicability in cluster homogeneity comes from a
famous theorem in graph theory that says that in a highly connected graph where each
node has degree at least /2 then every two nodes are connected by a path of length
at most 2. So in our cluster analysis clusters considered as graph having a distance of
at most 2, is interpreted as being homogeneous.

3.5 Multigraph

Above we have assumed that between any two nodes there is at most a single edge. In
general that is to severe a restiction and we should allow for graphs having more than
one edge betwen 2 nodes. Such a graph is called a multigraph. All notions introduced
for a graph also hold for multigraphs, only when considering the degree one has to
consider the number of edges a node is part of and not the number of neighbours.

6

3.6 NetworkX
For the implementation of graphs and multigraphs we will make use of NetworkX, see
https://networkx.org/. There are 2 ways to install networkx:

* In de anaconda prompt type conda install networkx

¢ When that fails, an alternative is to type in a command window pip install
networkx

On that site you will also find a tutorial and you are advised to follow that tutorial
tirst.

Next we give our code to generate the phenol graph.

import networkx as NX
import pylab as P

def atomcolorsandsizes():
"""construct a dictionary to give different
atoms a different color and size

returns 2 dictionaries
nnn

atoms = {}

atomcolors={}

atomcolors['C']="'#909090"
atomcolors['0']="'#FFODOD'
atomcolors['H']="'#DDDDDD'

atomsizes={}
atomsizes['C']=1000
atomsizes['0']=400
atomsizes['H']=300

return atomcolors, atomsizes

def readnodesfromfile(nodesfilename="", G=NX.Graph()):
""" read the nodes from a file
each line consists of a number and the atomtype
separated by blank space.

nodes are added to the graph G
atomtypes to the list of atoms

returns G and a dictionary of atoms

f=open(nodesfilename)
lines = f.readlines()
atoms={}

f.close()

https://networkx.org/
https://networkx.org/documentation/stable/tutorial.html

def

def

def

for line in lines:
[nr, atomtype] = line.split()
if not atomtype in atoms.keys():
atoms [atomtype] = []
G.add_node(nr)
atoms [atomtype] . append (nr)
return G, atoms

readedgesfromfile (edgesfilename="", G=NX.Graph()):
""" read the edges from a file
each line consists of the 2 numbers of the nodes of the edge

returns updated G

f=open(edgesfilename)
lines = f.readlines()
f.close()
for line in lines:
inds = line.split()
G.add_edge(inds[0],inds[1])
return G

makegraphfromfile(nodesfilename="", edgesfilename=""):

atomcolors, atomsizes=atomcolorsandsizes()

G=NX.Graph()

G, atoms=readnodesfromfile(nodesfilename=nodesfilename, G=G)
G=readedgesfromfile(edgesfilename=edgesfilename, G=G)

print ("The nodes of G are:", list(G.nodes))

print ("The edges of G are:", list(G.edges))

return G, atoms, atomcolors, atomsizes

drawGraph (G=NX.Graph(), atoms={}, atomsizes={}, atomcolors={},
nriterations=100):
""" G is a graph,
- atoms a dictionary with as keys the atomtypes
and as values a list of atom numbers of that atomtype
- atomcolors is a dictionary of colors per atomtype
- atomsizes is a dictionary of colors per atomtype
- nriterations the number of iterations the layout
algorithm should do

fig=P.figure()

pos=NX.spring_layout(G, iterations=nriterations)
for atomtype in atoms.keys():

NX.draw_networkx_nodes(G, pos, nodelist=atoms [atomtype],
node_color=atomcolors[atomtype],
node_size=atomsizes [atomtype])

NX.draw_networkx_edges (G, pos)

labels = {}
for node in G.nodes():
labels[node] = node
NX.draw_networkx_labels(G,pos,labels,font_color='black',
font_family='sans-serif')

P.show()

if __name__=="__main__":
G, atoms, atomcolors, atomsizes=
makegraphfromfile('fenolnodes.txt', 'fenoledges.txt')
drawGraph(G=G, atoms=atoms, atomcolors=atomcolors,
atomsizes=atomsizes, nriterations=500)

where contents of the files ‘fenolnodes.txt’and "fenoledges.txt” are:
C

O 00 N O O W N -
m m o

[
o
s

11 H
12 H
13 H

and

a o DWW WwWNDNE e
’_L
N

6 9
7 13

respectively.

Exercise phenol: Study the above Python code and improve it by designing a class
Atom and by showing its usage. An object of this class should have at least as
attributes the size of an atom and its color.

4 Distances

As stated in the introduction section in machine learning methods an important con-
cept is similarity. If 2 data objects look similar, then when considering grouping of
objects they should become part of the same group. On the other hand two objects
that are completely different should not be put in the same groups. This leads to 2
important notions:

Homegeneity: Objects that are in the same group should be highly similar to each
other.

Separation: Objects from different groups should have low similarity to each other.
For these notions we need a (dis)similarity measure, such as a distance.

Assume that X = {x, ...x;} is the data set (objects) of n vectors from a D-dimensional
space.

e The most well-known distance is the Euclidean distance:

D

de(u,v) = | Y (1y —0p)2 =/ (u—v)T(u—v).

p=1

Notice that this is dissimilarity measure: the larger the value the more distinct
the objects are.

* Instead of the Euclidean distance its squared version is also frequently used:

D
d%(u,v) = Zl(up —vp)2 =(u—v)(u—-v).
p:

o A third distance measure is the Manhattan distance

D
p=1

¢ Correlation based dissimilarity: If u and v are 2 vectors from a D-dimensional
space we can define their correlation by:

Yy (p — W) (0p — V)
R) 2 (0, V)2

Cor(u,v)

10

where
1D
=D)ty
p=1
is the mean of u, and similarly for v. Notice that —1 < Cor(u,v) < 1.
It is not difficult to make from a correlation coefficient a similarity measure, sim-

ply use:
dc(u,v) =1—|Cor(u,v)|.

So when u and v are highly (negatively or positively) correlated they have a
small d¢(u, v)-value.

So when either performing a clustering or a classification we should always first de-
termine which similarity measure to choose and to note that results may depend on
that choice.

5 Clustering

The goal of cluster analysis is to group elements into disjoint subsets, or clusters, based
on similarity between elements, so that elements in the same cluster are highly similar
to each other (homogeneity), while elements from different clusters have low similar-
ity to each other (separation).

Hence, we have two tasks to achieve:

* Maximal homogeneity within each cluster

¢ Maximal heterogeneity between clusters: separation
To discuss the clustering we need some definitions:

* C={Cy,...C}is aclustering of X, a partitioning of X into k clusters.
e 1n; = |C;| the number of elements of cluster C;.

* C(x;) is the cluster where x; is assigned to.

In general we do not know a priori how many clusters our data set should have. In
some methods (such as k-means) one has on beforehand to choose the number of clus-
ters and then typically a series of small values for k are chosen, suchas 1 < k < 10, but
there is no guarantee that not a better clustering could be obtained by a larger value of
k. So we may obtain several clusterings? How should we compare them?

5.1 Cluster weights

How to determine the quality of a clustering? If we have a distance measure, then we
may consider how similar all objects in a cluster are by considering their distances and
take the sum over all clusters to obtain the clustering weight Wc.

So we are opting for getting W¢ as small as possible.

Another approach, that is used in the calculation of the silhouette score (see 5.4), is to
consider not only the distances within a cluster, but also the distances of a data point
to other clusters:

Let x be a data point and C; be a cluster, then we can define the mean distance of x to
cluster C; by :

MC(X, C]) = ‘C’
]

Y. d(xy)

yGC]

For the cluster C(x) to which data point x belongs, W(x) = MC(x, C(x)) denotes how
well x is assigned to its cluster, for all other clusters it denotes the mean dissimilarity
of point x to that cluster. The cluster with the smallest mean dissimilarity is said to be
the “neighbouring cluster” of x because it is the next best fit cluster for that point:

NC(x) = mincj#c(x)MC(x, Ci).

For data point x, the silhouette of x is defined by

s(x) = NC(x)—W(x _
maX(Z(V)C(x),I(/V)(x)) otherwise

{ 0 if |C(x)| =1

This can also be written as:

1— ned i W(x) < NC(x)

N
s(x) = 0 if W(x) = NC(x)
x)

AV’VC(E(—1 if W(x) > NC(x)

~—

As W(x) is a measure of how dissimilar x is to its own cluster, a small value means it is
well matched. Furthermore, a large NC(x) means that x is badly matched to its neigh-
bouring cluster. Thus an s(x) close to one means that the data point is appropriately
clustered. If s(x) is close to negative one, then it would be more appropriate if it was
clustered in its neighbouring cluster.

Since calculating all pair distances is costly, for large n an alternative is more appropi-
ate.

5.2 Reference vector based weights

Instead of calculating the distances between all pairs in a cluster, we could also choose
some kind of reference vector r; for cluster C; and calculate the distance from each of
the cluster points to that reference vector:

Ri = Z d(x,ri)

x,€C;

12

Summing this over all clusters gives then:

How should we choose r; the reference vector of cluster C;? A frequently used one
and the one we choose for the assignment is the so-called centroid or mean vector:

1

‘C—ilzx.

So the quality of the clustering is determined by the distance of all data points to this
mean point. As we will see in the next subsection it is also the main actor in one of the
most used clustering methods: k-means.

m; =

5.3 k-means clustering

k-means is one of the most well-known clustering methods. On beforehand the num-
ber of clusters has to be chosen. This is the number k in k-means. The aim of the
method is to partition the n data points into k clusters in which each data point be-
longs to the cluster with the nearest mean (cluster centers or cluster centroid), serving
as a prototype of the cluster. The algorithm can informally be described by:

Assign randomly each data point x; to a cluster
repeat the following steps
calculate the location of each of the cluster centroids
(re)assign each data point to a cluster with a nearest centroid
until the clustering does not change any more

An obvious question is whether this program ends. That is not trivial, since it depends
on the distance chosen. One can prove that

k
E = Z 2 d%(xlmi)/
i=1

XEC,’

(the sum of the squares of the Euclidean distance of a data point to its cluster centroid)
is minimized. Since this sum is finite, the algorithm indeed ends in a minimum.

Notice that k-means might not always terminate in an optimal clustering.

A very simple 1D example is: X = {0,8,14},son = 3, x; = 0,x; = 8,x3 = 14 and
k = 2. Let C = {Cy1,C,} be given by C; = {x1,x2} and C; = {x3}, then C is stable
under k-means, since each data point is nearest to its centroid (m; = 4, my = 14) and
E = 4% + 424+ 0% = 32. For the optimal clustering C = {{x1},{x2,x3}} we have
my =0,mp, =11and E = 02 4+ 3% + 32 = 18.

Some other remarks with respect to k-means algorithm:

* Since in the initial steps data points are randomly assigned to clusters, this step
influences the resulting E-value. k-means should therefore be run several times
(e.g. 1000) to obtain a good result.

13

® k-means is non-deterministic.

In the iteration step, a data point is (re)assigned to a cluster with a nearest cen-
troid. Although unlikely there might be more than one nearest centroid. Con-
sequently the selection of which of those nearest centroids is arbitrary and may
lead to different results in different runs on the same data set.

¢ Clusters may become empty.

Although we select k, it might happen that we end with less than k non-empty
clusters after running the algorithm. A simple example is:

X = {(0,-1),(0,1),(1,0), (5,0), (6, 1), (6,1)} and k = 3.

Consider the initial clustering C = {{(0,—1),(0,1)},{(1,0),(5,0), }, {(6,—1),(6,1)} }.
Data point (1,0) of the second cluster is closer to the centroid of the first cluster

(m1 = (0,0)), while data point (5,0) of the second cluster is closer to the centroid

of the third cluster (m3 = (6,0)), so these points are reassigned to other clusters.

The other data points remain in the cluster they were in, so we end with 2
non-empty clusters of each 3 data points.

* The complexity of k-means is low.

In one iteration the search for the nearest centroid for each data point is in total of
the order O(n). In most cases the number of iterations before a stable clustering
is obtained is small, making the algorithm fast and attractive.

5.4 The choice of k

Above we have already introduced some weights measures. To determine which
choice of k is the most appropiate the so-called Silhouette method is often used. As
the name already suggests it is using the silhouette scores of the data points:

The Silhouette coefficient of a clustering C of data set X = {xy, ...x;} is defined by

So to determine the best choice of k, for different values of k the Silhouette coefficient is
calculated and the one with the highest Silhouette coefficient is chosen to be the best.

5.5 Highly connected subgraph clustering

In 2000 the article "A clustering algorithm based on graph connectivity”, ap-
peared in Information Processing Letters (IPL 76 (4-6): 175-181, doi:10.1016/S0020-
0190(00)00142-3). In it a method is described that does not make any prior assump-
tions on the number of the clusters and instead of Euclidean distances the similarity
of data is represented in a similarity graph. On https://en.wikipedia.org/wiki/
HCS_clustering_algorithm a nice example is shown on how the Highly Connected
Subgraph(HCS) clustering algorithm partitions an example similarity graph into three
clusters.

An obvious question is what to choose as similarity, or in graph terms to determine
when do 2 nodes (data points) share an edge. Since a high absolute value of the cor-

14

https://en.wikipedia.org/wiki/HCS_clustering_algorithm
https://en.wikipedia.org/wiki/HCS_clustering_algorithm

relation coefficient of 2 data points(vectors) means that the vectors are similar, one
possibility is to choose the absolute value of the correlation coefficient of 2 data points
as a similarity measure and to select a threshold value. An edge between 2 differ-
ent data points is then included in the graph as the absolute value of their correlation
coefficient is above that threshold.

In such a similarity graph, the more edges exist for a given number of vertices, the
more similar such a set of vertices are between each other. In other words, if we try to
disconnect a similarity graph by removing edges, the more edges we need to remove
before the graph becomes disconnected, the more similar this set of vertices in this
graph. In the short note about graphs we already have introduced the notion cut and
the coupled cut-set. Instead of the algorithm of the article where minimum cuts are
employed, we take a somewhat simpler approach by using Karger cut-sets.

A pseudocode of the adapted HCS clustering algorithm is (Note that it is a pseudocode
and need to be worked out):

def adaptedHCS(G=nx.Graph()):
if highly_connected(G):
return G
else:
H1, H2, C=KargerCut(G)
pl=adaptedHCS (H1)
p2=adaptedHCS (H2)

The KargerCut-method in the above code refers to Karger’s algorithm. On
https://en.wikipedia.org/wiki/Karger’,27s_algorithm it is described, but
a nice explanation is also given on https://medium.com/@dev.elect.iitd/
kargers-algorithm-d8067eb1b790. From that last source we cite:

““Karger’s algorithm is a randomized

algorithm to compute a minimum cut of a connected graph. The

fundamental operation of Karger’s algorithm is a form of edge
contraction. The algorithm iteratively contracts randomly chosen edges
until only two nodes remain; those nodes represent a cut in the

original graph. By iterating this basic algorithm a sufficient number

of times, a minimum cut can be found with high probability.

Edge Contraction:

The edge-contraction is a simple process, whereby two nodes are merged
to form a super-node. The edges between two super nodes are called
super edges which are the set of all the edges between those two set
of super nodes. The algorithm will randomly find two nodes and merge
them to create a super-node and perform this step until there are
only two super nodes left. "~

So Karger’s algorithm is not necessarily computing a minimum cut, and that is why
have called it a KargerCut.

If the adapted HCS algorithm is applied as clustering method the result is a collection
of highly connected subgraphs that forms the set of clusters.

15

https://en.wikipedia.org/wiki/Karger%27s_algorithm
https://medium.com/@dev.elect.iitd/kargers-algorithm-d8067eb1b790
https://medium.com/@dev.elect.iitd/kargers-algorithm-d8067eb1b790

6 Assignment week4

In this individual assignment several Python programs have to be designed to cluster
data points.

The data that is to be used is the same as for your individual PCA assignment, so
it consists of 100 data points(molecules), where each data point is a 30-dimensional
vector. Each data point has also a label, its pharmaceutically relevant target.

In your solution you may use pandas to read the data, random for generating random
numbers, and numpy for numerical caluclations, but it is not allowed to use the kmeans
method from modules such as scipy and sklearn. In this case the task is to program it
yourself. As stated in the individual assignment of the PCA case your report should
include documentation, including and with emphasis on specifications, the model,
complexity analysis, and last but not least the interpretation of the results.

The assignment about clustering consists of several subtasks that have to be per-
formed:

1. Implement the k-means algorithm where k and the distance method should be
parameters of your method.

2. Use as distance the squared Euclidean distance and run your code for different
values of k and apply a silhouette analysis. Note that the results of the k-means
algorithm strongly depend on the initial assignment, so it is advised to run the
algorithm a several (e.g. 1000) times and select the best solutions.

3. Choose for k the value with the highest silhouette score. Discuss the k-means
clusters that are generated and give possible interpretations.

4. In order to generate a graph in which edges connect nodes having a sufficiently
high absolute value of their correlation coefficient, we need a threshold value.
If we have n nodes, there are n(n — 1)/2 pairs of nodes. For 0 < ¢ < 1 let
f(c) denote the fraction of those n(n — 1) /2 pairs of nodes that have an absolute
value of their correlation coefficient at least c. So if ¢ = 0 all pairs satsify this
criterion and hence f(0) = 1 while for ¢ = 1 only the pairs of nodes with a perfect
correlation would rest. Construct a plot with on the x-axis a value ¢ ranging from
0to1,and f(c) as y-value.

5. Implement the Highly Connected Subgraph(HCS) algorithm including the Karg-
erCut method.

6. Choose a value ¢ such that f(c) is approximately 0.1, and construct the corre-
sponding graph with approximately 0.1 x n(n — 1)/2 edges. Apply the HCS al-
gorithm on this graph.

7. Discuss the differences of the results of the HCS algorithm with those of the k-
means algorithm with for k the value with the highest silhouette score.

So apart from the programming aspects, the interpretation of the results are also im-
portant in the reporting.

Success and enjoy!!!

16

	Introduction on machine learning techniques
	Recursion
	Recursion example
	The solution
	Recursion exercise 1
	Recursion exercise 2

	Graphs
	Degree
	Path
	Subgraph
	Highly connected subgraph
	Multigraph
	NetworkX

	Distances
	Clustering
	Cluster weights
	Reference vector based weights
	k-means clustering
	The choice of k
	Highly connected subgraph clustering

	Assignment week4

