
Biostatistics 140.653 
Third Term, 2022 

Problem Set 3 REVISED on 3/4/2022 
 

Instructions: Feel free to discuss and complete the analysis with other students. 
However, each student must write-up their own solutions. Write as if for a scientific 
journal. Be brief and accurate. Submit your text answers along with your code in an 
html or pdf file generated via RMarkdown.  

 
Due in CoursePlus drop box: Friday, March 11 by 12:00pm (noon) EST 
 
For this problem set, use the complete Nepal Anthropometry Study (NAS) Dataset 
with up to 5 measurements on each child over time.  
 
The goals of the analysis are to: 

1) Determine if the average growth rates of children differ by mother’s parity 
(number of previous live births) 

2) Estimate the population variation in annual growth rates of Nepali children 
and explore whether this differs by mother’s parity 

 
Part I:  Get familiar with the data 
 

1. Make a table of mother’s parity (alive variable).  Ideally, we would compare 
children of nulliparous women to categories of women of parity > 0.  
However, in this dataset, there are only 19 children from nulliparous women.  
So, we will create two categories of women:  parity ≤ 3 (i.e. 1 to 4 live births) 
vs. parity > 3 (5 or more live births). 

 
2. Make a spaghetti plot of children’s weight as a function of age; connecting the 

measured weights within a child over time.  Color code the data by parity 
group.  Add smoothing splines for each parity group.  Note any similarities or 
differences in the growth rates across the two parity groups. 

 
Part II:  Model checking and recommendations 
 
Fit the following model to the data: 
 
𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝐼𝐼(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 > 3) + 𝛽𝛽3𝐼𝐼(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 > 3)𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖, 𝜀𝜀𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎2), 
𝐶𝐶𝐶𝐶𝐶𝐶�𝜀𝜀𝑖𝑖𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑖𝑖� = 0,    
 
where i indicates the child (i =1, …, 200) and j denotes the follow-up (j = 1, 2, 3, 4, 5). 
 

1. Conduct appropriate checking of this model; i.e. check for appropriateness of 
the mean model, and the independence and constant variance assumptions 
for the residuals. 



 
2. Based on your model checking, propose an alternative model for the data 

that can address the first goal of the analysis (i.e. determine if the growth 
rates of children differ by mother’s parity (number of previous live births) 
while satisfying the observed patterns in data with respect to the mean 
model and distribution of residuals.  NOTE:  If you modify the mean model, 
you may want to iterate between model checking for the mean. 

 
Part III:  Marginal model for longitudinal data 
 

1. Use the gls function in R to fit the model you proposed in Part I.  From the fit 
of the model, compute the estimated 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜀𝜀𝑖𝑖0, 𝜀𝜀𝑖𝑖𝑖𝑖) for j = 1, 2, 3, 4 where the 
follow-up visits (fuvisit) have values 0 (baseline) and 1, 2, 3, 4 (representing 
the 4 follow-up visits each 4 months apart). 
 

2. Conduct a likelihood ratio test to address the first goal of the analysis; i.e. to 
determine if the average growth rates of children differ by mother’s parity 
(number of previous live births). 
 

3. Fit the mean model you proposed in Part I using the gee function but where 
you allow the correlation structure to be “independence”.  The gee function 
will produce standard error estimates assuming the independence 
assumption (labeled as “naïve” or “model-based” standard error estimates) 
and “robust” standard error estimates (using the Huber-White sandwich 
estimator).  Compare the estimated coefficients and standard errors from the 
gls and gee model fits. 
 
HINT: 
fit = gee(wt~ns(age,2) * parity, data=data,id = id, corstr=”independence”)  
summary(fit)$coefficients 
sqrt(diag(fit$naive.variance)) 
sqrt(diag(fit$robust.variance)) 
 

4. The bootstrap procedure can also be applied to longitudinal or clustered data 
to estimate standard errors of estimated coefficients (or functions of).  To 
preserve the within-subject dependency, the bootstrap procedure samples 
children (with replacement) as opposed to assessments.  See the 
ProblemSet3.rmd file for code to implement a clustered bootstrap.  Compute 
the bootstrap standard error estimates and compare these to the standard 
errors from the gls and gee model fits.  Comment on similarities and 
differences.    

 
 
 
 



Part IV:  Linear mixed model motivation! 
 
Linear mixed models allow us to specify subject-specific regression models and then 
subsequently describe how the parameters from subject-specific regression models 
vary in the population of interest. 
 

• We imagine that the subjects in our sample are representative of persons 
from the population of interest, e.g. Nepali children from birth to 5 years of 
age 
 

• The data we get to observe for each subject is generated from a subject-
specific regression line, for example: 
 

𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 = 𝛽𝛽0𝑖𝑖 + 𝛽𝛽1𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖+𝜀𝜀𝑖𝑖𝑖𝑖,  
 

where 𝜀𝜀𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎2), 𝐶𝐶𝐶𝐶𝐶𝐶�𝜀𝜀𝑖𝑖𝑖𝑖, 𝜀𝜀𝑖𝑖𝑖𝑖� = 0 for all 𝑗𝑗 ≠ 𝑘𝑘 
 
This model says that each child has their own linear growth in weight for 
ages 0 to 60 months. 
 
Further the model above says that the weights we observe at a given age are 
measured with error (𝜀𝜀𝑖𝑖𝑖𝑖), i.e. random fluctuations in an individual child’s 
weights.  These random fluctuations are independent of each other over time 
and have constant variance. 
 

• Now we can think of the population of all children, where each child has their 
own intercept (𝛽𝛽0𝑖𝑖) and linear growth rate (𝛽𝛽1𝑖𝑖).  In the population, there 
would be a population average intercept (𝛽𝛽0) and population average growth 
rate (𝛽𝛽1) PLUS measures of how variable the intercepts and linear growth 
rates are across children! 
 
At the population, we have: 
 

�𝛽𝛽0𝑖𝑖𝛽𝛽1𝑖𝑖
�~𝑀𝑀𝑀𝑀𝑀𝑀��𝛽𝛽0𝛽𝛽1

� , �𝜎𝜎0
2 𝜎𝜎01

𝜎𝜎10 𝜎𝜎12
��, 

 
where 𝐸𝐸(𝛽𝛽0𝑖𝑖) =  𝛽𝛽0,𝐸𝐸(𝛽𝛽1𝑖𝑖) =  𝛽𝛽1,𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽0𝑖𝑖) = 𝜎𝜎02 ,𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽1𝑖𝑖) = 𝜎𝜎12 ,
𝐶𝐶𝐶𝐶𝐶𝐶(𝛽𝛽0𝑖𝑖,𝛽𝛽1𝑖𝑖) = 𝜎𝜎01 = 𝜎𝜎10 
 

• From the model, we can describe the population average growth rate (𝛽𝛽1) 
but also how growth rates for individual children vary with respect to the 
average growth rate (i.e. 𝜎𝜎12). 
 



Based on the assumptions above, we could say that 95% of children will have 
linear growth during the first 5 years of life that range from 𝛽𝛽1 ± 1.96 𝜎𝜎1 

 
Absent the knowledge of how to fit the model described above (which you will have 
after Tuesday’s lecture), we can conduct some simple intuitive analyses that would 
allow us to explore variation in growth rates. 
 
In what follows, we will assume that growth is linear.  This is a strong assumption 
that is likely violated but will keep the analyses simple  
 

1.  Fit a simple linear regression of weight on age (linear) for each child in the 
sample and save the estimated slope.  
 

2. Scale the estimated slopes to represent the expected change in weight per 
year. 
 

3. Plot the expected change in weight per year as a function of the child’s 
baseline age (i.e. age when fuvisit = 0).  Describe any patterns you observe in  

 
a. The population average change in weight per year as a function of the 

child’s baseline age 
 

b. Variation in the expected change in weight per year across children as 
a function of the child’s baseline age (be quantitative, i.e. estimate the 
variance) 

 
4. Repeat 3) but stratify by mother’s parity. 

 
 
Part V:  Summarize your findings 
 
Write a brief report with sections: objective, data, methods, results, summary as if for a 
health services journal.  You may include up to 2 figures (which may have multiple 
panels).  Remember to be enumerate when possible!   

 
 
 


