
HW 11

Take the class and function definitions from the Lecture 20 notebook (you can use

the answer key versions from Canvas) and put them in a .py file. Then, do the

following:

1) Re-write file_reader() to be able to handle FASTA files that have sequences that span

multiple lines, instead of having just one line of sequence for each entry.

2) Write a third function called reverse_printer() that takes as an argument a list of

sequence objects and prints out on one line the sequence id, and on the second

line, the reverse complement of each sequence.

3) Modify main() to remove any print statements. Instead, main() should pass the list

of sequences returned by file_reader to reverse_printer().

Save the complete class and function definitions in a file called HW_11.py and turn

it in by Sunday 11/28 at midnight.

You can see any example of what your terminal output should look like here:

HW 12

Create a new .py file named HW_12.py that contains just the class definition for

Sequence(), from the Lecture 20 Workshop notebook but none of the above

functions.

Add a new method to the Sequence class called gene_translation() that:

1) Calls the start() method to identify whether a start codon is present in a DNA

sequence

2) If start() returns True, converts a DNA sequence to RNA by calling

the to_rna()method. If start() returns False, then the method prints 'Sorry, no gene in

this sequence' and stops running.

3) Slices the RNA sequence to begin at the start codon 'AUG'.

4) Generates a list of codons beginning with 'AUG' and continuing every three

nucleotides until the end of the sequence. So the sequence 'AUGAGGACC'would

generate the list ['AUG', 'AGG', 'ACC'].

5) Slices that list to contain everything from index 0 through the first occurrence of

one of the following three stop codons: 'UAG', 'UAA', or 'UGA'. Hint: There are lot of

ways you can find the first stop codon. I would probably use a list comprehension

to make a list of all indices where those stop codons appear: [i for i in range(len(mylist)) if

mylist[i] in ['UAG', 'UAA', 'UGA']] and slice my list up to and including the first index number

in the resulting list.

6) Makes use of the dictionary given in the Lecture 20 Workshop to translate each

triplet into the corresponding amino acid sequence and prints the translation to the

terminal as a single string.

This method should require no arguments aside from self and returns nothing (just

prints the amino acid sequence to the terminal).

After the end of the class definition, create a main() function that reads the file

cyto_pol.fasta (containing the DNA sequence for the Human Cytomegalovirus

polymerase gene), extracting the sequence id and the sequence, and then

instantiates a Sequence object. Note that the sequence spans multiple lines of the

fasta file, but the file only contains the one sequence entry. main() should then

call gene_translation() on that Sequence object.

Submit your file as HW_12.py by midnight on Sunday 11/28.

