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Abstract

This paper examines the temporal behaviour of volatility of daily returns on crude oil
futures using a generalised regime switching model that allows for abrupt changes in mean
and variance, GARCH dynamics, basis-driven time-varying transition probabilities and
conditional leptokurtosis. This flexible model enables us to capture many complex features
of conditional volatility within a relatively parsimonious set-up. We show that regime shifts
are clearly present in the data and dominate GARCH effects. Within the high volatility
state, a negative basis is more likely to increase regime persistence than a positive basis, a
finding which is consistent with previous empirical research on the theory of storage, e.g.

Ž . Ž .Fama and French 1988a,b and Ng and Pirrong 1994 . The volatility regimes identified by
our model correlate well with major events affecting supply and demand for oil. Out-of-sam-
ple tests indicate that the regime switching model performs noticeably better than non-
switching models regardless of evaluation criteria. We conclude that regime switching
models provide a useful framework for the financial historian interested in studying factors
behind the evolution of volatility and to oil futures traders interested short-term volatility
forecasts. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Empirical studies indicate that commodity prices can be extremely volatile at
Ž .times. Webb 1987 describes such occasional outburst of volatility as indications of

Ž ..a ‘choppy’ market. According to Webb 1987 :
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‘a market condition traders frequently encounter in futures markets is the phenomenon of
‘choppy market’ . . . where prices oscillate wildly without seeming to stop at intervening prices...
Traders fear such markets because of the enhanced danger of uncontrollable losses due to
sudden price swings’.

Sudden changes in volatility also have important implications for the pricing of
commodity derivatives and the construction of optimal hedge ratios. For example,
commodity options will be under priced if the historical unconditional volatility is
assumed during periods when there is a switch from a ‘low’ to ‘high’ volatility
regime. Similarly, highly inaccurate hedge ratios may result when they are com-
puted on the assumption that there are no sudden changes in volatility. Lastly,
since the spread between spot and futures prices tend to increase during periods of
high volatility, commodity traders will face higher basis risks, which compounds the
problem of determining an optimal hedge ratio.

This paper examines the temporal behaviour of volatility of daily returns for
crude oil futures and its relation to the basis, i.e. the percentage difference
between contemporaneous spot and futures price. Our data shows that oil futures
exhibit backwardation 71% of the time. This high frequency of backwardation is

Ž .consistent with the findings of Litzenberger and Rabinowitz 1995 who explain the
phenomenon in terms of option pricing theory. Specifically, oil wells are viewed as
call options with exercise price corresponding to the extraction cost. In this context,
persistent backwardation is viewed as an inducement for current extraction. More-
over, the more volatile are demand and supply shocks, the higher must the spot
price be relative to futures price to overcome producers’ preference to leave oil

Ž .underground. Litzenberger and Rabinowitz 1995 provide empirical evidence
based on US data which are consistent with this hypothesis. Specifically, they find
that controlling for the level of spot price, there is a significant negative relation
between implied volatility of at-the-money-futures call options and the basis. The
Litzenberger�Rabinowitz analysis, however, does not preclude the role of short-
ages in oil stocks in affecting volatility. It is well known that the cost of storing oil

Ž .above ground is extremely high Verleger 1994 . Thus, oil refiners hold very
minimal stocks of oil, accepting the risks of running out of product. According to

Ž .Verleger 1994 , stocks of crude oil held by oil refiners in the US, Europe and
Japan typically cover less than 30 days of use. High storage costs severely hinders
the ability of oil refiners to cope with situations of sudden high demand, giving rise
to inelasticity of oil supply especially in the short-run. Due to inelastic supply, spot
prices must rise significantly to equilibrate the market imbalances whenever there
is a big increase in demand. Thus, the theory of storage predicts that backwarda-
tion is more likely to occur when oil stocks are low than when there are adequate
stocks. A dramatic example of backwardation in the crude oil market occurred in
1996�1997 due to depleting oil stocks following the severe Northern Hemisphere
winter of 1995, and a surge in oil demand in 1996 by the recovering economies of

Ž .US, Europe and the Far East see Petroleum Economist 1990 . By the end of 1996,
the spot price of crude oil reached US$27, the highest level since 1990. Interest-
ingly, volatility of spot and futures oil prices also rose significantly between 1996
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and 1997, reflecting the combined effects of inelastic supply and volatile demand.
Based on our analysis, the monthly standard deviation of nearby West Texas

Ž .Intermediate WTI crude oil futures in 1996�1997 was approximately 63% above
the level of volatility in 1995. A similar but shorter period of backwardation and
surge in volatility occurred in early 1994 which lasted for 6 months. According to
industry observers, the backwardation in crude oil reflected significantly higher

Ž .energy use from Europe and the US Wall Street Journal, 1995 .
To summarise, the options framework relies on demand or supply shocks to

explain the increase in the volatility of spot oil prices while the theory of storage
places more emphasis on low inventories and volatile demand shocks as the main
factors behind big swings in oil prices. That is, according to storage theory, demand
shocks by themselves are insufficient to explain increases in volatility without
inelastic supply. These two views are, however, not mutually exclusive. For exam-
ple, during periods when demand shocks are risky, price volatility can persist or
increase further if the market goes into backwardation due to a major disruption in
supply, as events in 1996�1997 seem to confirm. The purpose of this paper is to
attempt to model these complex features of volatility by using a general regime
switching model.

Our model builds on the standard GARCH approach by allowing for jumps in
the conditional variance between a discrete number of states or regimes. The
model is flexible in that all GARCH parameters can switch between regimes.

Ž .Moreover, the regimes are treated as a latent unobservable variable that can be
estimated along with the other parameters of the model using maximum likelihood.
The transition between volatility states is assumed to be governed by a Markov
process. We hypothesise that backwardation will have a more significant effect on
the persistence of volatility shocks during periods of high volatility than during
periods of low volatility. To capture the possible effects of basis on the persistence
of volatility regimes, we allow transition probabilities to be a time-varying function
of the basis.

The remainder of this paper is organised as follows. Section 2 introduces the
regime switching model and discusses estimation issues. Section 3 describes the
data set and presents preliminary descriptive analysis of the data. Estimation
results are presented in Section 4. In Section 5, we evaluate the forecasting ability
of the regime switching model against two benchmarks: a constant variance and the

Ž .single regime GARCH 1,1 model. Section 6 concludes the paper.

2. Regime switching models

2.1. Structure of regime switching models

Many financial time series undergo alternating periods of calm and turbulence.
Ž .In particular, asset prices tend to exhibit volatility clustering in which large small

Ž .price changes tend to be followed by large small price changes. This clustering of
volatility strongly suggests that conditional volatility of asset returns is time varying.
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The most popular approach for modelling conditional volatility is the GARCH
Ž .family of models as introduced by Engle 1982 and generalised by Bollerslev

Ž . Ž .1986 and Nelson 1991 . GARCH models are appealing because of their simplic-
ity, ease of estimation and empirical success in modelling time-varying volatility in

Ž .a variety of contexts Bollerslev et al., 1992 . Empirically, a common finding is that
GARCH models tend to impute a high degree of persistence to the conditional
volatility. This means that shocks to the conditional variance that occurred in the
distant past continue to have non-trivial effects currently. The degree of volatility
persistence for GARCH models can be easily quantified. Consider the widely used

Ž . 2GARCH 1,1 model with h as the conditional variance and � as the unconditio-t
nal variance. The jth period ahead forecast of the conditional variance is:

j2 2Ž . Ž . Ž . Ž .E h � � � � � � h � � , for j � 1 1t� j t

Thus, when � � � is close to one, shocks to the conditional variance are highly
Žpersistent, and the conditional variance is possibly integrated Engle and Boller-

.slev, 1986 . Empirical studies typically find � � � to be close to one for a variety of
Ž . Ž .assets. For example, French et al. 1987 , Chou 1988 , Baillie and DeGennaro

Ž . Ž .1990 and Fong 1997 all report � � � to be above 0.9 for weekly stock returns.
Ž .However, Lamoureux and Lastrapes 1990 point out that such high levels of

volatility persistence may be spurious if there are structural breaks or regime shifts
in the volatility process. They demonstrate this point by introducing deterministic
shifts in the variance and find that this leads to a marked reduction in the degree
of volatility persistence compared to that implied by standard GARCH models.
This suggests that to obtain more robust estimates of conditional volatility would
require a more general class of GARCH models that allows for regime shifts as
part of the data generating process.

Regime switching GARCH models were introduced recently by Hamilton and
Ž . Ž . Ž .Susmel 1994 , Cai 1994 and Gray 1996a,b . There are several common features

in these models. First, the conditional volatility process is allowed to switch
stochastically between a finite number of regimes. Second, the timing of regime
switch is usually assumed to be governed by a first-order Markov process. The
transition probability of the Markov process determines the probability that
volatility will switch to another regime, and thus the expected duration of each
regime. Transition probabilities may be constant or a time-varying function of
exogenous variables. Within this framework, several versions of regime switching

Ž .models have appeared in the literature. Hamilton and Susmel 1994 and Cai
Ž . Ž .1994 consider regime switching models with ARCH innovations. Gray 1996a
introduced a more general regime switching model that allows for GARCH
dynamics. The extension from ARCH to GARCH is made possible by a new
algorithm that solves the well-known path dependency problem associated with
GARCH models. The algorithm also simplifies the estimation of more complicated
models with regime dependent parameters and time-varying transition probabili-
ties. This opens the way for estimating a richer class of stochastic processes for
financial assets with complex volatility structures.
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We apply a regime switching model similar to Gray’s to examine the temporal
behaviour of the conditional volatility of crude oil futures. We begin by illustrating
the set-up of a basic Gray-type model with two states and GARCH effects only.
The model can easily incorporate ARMA dynamics in the mean as well, as we show
in the empirical section. The basic model can be written as follows.

r � � � �i t i t i t

� Ž . Ž .� � � N 0,h i � 1,2 states 2i t t�1 i t

where r , denote returns, and � and h are the conditional mean and conditionali t i t i t
variance, respectively, both of which are allowed to switch between two regimes.
Regime switching is assumed to be directed by a first-order Markov process with
transition probability given by:

� � �Pr S � 1 S � 1 � Pt t�1

� � �Pr S � 2 S � 1 � 1 � Pt t�1 Ž .3j� � �Pr S � 2 S � 2 � Qt t�1

� � �Pr S � 1 S � 2 � 1 � Qt t�1

The above set-up is similar to a mixture-of-distribution model in which the
innovations � are drawn from a finite number of normal distributions. In the casei t
of regime switching models, the mixing variable is a function of the transition
probabilities, P and Q, which determines the probability of the system remaining
in the same state. The mixing variable for regime switching models is known as the

Ž � .regime probability, which we denote by p � Pr S � i � . The regime probabil-i t t t�1
ity is thus the ex-ante probability of a particular state at time t, conditional on

Ž .information available at t � 1 � and is a key input for forecasting. For at�1
first-order Markov chain, it is straightforward to show that the regime probability is

Ž . Ž .the weighted average of P and 1 � Q as shown in Eq. 6 . Thus, even with fixed
transition probabilities, regime probabilities are time-varying. This is a key feature
that distinguishes the Markov switching model from classical mixture models. In

Ž .Gray’s model, the conditional volatility, h , is assumed to follow a GARCH p,qt
process

p q

Ž .2h � � � � � � � h 4Ý Ýt i t�i i t�i
i�1 i�1

where � � 0, � � 0 and � � 0 to ensure that the conditional variance is positive.i i
All variance and mean parameters are regime-dependent.

An appealing feature of regime switching models is that they allow the joint
estimation of regime shifts and GARCH effects. Moreover, the relative signifi-
cance of regime shifts vs. GARCH effects can be tested, although within a

Ž .non-standard testing framework Davies 1977, 1987; Hansen 1992; Garcia 1997 .
Another interesting feature of regime switching models is that the regimes are not
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assumed to be observable by the econometrician, but can be identified from the
estimation process. Details of the estimation procedure for regime switching
models are discussed in Section 2.2.

2.2. Estimation issues

Let f be the conditional distribution of returns, r . By assuming normali t t
innovations, f can be written as:i t

2Ž .1 1 r � �t i tŽ � . Ž .f � f r S � i ,� � exp � 5i t t t t�1 ½ 52 h2	 h' i ti t

where i � 1, 2 states; h � variance of i at time t; � � information set at timei t t�1
t � 1; � � conditional mean return in state i at time t.i t

Using Bayesian arguments, it can be shown that the regime probability p can1 t
be written as a simple first-order non-linear recursive function of the transition

Ž .probabilities and the conditional distribution see Gray 1996a, pp. 58�61 :

f p1 t�1 1 t�1
p � P1 t Ž .f p � f 1 � p1 t�1 1 t�1 2 t�1 1 t�1

Ž .f 1 � p2 t�1 1 t�1Ž . Ž .� 1 � Q 6Ž .f p � f 1 � p1 t�1 1 t�1 2 t�1 1 t�1

Ž � . Ž � . Ž � .where p � Pr S � 1 � ; f � f r S � 1 ; and f � f r S � 21 t t t�1 1 t t t 2 t t t
Ž .The log-likelihood function L for this model is

T

� Ž . � Ž .L � log p f � 1 � p f 7Ý 1 t 1 t 1 t 2 t
t�1

The log-likelihood function can be constructed recursively using the following
expressions for h and � :t t

22� � � � � � ��h � E r � � E r �t t t�1 t t�1 Ž .822 2Ž . Ž .Ž . � Ž . �� p � � h � 1 � p � � h � p � � 1 � p �1 t 1 t 1 t 1 t 2 t 2 t 1 t 1 t 1 t 2 t

and

� � � � Ž . � Ž .� � r � E r � � r � p � � 1 � p � 9t t t t�1 t 1 t 1 t 1 t 2 t

At each time step, the conditional variance is obtained by aggregating the
conditional variances from the two states based on the regime probabilities. This
aggregated conditional variance is then used to compute the conditional variance
for the next period, etc. By focusing on the regime probability instead of the

Ž . Ž .transition probability as in Cai 1994 and Hamilton and Susmel 1994 , the
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conditional variance at time t is made to depend only on the current regime, and
not the entire sequence of regimes up to time t. This solves the problem of
path-dependence for GARCH models, thus making feasible, the estimation of
regime switching models with GARCH rather than just ARCH innovations. In
recognition of the first-order recursive structure of the regime probability, as

Ž .shown in Eq. 6 , Gray labels this class of models as First-Order Regime Switching
Ž .FORS models.

Given initial values for the regime probabilities, and the conditional mean and
variance for each state, the log-likelihood function can be constructed and max-
imised numerically to obtain parameter estimates of the model. It is common
practice to assume that the maximum likelihood estimators are consistent and
asymptotically normal. Using arguments similar to those in Bollerslev and

Ž . Ž .Wooldridge 1992 , Gray 1996b proves these properties hold for normal quasi-
maximum likelihood estimators of FORS models with fixed transition probabilities.
This result also applies to models with time-varying transition probabilities that are
a function of the history of the data because in this case, it can be shown that the
regime probabilities continue to have a first-order recursive structure.

In this paper, we allow the transition probability of switching between volatility
Ž .states at time t to be dependent on the lagged basis b . It is appropriate to uset�1

b as the information set since it reflects fundamentals immediately prior to thet�1
shock that generates the return at t whereas b would include the impact of thet
shock. Using the lagged basis also preserves the first-order recursive structure of
the regime probabilities, ensuring that our maximum likelihood estimators will be
consistent and asymptotically normal.

The estimation routine generates two interesting by-products in the form of the
regime probability and the smooth probability. Recall that the regime probability
at time t is the probability that state i will operate at t, conditional on information
available up to t � l. The regime probability is a key input in forecasting the
conditional variance. The other by-product, is the smooth probability,

Ž � .Pr S r ,r ,...,r , which is the probability of a particular state in operation att T T�1 0
time t conditional on all information in the sample. The smooth probability allows
the researcher to ‘look back’ and observe how regimes have evolved over time.

3. Data and descriptive analysis

3.1. Data

The data used in this study are daily returns on the second nearest crude oil
Ž .futures based on the West Texas Intermediate WTI Cushing, Oklahoma contract

traded on NYMEX. To proxy for the spot price, we use daily prices for the nearest
futures contract. All data is obtained from Bloomberg database. Our sample period
is from 2 January 1992 through 31 December 1997 for a total of 1506 observations.
Daily returns are computed by taking the difference in logarithm of consecutive
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days’ settlement prices. The following section gives a brief description of the
contract specifications of the WTI futures contract.

3.2. Contract specifications

ŽEach WTI crude oil futures contract is equivalent to 1000 US barrels 42 000
.gallons of light, sweet crude oil. The WTI is a monthly contract and is available 30

months into the future.
All futures contract prices are quoted in dollars and cents per barrel. The

minimum and maximum price fluctuations are restricted to $0.01 and $15 per
barrel, respectively. The expiration of crude oil futures is on the third business day
prior to the 25th calendar day of the month. To safeguard against market
manipulation, there is a position limit of 15 000 contracts for all months combined
and not exceeding 1000 contracts in the last 3 days of trading in the spot market or
7500 in any month. Despite such limits, WTI crude oil futures contracts are among
the most liquid of all commodity futures contracts.

3.3. Preliminary analysis

Table 1 represents descriptive statistics of the data. The mean daily futures
Ž . Ž .return is small 0.46% compared to the standard deviation 1.49% . The uncondi-

tional distribution of the returns is slightly skewed and consistent with many other
financial assets, has fatter tails than the normal distribution.

Panel B of the table presents autocorrelation coefficients for the returns and
Ž .squared returns for a selection of lags 1, 5 and 10 as well as Ljung Box statistics

for lag 5. While the returns exhibit a mild degree of autocorrelation, the squared
returns are more highly autocorrelated. This is confirmed by the Ljung-Box
statistic, which is significant at less than 1%. The autocorrelation pattern of the

Ž .squared returns is consistent with volatility clustering where large small price
Ž .changes tend to be followed by large small price changes over consecutive days.

Volatility clustering in commodity returns have been documented in many empiri-
Ž .cal studies using standard GARCH models. See e.g., Kroner et al. 1993 and Ng

Ž .and Pirrong 1994 . GARCH models typically imply a high degree of volatility
persistence, i.e. volatility shocks which occurred in the distant past continue to
have a non-trivial impact on current volatility. However, it may be premature to
conclude on the basis of the high degree of volatility persistence that conditional

Ž . Ž .volatility is highly predictable. As Diebold 1986 , Lamoureux and Lastrapes 1990
Ž .and Hamilton and Susmel 1994 show, volatility persistence may also be due to

structural breaks in the volatility process. Therefore, at this stage, it is unclear
whether the autocorrelations of the squared returns for crude oil futures reflect
genuine volatility predictability or is merely a result of regime shifts. We resolve
this issue by nesting GARCH effects within a general regime switching model.

Panel C presents correlations of spot and futures returns and squared returns
with the basis. Since the basis can fluctuate with interest rates even if there is no
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Table 1
Descriptive statistics

Panel A. Futures returns

Mean �0.0046
Median 0.0000
Min �7.1799
Max 6.6177
Variance 2.2341
Skewness �0.14
Kurtosis 4.78

Panel B Auto correlations of futures returns and squared returns

Lag Returns Squared returns
1 0.023 0.023

��5 0.020 0.012
��10 0.016 0.031

�� ��Ž .Ljung-Box Q 5 29.36 76.05
Ž . Ž .0.00 0.00

Panel C. Correlations of spot and futures returns with basis

Spot �0.12 �0.21
Futures �0.04 �0.12

Panel D. Auto correlations of basis

Lag Autocorrelation
��1 0.94
��5 0.81
��10 0.76

Unit root tests Test statistic Value of Test Statistic
��ADF test t �4.37�
��t �4.67

��Phillips�Perron test z �5.62�
��z �6.13


Ž . Ž .The sample period is 2 January 1992 through 31 December 1997 1506 observations . Q 5 is thel
Ljung�Box statistic for testing the joint significant of autocorrelations of returns or squared for the first
five lags. Under the null hypothesis of zero autocorrelations, the Q-statistic is distributed as a �2

Ž . Ž .variable with 5 d.f. P-value in parentheses . The Augumented Dickey�Fuller ADF test for unit roots
n

for the basis is based on the regression: b � � � a t � a b � a � b � e where b denotesÝt 1 2 t�1 3 i t� i t t
i�1

the interest-adjusted basis on day t. The Phillip�Perron test is based on the regression: bt � � � a t �l
a b � e , where the innovations, e , are allowed to be heterogeneous. The null hypothesis for the two2 t -1 t t
tests is that a � 0. The ADF t statistics, t and t are based on the regression with and without time2 � 
�
trend, respectively, as are the Phillip�Perron test statistics, z and z . Ninety-five percent asymptotic� 


critical values for the ADF and Phillip�Perron tests are �2.86 and �3.41, respectively, � and ��

denote statistical significance at 10 and 5%, respectively.



( )W.M. Fong, K.H. See � Energy Economics 24 2002 71�9580

Ž .changes in demand and supply, we use an interest-adjusted basis ADB computedt
as follows:

F � St t Ž .ADB � � R 10t tSt

where F and S are the futures and spot prices at the close of day t and R is thet t t
time to expiration yield on 3-month US Treasury bills. Table 1 shows that both spot
and futures returns and their squares vary inversely with the basis. In terms of
magnitude, the basis is more highly correlated with the spot than with futures
returns or squared returns. Thus, the spot price is more sensitive to changes in the
basis than the futures price. Furthermore, the smaller the basis, the more volatile
are spot returns, and to lesser extent, futures returns. These results are consistent

Ž .with the theory of storage. See Fama and French 1988a,b; French 1986 and Ng
Ž .and Pirrong 1994 .

Finally, panel D shows that the basis is highly autocorrelated, with a first order
autocorrelation at 0.94. Subsequent autocorrelations decay at a slow rate. However,
based on the Augmented Dickey Fuller and semiparametric Phillips-Perron test for
unit roots, we reject the null hypothesis of a unit root in the basis. Thus, basis
follows a stationary but highly persistent stochastic process. The basis persistence,
which probably reflects long production lags from the extraction of raw crude oil in
the wells to the distribution of refined crude products, has important implications
for volatility of spot and futures oil prices. In particular, critical shortages may lead
to prolonged periods of significant backwardation as well as volatility for spot and
nearby futures prices.

4. Estimation results

Ž .Table 2 reports the estimation results for a standard GARCH 1,1 model and a
simple Markov switching model without GARCH effects. For both models, the

Ž .returns errors � are assumed to follow a student-t distribution which allows fort
Ž .fatter tails than the Gaussian distribution. The GARCH 1,1 -t model is:

Ž .r � � � � 11t t

Ž .� � Student - t 0, FRt

2 Ž .h � � � � � � � h 12t 1 t�1 1 t�1

Ž .where FR � 0 is the degree of freedom of the Student-t distribution, and � � 01
and � � 0, so that the conditional variance, h , is always positive.1 t

Ž .Consistent with the findings of previous research, the GARCH 1,1 model
imputes an extremely high degree of volatility persistence. Since � � � � 0.9957,1 1
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Table 2
Ž .Comparison of GARCH 1,1 � t and Markov switching model for crude oil futures

Ž .Parameters GARCH 1,1 � t Markov switching model

� 0.0083 0.01301
Ž . Ž .0.0188 0.0389

� 0.00212
Ž .0.0672

�� ���� 0.0135 1.23001
Ž . Ž .0.0080 0.1182

���� � 3.21402
Ž .0.2425

���� 0.0349 �1
Ž .0.0093

���� 0.9608 �1
Ž .0.0101

���P � 0.9941
Ž .0.0035

���Q � 0.9935
Ž .0.0039

��� ���Fr1 5.7295 5.6805
Ž . Ž .0.8303 1.2766

���Fr2 � 8.9791
Ž .2.9886

Log-likelihood �2652.46 �2646.98
��LR test � 10.96
�Ž .0.08

Ž .This table reports maximum likelihood estimates of GARCH 1,1 -t and Markov switching models
for daily returns on the West Texas Intermediate crude oil futures. The sample period extends from 2

Ž . Ž .January 1992 to 31 December 1997, 1506 observations . The GARCH 1,1 -t specification is:
r � � � � ; �t t t

Ž .� Student-t 0, FR ;1
h � � � � �2 � � h .t 1 1 t�1 1 t�1

The Markov switching specification is:
r � � � � , where i � 1; 2 states:i t i t i t

� Ž .� � � Student-t 0, FR .i t t�1 1

The transition probabilities of the model are:

� � �Pr S � 1 S � 1 � Pt t�1

� � �Pr S � 2 S � 1 � 1 � Pt t�1

� � �Pr S � 2 S � 2 � Qt t�1

� � �Pr S � 1 S � 2 � 1 � Qt t�1

Ž .Standard errors of parameters are in parentheses. The likelihood ratio LR test is computed as follows:
� Ž . Ž .�2 likelihood of H �likelihood of H , where H is the GARCH 1,1 -t model and H is the Markov1 0 0 1

switching model with constant transition probabilities. For the Markov switching model, the P-value is
Ž .computed using Davies’s 1977, 1987 adjustment for the problem of nuisance parameters under the null

hypothesis of a single regime. � , �� and ��� denote statistical significance at 10, 5 and 1%.
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Ž 720 .on the average, it takes 720 days for volatility shocks to die out 0.9957 � 0.045 .
Ž .However, Lamoureux and Lastrapes 1990 provide simulation evidence which

shows that the high degree of volatility persistence implied by standard GARCH
models may be spurious in the presence of structural breaks in the conditional

Ž .variance. Hamilton and Susmel 1994 confirm this conjecture using a regime
switching model that allows ARCH innovations. Applying their model to weekly
US stock index returns, they find strong evidence of regime shifts in the scale of
the ARCH process. Moreover, accounting for regime shifts led to a marked
reduction in the degree of residual volatility persistence. To deal with the possibil-
ity that volatility clustering in crude oil returns is due to structural changes in
volatility, we consider a simple regime switching model with no GARCH effects.
The model assumes that the volatility process can switch between two states, where
� and � are the variance in states 1 and 2, respectively. The transition probabili-1 2
ties are assumed to be governed by a first-order, time homogeneous Markov
process as follows:

P 1 � P Ž .� � 131 � Q Q

� � � � � �where P � Pr S � 1 S � 1 and Q � Pr S � 2 S � 2 . The second columnt t�1 t t�1
of Table 2 reports the estimation results for this Markov switching model. There
are three interesting observations. First, the volatility in the two states is very
different, suggesting two distinct volatility regimes.

Ž .Specifically, the variance in state 2 � is at least 2 times higher than the2
Ž .variance in state 1 � . Second, the transition probabilities, P and Q are close to1

one, indicating that the volatility regimes are highly persistent. Thirdly, the Markov
switching model appears to fit the data better than the GARCH model. The

Ž .log-likelihood of the Markov switching model �2646.98 is much larger than the
Ž . Ž .GARCH 1,1 -t model �2652.46 . To assess whether the difference in log-likeli-

hood is statistically significant, we compute the standard likelihood ratio statistic,
but adjust the P-value of this statistic upward to reflect the problem of nuisance
parameters. This problem arises with Markov switching models because under the
null hypothesis of a single regime, the states are not identifiable which violates one
of the key assumptions that justify the use of likelihood ratio test. To adjust the

Ž .P-value, we use the method of Davies 1977, 1987 who applies empirical process
theory to derive an upper bound for type I error of a modified LR statistic under
the null, assuming nuisance parameters are known under the alternative. Suppose
M is the P-value from the likelihood ratio test. Davies showed that

VM Žd�1.�2e�M �2 2�d �2
� 2� Ž .� Ž . Ž .Pr LR q � M � Pr � � M � 14d Ž .
 d�2

Ž Ž � . � .where Pr LR q � M H is the upper bound critical value, LR is the likelihood0
� Ž � Ž . � .ratio statistic, q is the vector of transition probabilities q � argmax LnL q H1

and d is the number of restrictions under the null hypothesis. Davies also proved a
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simple analytical formula, V � 2 M 1�2, by assuming that there is a unique global
optimum for the likelihood function. As Table 2 shows, the Davies adjustment
produces a P-value for the likelihood ratio statistic 0.08. We conclude that the
volatility of oil futures is better described by a two-state regime switching model
than a single regime GARCH model. This also implies that the high degree of
volatility persistence implied by the GARCH model reflects the persistence of
volatility regimes rather than true volatility predictability.

We proceed to explore more general Markov switching specifications that allow
for time-varying transition probabilities. Before considering details of the model
specifications, we discuss two factors that may affect the volatility of futures
returns. First, crude oil prices can be expected to be more volatile during winter

Ž .seasons due to high demand for heating oil Gray, 1995 , a by-product of crude oil
which may be exacerbated by freak weather conditions. To allow for seasonality

Ž .effects, we include a winter dummy variable D in the conditional variance1 t
equation for the periods from October through February. Second, Samuelson
Ž .1965 argues that volatility tends to increase when a futures contract is approach-
ing the expiration date, possibly due to traders adjusting their exposures out of the

Ž .existing contract to the next nearest contract see Serletis 1992; Gray 1995 .
Moreover, contracts that are close to maturity will tend to react more to new
information than contracts far away from maturity. To account for possible

Ž .maturity effects, we include a maturity dummy variable D using a 5-day window2 t
period before the expiry date of the nearest contract.

We estimate three versions of regime switching models, all with time-varying
transition probabilities and Student-t density. The models are:

� Model 1: RS-t
Ž .� Model 2: RSARCH 4 -t
Ž .� Model 3: RSGARCH 1,1 -t

Ž .The simplest regime-switching model RS-t allows the transition probabilities to
Ž .vary with the lagged basis b . We use b as the information set in thet�1 t�1

transition probabilities specification since this reflects market fundamental prior to
the shock that generates the return at t, whereas b will include the impact of thet
shock. The transition probabilities can be written as:

Ž .P � � c � d bt 1 1 t�1 Ž .15Ž .Q � � c � d bt 2 2 t�1

Ž .where b denotes lagged basis; � � is the cumulative normal distributiont�1
function to ensure that the transition probabilities, P and Q , lie within the unitt t
interval. The model proper is:

r � � � �i t i i t

Ž . Ž .� � Student - t 0, FR 16i t i

h � � � � D � � Dit i i1 1 t i2 2 t
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where i � state 1 or state 2; � is the conditional mean return; � denote thei t i t
Ž .returns innovations; � � 0 is the unconditional variance; and � and � arei i1 i2

Ž . Ž .coefficients for the winter dummy D and maturity dummy D , respectively.1 t 2 t
Ž .Model 2 RSARCH-t combines regime switching volatility with ARCH effects

within each regime. It extends the switching ARCH model of Hamilton and Susmel
Ž .1994 by letting all volatility parameters to switch across regimes, whereas the
Hamilton�Susmel model allows only the scale of the ARCH process to switch.
Based on an examination of the autocorrelations of squared returns, we decide

Ž .that an ARCH 4 specification for the conditional variance would suffice. The
Ž .specification for the conditional variance for the RSARCH 4 -t model is thus:

4
2 Ž .h � � � � D � � D � � � 17Ýi t i i1 1 t i2 2 t i p t�p

p�1

where � � 0 and � � 0.i p i
Ž .Model 3 RSGARCH-t extends the previous specification by incorporating

GARCH effects within each regime. In our estimation, we employ the widely used
Ž . Ž .GARCH 1,1 specification. This model is similar to Gray’s 1996b in his analysis of

US Treasury bill rates.
The conditional variance for this model can be written as:

2 Ž .h � � � � D � � D � � � � � h 18i t i i1 1 t i2 2 t i1 t�1 i1 t�1

where � � 0, � � 0 and � � 0.i1 i1 i
The estimation results for the three models are reported in Table 4. The RS-t

model has a larger log-likelihood of �2638.43 compared to �2646.98 for the
Žsimple Markov switching model with constant transition probabilities refer to

.Table 2 . Based on the likelihood ratio test, we reject the null hypothesis of
constant transition probabilities in favour of the RS-t specification at the 1% level
of significance. This implies that the assumption of time-varying transition
probabilities model results in a model that fits the data better than a fixed
transition probabilities model.1

Adding ARCH effects improves the ability of Model 1 to capture the data. The
Ž .log-likelihood of the RSARCH 4 -t model. The log-likelihood improves from

�2638.43 to �2627.57.2 Based on the RS-t model as the null, the likelihood ratio
Ž .statistic is 21.72 which allows us to reject the RS-t in favour of the RSARCH 4

model at the 1% level of significance.

1 To ensure a more direct comparison between the fixed transition probability and time-varying
transition probability models, we estimate a time-varying transition probability model without dummy
variables in the conditional variance equation. Our results show that the log-likelihood of the new
model improves to �2643.85. Based on the likelihood ratio test, we again reject the null hypothesis of

Ž .fixed transition model in favour of the time-varying transition probability model Model 2 above at less
than 5% level of significance.

2 Since the first, second and third order of ARCH parameters persistently fall onto the zero boundary
restriction, we exclude them in the conditional variance equation for proper convergence.
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Ž .The final model combines regime switching with GARCH 1,1 conditional vari-
Ž .ance within regimes. The RSGARCH 1,1 -t model is the most general of the three

Ž .models. However, the log-likelihood of this model �2634.69 compares un-
Ž . Ž .favourably with that of the RSARCH 4 model �2627.57 . Moreover, after

accounting for regime shifts, only � is statistically significant in the conditional11
Ž .volatility compared to the standard GARCH 1,1 -t model. This finding supports

Ž . Ž .the conjecture by Diebold 1986 and Lamoureux and Lastrapes 1990 that
GARCH effects could be an artifact of the data caused by structural changes in the
volatility process. We conclude that of the three models considered thus far, the

Table 3
Markov switching models with time varying transition probabilities

Parameters Model 1 Model 2 Model 3
Ž . Ž .RS-t RSARCH 4 -t RSGARCH 1,1 -t

� 0.0083 0.0073 0.00341
Ž . Ž . Ž .0.0389 0.0384 0.0369

� 0.0252 0.0349 0.04152
Ž . Ž . Ž .0.0663 0.0676 0.0727

��� ��� ��� 1.0922 1.0443 0.44281
Ž . Ž . Ž .0.1251 0.1276 0.2923

��� ��� ���� 2.7469 2.6787 2.72392
Ž . Ž . Ž .0.2695 0.2867 0.9769

��� ��� ���c 2.4299 2.4358 2.46881
Ž . Ž . Ž .0.2212 0.2243 0.2256

��� ��� ���c 2.3157 2.3020 2.26752
Ž . Ž . Ž .0.2217 0.2234 0.2576

d �0.1063 �0.1021 �0.08801
Ž . Ž . Ž .0.1583 0.1626 0.1491

�� �� ��d �0.2732 �0.2747 �0.24612
Ž . Ž . Ž .0.1521 0.1523 0.1448

� 0.2256 0.2210 0.123211
Ž . Ž . Ž .0.1913 0.1887 0.1246

� � �� 0.5816 0.6177 0.629321
Ž . Ž . Ž .0.4360 0.4462 0.4757

� � �� 0.2845 0.3121 0.217912
Ž . Ž . Ž .0.2193 0.2220 0.1458

�� �� ��� 1.2407 1.1624 1.192122
Ž . Ž . Ž .0.5656 0.5777 0.6609

@
� � � 0.000011

@
� � � 0.000021
� � 0.0449 �14

Ž .0.0500
� � 0.0233 �24

Ž .0.0367
��� � � 0.507311

Ž .0.2516
� � � 0.024621

Ž .0.3349
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Ž .Table 3 Continued

Parameters Model 1 Model 2 Model 3
Ž . Ž .RS-t RSARCH 4 -t RSGARCH 1,1 -t

��� ��� ���Fr1 5.7602 5.7595 5.7320
Ž . Ž . Ž .1.2813 1.2871 1.1189

��� ��� ���Fr2 10.1516 10.3673 10.3679
Ž . Ž . Ž .3.7590 3.9562 4.3512

Log-likekihood �2638.43 �2627.57 �2634.69
���LR1 test 17.10 � �

���LR2 test � 21.72 �

This table reports maximum likelihood estimates of three Markov switching models: RS-t,
Ž . Ž .RSARCH 4 -t and RSGARCH 1,1 -t for daily returns on the West Texas Intermediate crude oil futures

contract. The RS-t specification is:
r � � � � where i � 1,2 statesit it it

� Ž .� � � Student-t 0, FRit t�1 i
h � � � � D � � Dit i i1 1t i2 2t

Ž .The RSARCH 4 -t specification is:
r � � � � wherei � 1,2 statesit it it

� Ž .� � � Student-t 0, FRit t�1 i
h � � � � D � � D � � �2

it i i1 1t i2 2t i4 Žt�4.

Ž .The RSGARCH 1,1 -t specification is:
r � � � � where i � 1,2 statesit it it

� Ž .� � � Student-t 0, FRit t�1 i
h � � � � D � � D � � �2 � � hit i i1 1t i2 2t i1 Žt�1. i1 Žt�1.

The transition probabilities of the model is:

� � �Pr S � 1 S � 1 � Pt t�1 t

� � �Pr S � 2 S � 1 � 1 � Pt t�1 t

� � �Pr S � 2 S � 2 � Qt t�1 t

� � �Pr S � 1 S � 2 � 1 � Qt t�1 t

Ž . Ž .where P � � c � d b and Q � � c � d bt 1 1 t�1 t 2 2 t�1
Standard errors of the parameters are reported in the parentheses. � and � are coefficients of11 21

Ž .dummy variable for the winter effect D , and � and � are coefficients of dummy variable for the1 t 12 22
Ž . Ž . � Žmaturity effect D . The likelihood ratio test LR1 is computed as follows: �2 likelihood of2 t

.H � likelihood of H , where H is the Markov switching model with constant transitions and H is1 0 0 1
the RS-t model with time-varying transitions. For the LR2 test, H is the RS-t model with time-varying0

Ž .transitions and H is the RSARCH 4 -t model. The sample period is from 2 January 1992 to 311
December 1997, a total of 1506 observations. � , �� and ��� denote statistical significance at 10, 5 and
1%, respectively. @ denotes that the parameter estimate fell to the zero boundary.

Ž .RSARCH 4 -t model describes the data best. Table 3 represents details of the
Ž .estimates for the RSARCH 4 -t model.

Ž .We see that the unconditional mean returns � are not significantly differenti t

from zero in each regime. Nevertheless, in terms of signs, they are consistent with a
positive relationship between expected returns and volatility. The unconditional
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Ž .volatility parameter � in the high-variance state is at least twice the parameter in2
Ž .the low-variance state � . This underscores a need for a model that can account1

for separate volatility regimes. Only one coefficient in the transition probability
Ž .equation d is statistically significant at the 5% level. Since d is negative, this2 2

indicates that when returns are in the high-volatility state, shortages will increase
the persistence of the high volatility regime. This is consistent with the asymmetry
of commodity price reactions to demand shocks as pointed out by Williams and

Ž . Ž .Wright 1991 and Verleger 1994 . Likewise, the coefficient for the winter dummy
is significant only in the high-volatility state, implying that oil prices are especially
sensitive to changes in demand during the winter season when stocks are low. The
maturity effect is significant in both the low and high volatility states. This may be
explained by the tendency for traders to adjust their positions ahead of expiry of

Ž . Ž .the contract as pointed out by Serletis 1992 and Gray 1995 . Finally, within each
regime, the residual ARCH effects are small and insignificant, indicating that the
volatility process is better described by a regime switching model than a standard
ARCH model. The importance of incorporating regime shifts is apparent if we

Ž . Ž .compare the log-likelihood of the RSARCH 4 -t model �2627.57 with that of a
Ž . Ž .standard ARCH 4 -t model �2675.30 . The likelihood ratio statistic with the

Ž .ARCH 4 -t model as the null is 95.46 which is significant at any conventional
levels. Although not a formal test, the extreme low p-value gives us some degree of
confidence to infer that regime shifts are present in the data. Table 4 presents
diagnostic statistics of all the models discussed so far.

We now examine the regime and smoothed probabilities generated by the
Ž .RSARCH 4 -t model to trace how volatility has evolved over the sample period.

Fig. 1 displays the regime probabilities and Fig. 2 displays the smoothed probabili-
ties, with the basis superimposed on each plot. The regime probability is of interest
in forecasting, while the smoothed probability enables a researcher to ‘look back’
to determine when a particular regime has emerged. To classify regimes, we follow

Ž .the Hamilton 1989 scheme where an observation is assigned to state if the
probability of that state is higher than 0.5.

Two periods were clearly identified as being in the high-volatility state. The first
period was from 26 October 1993 to 26 September 1994, a period of 230 days. This
period should be seen in the context of 1994, which was a very volatile year for

Ž .energy products Wall Street Journal, January 3 1995 . The unconditional standard
deviation of daily crude oil returns for 1994 averaged 1.62% compared with 1.29%
for the years 1992 and 1993. Oil shortages were a key reason for the jump in
volatility. The oil market experienced several oil supply disruptions caused by a
civil war in Yemen, civil disturbances in Nigeria and the closure of a major North
Sea production platform.3 Initially, oil stocks were thought to be extremely high
due to oversupply in 1993.4 However, from the second quarter of 1994, strengthen-

3 Ž‘Crude oil highest in 7 months crude oil hit $19, drop back slightly’ The Dallas Morning News, 21
.May 1994, p. 1A .

4 Ž‘Crude oil prices decline sharply amid oversupply’ The Wall Street Journal Europe, 7 December
1993, p. 21.
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Table 4
Model diagnostic statistics

Ž . Ž . Ž .Model GARCH 1,1 -t Markov RS-t RSARCH 4 -t RSGARCH 1,1 -t
switching

Ž .Log-likelihood L �2652.46 �2646.98 �2638.43 �2627.57 �2634.69
Ž .Parameters K 5 8 10 12 14

AIC test �2657.46 �2654.98 �2648.43 �2639.57 �2648.69
SBC test �2670.75 �2676.25 �2675.02 �2671.47 �2685.91

Standardised
Residuals:
Skewness �0.18 �0.08 �0.10 �0.14 �0.12
Kurtosis 4.59 4.46 4.45 4.43 4.52

��� ��� ��� ��� ���JB test 167.28 134.69 134.78 134.08 149.35
Ž . Ž . Ž . Ž . Ž . Ž .Q 5 6.56 0.26 7.49 0.19 6.60 0.25 6.05 0.30 6.32 0.281

�Ž . Ž . Ž . Ž . Ž . Ž .Q 20 27.45 0.12 30.42 0.06 27.31 0.13 27.35 0.13 26.46 0.151
� �Ž . Ž . Ž . Ž . Ž . Ž .Q 5 4.51 0.48 8.63 0.13 9.92 0.08 3.84 0.57 9.46 0.092

Ž . Ž . Ž . Ž . Ž . Ž .Q 20 12.75 0.89 18.05 0.58 17.24 0.64 11.07 0.94 16.71 0.672

Ž .The table presents diagnostic statistics for a single regime GARCH model and four regime switching RS models. The count of the number of
Ž .parameters K attributed to the ARCH�GARCH specifications does not include the transition probabilities. AIC is Akaike’s Information Criterion and

Ž .SBC is the Schwartz Bayesian Criterion for model adequacy. AIC was calculated as L � K for K the number of parameters in the model. SBC was
� Ž .� Ž .� Ž .calculated as L � K�2 ln T for T � 1506. JB is the Jarque�Bera test of normality. Q q is the Ljung�Box statistic for the joint significant ofi

Ž .autocorrelations of standardised residuals for the first q lags. Q q is the Ljung�Box statistic for the joint significant of autocorrelations of squared2
standardised residuals for the first q lags. Under the null hypothesis of zero autocorrelations, each of the Q-statistic is distributed as a �2 variable with q

Ž . Ž . ��� �� �degrees of freedom P-value in parentheses . The sample period is from 2 January 1992 to 31 December 1997 1506 observations . , and denote
statistical significance at 1, 5 and 10%, respectively.
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Fig. 1. Basis and regime probabilities of high-volatility state for crude oil futures returns. Note. This
figure plots the interest-adjusted basis and regime probabilities of the second nearest WTI crude oil

Ž .futures return. Regime probabilities are generated by a RSARCH 4 -t model. The sample period is
Ž .from 2 January 1992 to 31 December 1997 1506 observations .

ing global demand for oil products especially by the U.S. and Europe quickly led to
tightness in supply. The possibility of an extended period of shortage was even

Fig. 2. Basis and smoothed probability of high-volatility state for crude oil futures returns. Note. This
figure plots the interest-adjusted basis and smoothed probabilities of the second nearest WTI crude oil

Ž .futures returns. Smoothed probabilities are generated by a RSARCH 4 -t model. The sample period is
Ž .from 2 January 1992 to 31 December 1997 1506 observations .
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Ž . 5acknowledged by the International Energy Agency IEA in early September 1994.
Predictably, the prospect of imminent shortages led to a sharp increase in the price
of spot crude oil from $14.57 in January to $17.62 in October. The reaction of oil
prices is consistent with the predictions of the theory of storage. Figs. 1 and 2 show
that the expected effects of backwardation on volatility were largely captured by
the regime switching model.

The second high-volatility period lasted 402 days from 11 January 1996 to 14
November 1997. This period again coincided with an exceptional state of backwar-
dation in the oil market during which the basis was persistently negative. The
average daily basis over this period was �2.92%. In fact, in 1996 alone, the basis
averaged �4.92%. A combination of severe shortage and rising demand explains
why the crude oil market was in a state of persistent backwardation during this
period. First, an unusually cold 1995�1996 winter spell in the Northern Hemi-
sphere eroded oil stockpiles among major oil producers. Oil inventories remained
low throughout 1996 as the Organization of Petroleum Exporting Countries
Ž .OPEC continued to stick with the production ceiling of 24.5 million barrels per
day despite increasing oil demand from industrialised economies.6 The increasing
adoption of ‘just-in-time’ stocking by refiners to keep inventories lean to cut down
on carrying costs contributed further to the demand-supply imbalance.7 In addi-
tion, there were concerns about the outcome of oil sales talks between the United
Nations and Iraq throughout 1996.8 Interestingly, oil prices continued to rise while
Iraq was getting ready to return to the crude oil exporting business after the
approval of the oil-for-food accord in December 1996.

After a brief respite of 1 month, volatility returned to the high-variance state on
23 September 1997 and continued in that state until 25 November 1997, a period of
46 days. This increase in volatility can be traced to political tensions in the Middle
East in the last quarter of 1997 as Iraq warned US citizens and aircraft serving with
the United Nations arms inspection teams. Oil prices rose on speculation about
possible supply disruption when UN condemned Iraq’s threats to expel the Ameri-
cans, but eased in late November 1997 following news that OPEC will increase its

5 The International Energy Agency raised the estimates for world oil demand in the fourth-quarter by
100 000 barrels, to 69.8 million barrels a day. At this rate, demand was expected to outstrip supply by

Žroughly 3 million barrels a day. See ‘Crude Oil Prices Rebound As Demand Looks Better’ The New
.York Times, 7 September 1994, p. 18 .

6 In August, IEA raised its 1996 demand forecast by 100 000 barrels to 71.8 million barrels a day, up
2.6% from 1995. Meanwhile, stock piles for countries in the Organisation for Economic Co-operation
and Development were 98 million barrels below those in 1995 by the end of June. See ‘Oil futures hit

Ž .highest level since April’ The Fort Worth Star-Telegram, 20 August 1996, p. 11 .
7 Ž .‘Cold winter spurs rise in demand and prices’ Petroleum Economist, 24 December 1996 .
8 Ž .The talks started in May 1995 and centred around United Nations UN resolution 986 which

allowed Iraq to sell US$l billion worth of oil every 90 days for 180 days on a renewable basis. In effect,
an accord on resolution 986 would enable Iraq to supply approximately 700 000 barrels oil daily, an
output equivalent to some 10% of leading producer Saudi Arabia. After many rounds of negotiations,

Žthe accord was implemented in early December 1996. See ‘Review of commodities markets’ The Wall
.Street Journal, 2 January 1997, p. 34 .
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Table 5
Chronology of events

Date of high-volatility No. of days in Events
state identified by high-volatility

Ž .RSARCH 4 -t model state

Ž .26 October 1993� 230 Civil war in Yemen DMN, 21 May 1994 .
Ž .26 September 1994 Civil disturbance in Nigeria DMN, 21 May 1994

Closure of a major North Sea production
platform disrupted daily world oil production
Ž .DMN, 21 May 1994 .

Sudden rise in global demand for crude oil
Ž .led by US NYT, 7 September 1994 .

11 January 1996� 402 Unusually cold 1995�1996 winter in the
Ž .14 August 1997 Northern Hemisphere FWS, 20 August 1996 .

Increasing oil demand from growing world
Ž .economy FWS, 20 August 1996 .

Increasing just-in-time stocking by oil
Ž .refiners PE, 24 December 1996 .

OPEC sticks to its production ceiling of 24.5
million barrels per day despite of increasing

Ž .pressure to meet oil demand FWS, 20 August 1996 .
Oil talks between UN and Iraq for approval

of the oil-for-food accord and entry to crude
Ž .oil market WSJ, 2 January 1997 .

23 September 1997� 46 Build up of tension in Middle East after Iraq
25 November 1997 refused to allow US to serve with the UN

Ž .arms inspection teams WSJ, 31 October 1997 .
OPEC production ceiling raised to 27.5

Ž .million barrels per day NYT, 29 November 1997 .

Ž . Ž .Sources: DMN, The Dallas Morning News DMN ; FWS, The Fort Worth Star-Telegram FWS ; PE,
Ž .Petroleum Economist; NYT, The New York Times; WSJ, The Wall Street Journal WSJ .

production ceiling to 27.5 million barrels per day in respond to the tight supply
conditions in the energy market.9 News of the OPEC increase was immediately
reflected in the basis, which reverted back to contango by the end of 1997.
Throughout 1996�1997 when the oil market was mainly in a state of severe
backwardation, oil prices remained extremely volatile. Specifically, the monthly
standard deviation of nearest crude oil futures returns was 63% above the standard
deviation in 1995. Table 5 summarises the major events that occurred during the
high volatility periods. Figs. 1 and 2 show that our regime switching is able to
capture the dramatic changes in volatility profile with remarkable accuracy.

9 Ž .‘OPEC still seeking accord on ’98 output’ The New York Times, 29 November 1997, p. 4 .
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5. Forecasting performance

While our regime switching model appears to fit the data well, it is natural to ask
whether the model does a good job in volatility predictions as compared to
non-regime switching models. Since regime switching models often involve many
parameters, over-parameterisation is a concern. In other words, even though
regime switching may be a systematic feature of the data, regime switching models
might under-perform non-regime switching models in out-of-sample forecasts
because they depend on too many parameters. We address the issue of over-
parameterisation by evaluating the out-of-sample forecasting performance of the

Ž . Ž .RSARCH 4 -t model against two benchmarks: constant variance and GARCH 1,1 -t
models. To ensure that our evaluations are robust, we use three measures of
forecast accuracy and three test periods with different volatility profiles. The three

Ž .measures of forecast accuracy are: mean square errors MSE ; mean absolute
Ž . 2errors MAE ; and R . The MSE and MAE are computed as follows:

22Ž .Ý � � ht t Ž .MSE � 19
n

� 2 �Ý � � ht t Ž .MAE � 20
n

In addition, R2 is computed to measure the goodness-of-fit of the forecasts. The
higher the R2, the more highly correlated is the forecast with the actual volatility.
In the forecasting tests, we emphasise models with the highest R2 because they
enable us to obtain direct conclusions about a particular forecast rather than some

Ž . 2linear transformations of that forecast see Gray, 1996b . R is defined as:

22Ž .Ý � � ht t2 Ž .R � 1 � 214Ý� t

where �2 is the actual volatility and h is the forecast volatility at time t.t t
The forecasting experiment is set up as follows. First, an estimation period is

chosen to obtain parameter estimates for each model. Second, based on the
parameters estimated, we project a time series of one-step ahead forecasts of the
conditional volatility over the test periods. Three test periods are used in the
experiment.

� October 1993 to December 1997;
� January 1996 to December 1997; and
� March 1997 to December 1997.

Each test period captures a different volatility profile in the data. In the first
test, the estimation period starts before the dramatic increase in volatility in 1994.
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Table 6
Out-of-sample forecast performance of Markov switching model

Ž . Ž .Out-of-sample periods Statistic Constant variance GARCH 1,1 -t RSARCH 4 -t

October 1993� MSE 21.67 21.62 21.56
December 1997 MAE 2.80 2.60 2.59

2Ž .1050 R 0.23 0.23 0.24

January 1996� MSE 25.24 25.70 24.72
December 1997 MAE 3.38 3.36 3.17

2Ž .500 R 0.28 0.27 0.29

March 1997� MSE 13.88 14.32 13.41
December 1997 MAE 2.63 2.80 2.61

2Ž .200 R 0.29 0.27 0.30

Ž .The table evaluates the forecasting performance of the RSARCH 4 -t model against a constant
Ž . Ž .variance model and a GARCH 1,1 -t model. The evaluation criteria are: mean squared errors MSE ,

Ž . 2mean absolute errors MAE and R . Parameters are estimated over the in-sample period, and held
fixed for testing over three out-of-sample periods as indicated in the table. The entire sample period
extends from 2 January 1992 to 31 December 1997, a total of 1506 observations.

This out-of-sample forecast test will evaluate models’ ability to capture unobserved
volatility swings in 1994 and 1996. The second test spans the most volatile period
Ž .1996 , when the energy market was in a state of strong backwardation. The third
test covers the year 1997 when volatility subsided.

Results of the forecasting experiment are shown in Table 6. The regime
switching model outperformed the constant variance and GARCH models for all

Ž .three test periods. The RSARCH 4 -t model also performs consistently well in
terms of all three forecasting criteria, having lower MSE and MAE and higher R2

Ž .than the other two models. We conclude the RSARCH 4 -t model is not over-
parameterised. More generally, our results suggest that regime switching models is
a promising tool for delivering more accurate forecasts of short-term volatility than
standard GARCH models.

6. Conclusion

This paper examines the temporal behaviour of volatility of daily returns on
crude oil futures using a generalised regime switching model. Our model allows for
abrupt changes in mean and variance, GARCH dynamics, basis-driven time-varying
transition probabilities and conditional leptokurtosis. This flexible model enables
us to capture many complex features of conditional volatility within a relatively
parsimonious set-up. The results clearly show that regime shifts are present in the
data and dominate GARCH effects. Ignoring regime switches in volatility may,
therefore, give rise to the false impression that the volatility of oil futures returns is
highly predictable. We also find that conditional on the high volatility state, the
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more negative the basis, the more persistent is the regime, a finding which is
Ž .consistent with previous empirical research, e.g. Fama and French 1988a,b and

Ž .Ng and Pirrong 1994 . The volatility regimes identified by our model appear to
correlate well with major events affecting supply and demand for oil. In particular,
periods of severe shortages and backwardation correspond to periods of extreme
volatility in oil futures prices. Although our regime switching model involves many
parameters, forecast performance was not compromised as various out-of-sample
tests indicate that the regime switching model performed noticeably better than
non-switching models regardless of evaluation criteria. We conclude that regime
switching models are useful to both the financial historian interested in studying
the factors behind the evolution of volatility and to oil futures traders interested in
using the model to extract short-term forecasts of conditional volatility. An
interesting direction for future research is to explore the relative performance of
regime switching models in dynamic hedging compared with strategies using a

Žconstant covariance or GARCH-covariance type models see Gagnon and Lypny,
.1997 .
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