SP 2023, SMAY MAE 3403 HW 2, Due: 6 Feb., before class

General instructions:

e You will write three Python programs named hw2a.py, hw2b.py, and hw2c.py to fulfill the
requirements given in parts a, b, and c below. You will place those three python files into a single
compressed file named hw2.zip. You will upload hw2.zip to canvas for submission.

e Use docstrings in ALL functions and write a clear description of the arguments/parameters to
functions.

¢ Inthisassignment, you must use variables, loops, if statements, your own function definitions, callbacks
and function calls. For now, you may not use any of the powerful functions available in python modules,
with these exceptions: you may import and use functions from the math, copy, and random modules.

e See your MAE 3013 textbook for reminders of:

The Simpson’s 1/3 rule for numerical integration (§19.5, p831 & Table 19.4)

The Secant Method for finding the solution (root or zero) of a nonlinear equation (§19.2, p805)
The use of cofactors and minor matrices for finding determinant of a matrix (§7.7)

The Cramer’s method for solving a matrix equation(§7.7)

Problems:
a) In HW1 problem 3, we used random.normalvariate (u, o) to produce a list of numbers from a
normally distributed population. Here, we need to write a function defined as: def Probability (PDF,
args, c, GT=True) : thatintegrates the Gaussian normal density function using Simpson’s rule.

PDF: is a callback function for the Gaussian/normal probability density function

f(x)= ﬁe_z(x;ﬂ)

(population mean), and o (population standard deviation).

, which takes 1 argument in the form of a tuple containing values for x, p

args: is a tuple containing p and o.
c: is a floating point value representing the upper limit of integration.

GT: is a Boolean indicating if we want the probability of x being greater than ¢ (GT==True) or less than ¢
(GT==False)

To find the probability of x<c you should use the Simpson’s 1/3 rule to integrate PDF between the
limits of a=p-5-0 to c.

Write and call a main() function that uses your Probability function to find:
P(x<1|N(0,1)): probability x<1 given a normal distribution of x with p=0, =1
P(x>u+206|N(175, 3))

P(-2.00<x<2.00|N(0,1))

Print you findings to the console (CLI) in the following format:
P(x<1.00|N(0,1))=X.XX

P(x>181.00|N(175,3))=Y.YY
P(-2.00<x<2.00|N(0,1))=Z.ZZ

Programs need to be work on 2a

math sqrt, exp, pi

SP 2023, SMAY

Probability (PDF, args, cC

P

GNPDF (args) :

Simpson (fcn, args, a, b, npoints

(xR-xL) / (2*m)

MAE 3403

(fcn (xL, args)+fcn (xR, args))

HW 2, Due: 6 Feb., before class

MAE 3403 HW 2, Due: 6 Feb., before class

muz2+2*stdev?

.format (
.format (
. format (

SP 2023, SMAY MAE 3403 HW 2, Due: 6 Feb., before class

name ==

main ()

SP 2023, SMAY MAE 3403 HW 2, Due: 6 Feb., before class
b) Write a function defined as: def Secant (fcn, x0, x1, maxiter=10, xtol=1e-5) : that
use the Secant Method to find the root of the callback fcn(x), in the neighborhood of x0 and x1.

fen: the callback function for which we want to find the root (see the specific functions below).
x0 and x1: two x values in the neighborhood of the root

xtol: exit if the [Xnewest - Xprevious| < xtol

maxiter: exit if the number of iterations (new x values) equals this number

return value: the final estimate of the root (most recent new x value)

Write and call amain () function that uses your Secant function to estimate and print the solution of:
x—3cos(x) = 0; with x0=1, x1= 2, maxiter = 5 and xtol = 1e-4

cos(2x)-x° =0; with x0=1, x1= 2, maxiter = 15 and xtol = 1e-8

cos(2x)-x* =0 with x0=1, x1= 2, maxiter = 3 and xtol = 1e-8

NOTE: you MUST use lambda functions in the call(s) to Secant. e.g.:
Secant (lambda x: x-3*math.cos(x), x0=1, x1=2, maxiter=5, xtol=le-4)

Programs need to be work on 2b.

Secant (fcn, x0, x1, maxiter=

delta = (x1-x0)
X = x1
fold
fNew
Niter =
Niter < maxiter (delta) > xtol:

fNew = fcn (x)

delta =

X += delta

fOld = fNew

Niter +=

X

fcn (x0)
fold

main () :

SP 2023, SMAY MAE 3403 HW 2, Due: 6 Feb., before class

fn2 =

maxiterl
maxiter?

maxiter3

rl
r2

r3

.format(rl))

.format (fnl (rl)))

.format (maxiter2,r2))
.format (fn2 (r2)))

.format (maxiter3, r3))
.format (fn2 (r3)))

.format (math.pi/))

c) Write a function defined as: def Cramer (Aaug) : that uses Cramer’s method to find the solution for a set of
N linear equations expressed in matrix form as Ax = b. Both A and b are contained in the function argument —
Aaug.

Aaug: an augmented matrix containing [A | b] having N rows and N+1 columns, where N is the number of
equations in the set.
return x:the solution vector.

Write and call amain () function that uses your Cramer function to solve and print the solutions to the
following sets of linear equations:

31 -1|x] [2

1 4 1| x,/[=/12

2 1 2|x,] |10

(1 -10 2 4 x, 2
1 4 12| x,| |12

9 3 4 |x| |21

-1 7 3 |x,| |37

Programs need to be work on 2c.

copy

Determinant myDet

SP 2023, SMAY MAE 3403

Cramer (Aaug) :

]

[
r AN
b.append (

myDet .Determinant (A)

x = []
colCntr =
r A:
AA =
AA =
x .append (myDet .Determinant (AA) /D)
colCntr+=
X

getA (Aaug) :

A=copy.deepcopy (Aaug)
r A:
r.pop ((r)-1)
A

replaceCol (A, b, col):

checkAns (A, x) :

HW 2, Due: 6 Feb., before class

SP 2023, SMAY MAE 3403

s += c*x[cCntr]
cCntr +=
b.append (s)
b

main () :

= Cramer (augl)
= Cramer (aug2)

augl:
(r)
x1)
checkAns (getA (augl) ,x1))
augz:
(r)
x2)
checkAns (getA (aug?) , x2))

HW 2, Due: 6 Feb., before class

