COMP 2150 - Summer 2022

Homework 1: Recursion, Searching, Sorting

Total Points: 50

Due: Mon., June 20, by 2359 CDT
Please carefully read the submission instructions at the end of the assignment. Remember that
whatever you submit must be your own work.

Grader:

Amy Zhang, mzhang6@memphis.edu. Grades will generally be posted within 1-2

weeks of the assignment due date. Questions about grading? Please contact her first.

1. Within a Python file named recursion.py, write the following functions:

(a)

(4 points) power (b, n)

Returns the value of 4" for any numeric b and any integer n (including negative integers).
Do not use any loops, and do not use any built-in ways of computing powers. This function
must be recursive.

(4 points) count_positives(stuff)

Returns how many positive integers (i.e., > 0) are contained in stuff. You may assume
that stuff is a list of integers. Do not use any loops, and do not use any built-in ways of
searching a list. This function must be recursive.

(4 points) all even(stuff)

Returns whether or not stuff contains only even integers. If stuff is empty, this should
return True. You may assume that stuff is a list of integers. Do not use any loops, and
do not use any built-in ways of searching a list. This function must be recursive.

(6 points) binary_search(stuff, target)

Returns the index of target within the list stuff if it exists, or -1 if it doesn’t exist.
You may assume that stuff is a sorted list of integers, and target is an integer. Do not
use any loops, and do not use any built-in ways of searching a list. This must be done
recursively; you can write a recursive helper function if needed.

(6 points) After your function definitions in recursion.py, write some tests for your func-
tions. Be sure to test at least the following scenarios:

e power - Negative, zero, and positive exponents

e count_positives - List contains all positive integers, list contains all non-positive
integers, list contains a mix of positive/non-positive integers, list is empty

1

mzhang6@memphis.edu

COMP 2150 - Summer 2022 Homework 1 Due Mon., June 20, by 2359 CDT

e all even - List contains all even integers, list contains all odd integers, list contains a
mix of even/odd integers, list is empty

e binary search - Target is in the list, target is too low for the list, target is too high
for the list, target is within the range of the list but not present, list is empty

2. As discussed in class, the quicksort algorithm starts by partitioning the list: a pivot value
is selected, and the list is partitioned around that pivot. For this problem we’ll assume that

e The pivot is always the element at index 0 of the original list (i.e., before any rearranging

of elements is performed).

e After partitioning, all the elements to the left of the pivot are < the pivot, and all the

elements to the right of the pivot are > the pivot.

In the following parts, assume that stuff is a list of integers.

(a)

(7 points) Consider this naive algorithm for partitioning a list stuff:

1. Create two new low and high lists. These will be used to store the elements of stuff
that are < or > the pivot, respectively.

2. Loop through all elements of stuff besides the pivot. If the element is < the pivot,
copy it into low. If the element is > the pivot, copy it into high.

3. Copy the elements of low back into stuff, then the pivot back into stuff, and finally
the elements of high back into stuff.

Within a Python file named partitioning.py, write a function partition naive(stuff)
that implements the above algorithm. The function should return the final index of the
pivot, after partitioning is complete. Note that partition naive doesn’t need to return
the partitioned list because the actions that it performs will affect the original list argu-
ment. Make sure that your function works for a list of any length > 1.

(7 points) The partitioning algorithm from the previous part is not very efficient. Creating
the two lists Low and high requires extra time as well as memory. A better way is to perform
the partition in-place, which means that no new lists are created. Instead, we just modify
the elements of the original list directly.

Suppose we have a list a containing the elements [10, 5, 16, 14, 2, 10, 13]. As
before, we want to use the first element (10) as the pivot. Here’s an algorithm to perform
an in-place partition:

1. Create two indices, L and U. Start L from the beginning of the list; start U from the
end.

2. Move L forward through the list until we find the first element that’s > the pivot (or
until we run out of elements). Move U backward through the list until we find the first
element that’s < the pivot (or until we run out of elements).

list: 10 5 16 14 2 10 13
index: 0 1 2 3 4 5 6
(L) Q)

Page 2 of 5

COMP 2150 - Summer 2022 Homework 1 Due Mon., June 20, by 2359 CDT

3. If the list elements at indices L and U are out of order (i.e., if L < U), swap the elements
at L and U. Note that the indices L and U themselves remain unchanged.
list: 10 5 10 14 2 16 13
index: 0 1 2 3 4 5 6
(L) Q)

4. Repeat steps 2-3 until L becomes > U.
In this example, the second iteration of step 2 brings us to this state:
list: 10 5 10 14 2 16 13
index: 0 1 2 3 4 5 6
L @

Since L < U is still true, step 3 tells us to swap:
list: 10 5 10 2 14 16 13
index: 0 1 2 3 4 5 6

) @

The third iteration of step 2 then brings us to:
list: 10 5 10 2 14 16 13
index: 0 1 2 3 4 5 6

@

Since L < U is no longer true, we don’t perform the swap in step 3. And with that,
the loop ends.

5. The final step is to swap the pivot (which, remember, is still sitting back at index 0)
with the element at index U:

list: 2 5 10 10 14 16 13
index: 0 1 2 3 4 5 6
w @

And voila! The list is now partitioned. The pivot is at index 3 (i.e., the final value
of U), all elements to the left are < the pivot, and all elements to the right are > the
pivot.

Within your partitioning.py file, write a function partition_in place(stuff) that
implements the in-place partitioning algorithm on the list stuff. As before, the function
should return the final index of the pivot, after partitioning is complete. partition_in place
doesn’t need to return the partitioned list because the actions that it performs will affect
the original list argument. Make sure that your function works for a list of any length > 1.

Page 3 of 5

COMP 2150 - Summer 2022 Homework 1 Due Mon., June 20, by 2359 CDT

()

(4 points) Within your partitioning.py file, write a function verify partition(stuff,
pivot_index) that returns whether or not stuff is validly partitioned around the spec-
ified pivot_index. In other words, the function should verify that all elements before
pivot_index are < the pivot, and all elements after pivot_index are > the pivot. You
may assume that pivot_index is a valid index of stuff.

(4 points) Within your partitioning.py file, write a function random list(size) that
returns a list containing the integers 1, 2, 3, ..., size, randomly shuffled. Each integer
should appear exactly once in the list, which means the list should contain no duplicate
elements.

(4 points) Finally, below your function definitions in partitioning.py, write a program
that does the following. Call your previously written functions as needed.

e Create two identical large lists. (“Large” is somewhat subjective — make it large
enough to see a noticeable difference in your partitioning algorithms, but not so large
that you have to wait for a while every time you test your code!)

e Run the naive partitioning algorithm on the first list. Measure and print how many
seconds are needed to complete this. Verify that the list is correctly partitioned.

e Run the in-place partitioning algorithm on the second list. Measure and print how
many seconds are needed to complete this. Verify that the list is correctly partitioned.

Python tip on timing: One way to get the execution time of a segment of code is to use
Python’s built-in process_time() function, located in the time module. This function
returns the current time in seconds and can be used as a “stopwatch”:

import time

start_time = time.process_time()

Code to time here

end_time = time.process_time()

Elapsed time in seconds is (end_time - start_time)

Page 4 of 5

COMP 2150 - Summer 2022 Homework 1 Due Mon., June 20, by 2359 CDT

Code Guidelines

Points can be deducted for not following these guidelines!

e Most importantly, your code must run. Code that does not run may receive zero credit, at
the TA’s discretion.

e Follow Python capitalization conventions for variable and function names.
e Use consistent indentation throughout your code. (Python kind of forces you to do this!)

e Include a reasonable amount of comments in your code. “Reasonable” is somewhat subjective,
but at the very least include:

1. A comment at the top of each program summarizing what it does.

2. Comments that indicate the major steps taken by the program. There are generally at
least two or three of these, such as collecting user input or making calculations.

Need Help?

e Email your lecture instructor.
e Use the CS Discord server — however, this is not for other people to write code for you.

e The UofM offers free online tutoring through the Educational Support Program (ESP):
https://www.memphis.edu/esp/onlinetutoring.php
Be sure to schedule sessions well in advance!

Submission Instructions

e Create a zip file containing all your Python source files. You can use any Python development
environment you like, as long as you submit the .py source files.

e Submit your zip file to the appropriate assignment in your Canvas lab section. The assignment
is technically due at 2359 on the due date; however, Canvas will continue to accept submissions
without penalty up until 0800 the following morning. After that 8-hour “grace period,” no
submissions are accepted. You may submit as many times as you want up to the deadline.

Page 5 of 5

https://www.memphis.edu/esp/onlinetutoring.php

