CS0010 Introduction to Computing for Systems Engineers
Project 3

Overview

In this project, we will build a thermostat. A thermostat is a device that controls a heater, an air
conditioner, and a fan so as to keep the temperature within a certain range. Since we don’t have
a heater, an air conditioner, or a fan, we’ll turn on a red LED to represent turning on the heat, a
blue LED to represent turning on the air conditioner, and a green LED to represent turning on the
fan.

Here are the basic rules governing the operation of our thermostat:

e If the temperature is below the desired range, turn on the heater and the fan.
e If the temperature is above the desired range, turn on the air conditioner and the fan.

o [f the temperature is within the desired range, turn off any of the air conditioner, heater, and
fan that are on.

We'll also have two buttons to change the desired temperature range. Pressing the first will shift
both endpoints of the desired temperature range up by one degree. For example, if the current
range is between 20 and 25 degrees Celsius, pressing this button will shift the desired range to
between 21 and 26 degrees Celsius. Pressing the second button will similarly shift both endpoints
of the range down by a degree.

Note that the heater and the air conditioner should never be on at the same time. Also,
whenever either the heater or the air conditioner is on, the fan should also be on.

Wiring

First, we’ll work on the wiring for this project. Do not remove the wiring and devices you used for
Project 1. The projects for CS0010 are designed such that you will not need to remove any wiring
from past projects, allowing you to run all of the programs you have written so far throughout the
term without re-wiring.

With Pi Cobbler plugged in to d1-20 and h1-20 (GPIO pin 21 on h20):

e black wire from a20 (GND on the Pi Cobbler @d20) to Neg rail

e 560 Ohm resistor (Green, Blue, Brown, Gold) from Neg rail to a30



red LED short leg (cathode) to €30 (to resistor/Neg rail), long leg (anode) to 30 (to red
wire/GPIO pin 21)

red wire from j20 (GPIO pin 21 @h20) to j30
560 Ohm resistor (Green, Blue, Brown, Gold) from Neg rail to a35

blue LED short leg (cathode) to €35 (to resistor/Neg rail), long leg (anode) to £35 (to blue
wire/GPIO pin 12)

blue wire from j16 (GPIO pin 12 @h16) to j35
560 Ohm resistor (Green, Blue, Brown, Gold) from Neg rail to a40

green LED short leg (cathode) to e40 (to resistor/Neg rail), long leg (anode) to f40 (to green
wire/GPIO pin 25)

green wire from j11 (GPIO pin 25 @h11) to j40
purple wire from al (3.3V power @d1) to Pos rail
BME280 e45-e51 (VIN @e45, CS @Qe51)

purple wire from Pos rail to a45 (VIN @e45)

black wire from Neg rail to ad7 (GND @e47)
orange wire from a48 (SCK @e48) to a3 (SCL @d3)
yellow wire from a50 (SDI @e50) to a2 (SDA @d2)
white wire from j3 (GND on the Pi Cobbler @h3) to other Neg Rail
button with pins in eb55, €57, h55, h57

red wire from j9 (GPIO pin 24 @h9) to j55

grey wire from Neg rail to j57

button with pins in e60, €62, h60, h62

blue wire from j8 (GPIO pin 23 @h8) to j60

grey wire from Neg rail to j62

Part 1: Design a thermostat class

First, we will design a class Thermostat to represent our thermostat. Write this class in a file
named thermostat.py.
Your class should include the following attributes:

Desired temperature range (represented by the 2 endpoints of the range)



e An object for the each of the red, blue, and green LEDs. To do this, recall that you will need
to use the LED class in the gpiozero module. You can import this class by including this line
at the top of your file:

from gpiozero import LED

Recall that you can then obtain an object for the red LED (connected to GPIO pin 21) using
the following code:

red_led = LED(21)

The methods red_led.on() and red_led.off () turn the LED on and off, respectively. The
attribute red_led.is_lit is True if the corresponding LED is lit and is False otherwise.

You can create objects for the blue LED (connected to GPIO pin 12) and green LED (con-
nected to GPIO pin 25) in the same way; they will have the same attributes and methods.

e An object for each of the two buttons. To do this, you will need to use the Button class in
the gpiozero module. You can import this class by including this line at the top of your file:

from gpiozero import Button

You can then obtain an object for the up button (connected to GPIO pin 24) using the
following code:

up_button = Button(24)

The Button class includes the attribute is_pressed, a boolean that is True if the button is
currently being pressed and False otherwise. For example, if the button tied to GPIO pin
24 was being pressed, up_button.is_pressed would have value True.

While the Button class also includes the method wait_for_press which halts the execution of
your program until the button is pressed and then returns. Note that this could be problematic
for our project. Eventually, we will want our thermostat to be constantly checking for both
button presses and changes in temperature. To accomplish this, we will not be able to stop
executing the program until a button is pressed. For this project, you will want to use
is_pressed.

The object, methods, and attributes for the down button, connected to GPIO pin 23, will be
similar.

Write the following methods:

e __init__ should create the attributes listed above. You should start with a desired temper-

ature range of 20 to 25 degrees Celsius.



e __str__ should return a string giving the upper and lower endpoints of the desired temper-

ature range. For example, if the temperature range 20 to 25 degrees Celsius, the __str__
method should return the following as a string:

Thermostat set to 20-25 degrees C

e up_temp should increase both endpoints of the desired temperature range by 1.
e down_temp should decrease both endpoints of the desired temperature range by 1.

e check_btns if either button is currently being pressed, it should adjust the desired temper-
ature range accordingly. Recall that pressing the up button should shift both endpoints of
the desired temperature range up by one degree, while pressing the down button should shift
both endpoints of the desired temperature range down by one degree.

e fan_on should turn the fan LED (green) on, if it is not already on.
e fan_off should turn the fan LED (green) on, if it is already on.

e ac_on should turn the AC LED (blue) on, if it is not already on.

e ac_off should turn the AC LED (blue) off, if it is already on.

e heat_on should turn the heat LED (red) on, if it is not already on.

e heat_off should turn the heat LED (red) off, if it is already on.

When writing ac_on, ac_off, heat_on, and heat_off, keep in mind that if the AC or heat is
turned on, the fan must be turned on as well (and, similarly, if the heat or AC is turned off, the
fan should be turned off). These functions will need to call fan_on and fan_off.

Write a test main function at the bottom of thermostat.py in which you create an instance of
your class and test each of these methods. This function should only be run when thermostat.py
is explicitly executed, not when it is imported.

Part 2: Add temperature reading

Next, we will add temperature reading to our Thermostat class. Recall that we will need to import
the board, busio, and adafruit_bme280 modules to do this. As in Project 2, you will be able to
create an object representing the sensor in this way:

i2c = busio.I2C(board.SCL, board.SDA)
sensor = adafruit_bme280.Adafruit_BME280_I2C(i2c)

You will then be able to access the current temperature with sensor.temperature.
Make the following changes to your Thermostat class:

1. First, in the __init__ function, add an attribute sensor to the class whose value is the sensor
object above.



2. Next, update the __str__ method to display the current temperature as well as the desired

temperature range. Now this method should return a string in the following format:

Will turn on AC at or above 25 C
Will turn on heat at or below 20 C
Current temperature: 22 C

3. Write a method named check_temp that reads the current temperature. If the temperature
is below the desired range, the method should turn on the heat if it isn’t already on. If the
temperature is above the desired range, the method should turn in the air conditioning if it
isn’t already on. If the temperature is within the desired range and if one of the heat or air
conditioner is on, it should be turned off.

This method should return True if either the heater or the air conditioner is turned on or off.
If nothing is turned on or off, it should return False.

Note that you will need some way of keeping track of whether or not the air conditioner, the
heater, and the fan are currently on or off.

4. Update the check_btns function to return True if a button has been pressed and the desired
temperature range has been changed. If nothing changes, return False.

Finally, you should modify the main function in thermostat.py to simply start running the
thermostat. First, it should create an object of class Thermostat. It should then run check_btns
and check_temp every 0.2 seconds and continuing forever (Hint: Use the sleep function from the
time module). Any time there is any change (increase or decrease in desired temperature range,
heat turns on or off, air conditioner turns on or off) print the Thermostat object to the screen.

Again, make sure that if the heater is on, the fan is on. Make sure that if the air conditioner is
on, the fan is on. Make sure the heater and air conditioner are never on at the same time.

Be sure to make liberal use of comments to clarify the code that you are writing. You will be
graded on the readability of your code (including commenting!).

Once you have completed all parts of the lab, be sure to show your work to the lab instructor.

Rubric

Your program will be evaluated according to the following rubric:

Red LED tied to heater and works properly | 10
Blue LED tied to AC and works properly 10
Green LED tied to Fan and works properly | 10
Up botton works as specified 10
Down botton works as specified 10
check_temp works as specified 10
check_btns works as sepcified 15
main written as specified 15
Code is well laid-out and commented 20




