
Practice Questions Computer Test
STAT5003 Semester 1, 2022

Question 1
Consider a simple linear regression

However instead of assuming the error variables where , assume
 where denotes the Laplace distribution which has the density,

This can lead to the likelihood model (you do not need to show this) where the log likelihood of the
parameters is given by

where

For this question consider estimating a the simple linear regression coefficients using the method of
Maximum Likelihood Estimation (MLE) assuming Laplace errors instead of Gaussian errors. A
dataset is provided to explore this estimation method. It is given in the rds file q1dat.rds
available on canvas.

a. [3 marks] Load and inspect the q1.dat data, verify it has 2 numeric variables. Then create
a scatterplot of the data.

q1.dat <- readRDS("q1dat.rds")
str(q1.dat)

'data.frame': 128 obs. of 2 variables:
$ X: num 22.3 25.9 24.2 25.7 27 ...
$ Y: num 1770 2232 2110 2048 3012 ...

Input your answer here
plot(Y ~ X, data = q1.dat)

= + + ε.Yi β0 β1Xi

ε ∼  (0,)σ2 σ > 0
∼ Laplace(σ)εi Laplace

f (x|σ) = exp(−|x|/σ)1
2σ

θ = (, , σ)β0 β1

(θ|) = { −∞,
−n log(2σ) − | − − |,1

σ ∑n
i=1 Yi β0 β1Xi

if σ < 0;
otherwise.

 = (, … , , , … , , , … ,)Y1 Yn X11 X1n X21 X2n

6/4/2022, 4:25 pm
Page 1 of 9

b. [4 marks] Fit the linear regression using the lm function in R and extract the regression
coefficients (the values) and the estimate of . Add the least squares regression line to your
scatterplot.

Input your answer here
q1.lm <- lm(Y ~ X, data = q3.dat)
q1.lm.coefs <- coef(q3.lm)
q1.lm.sigma <- sigma(q3.lm)
plot(Y ~ X, data = q1.dat)
abline(q1.lm)

β σ

6/4/2022, 4:25 pm
Page 2 of 9

c. [3 marks] Define a function in R that computes the negative log-likelihood as a function of
defined above. (Note has 3 elements and will require a function with three
input arguments.

Input your answer here
negLaplaceLikelihood <- function(beta0, beta1, sigma)
{
 Y <- q1.dat[["Y"]]
 X <- q1.dat[["X"]]
 if (sigma < 0) return(Inf)
 length(X) * log(2 * sigma) + sum(abs(Y - beta0 - beta1 * X))/sigma
}

d. [2 marks] As an alternative algorithm to estimate the regression coefficients and , use the
q1.dat data to compute the MLE of using the using the stats4::mle function (i.e. the

function mle in the stats4 package). Use the least squares estimates computed in the
previous part as the starting point of the algorithm and compare the results to the least
squares estimates.

θ
θ = (, , σ)β0 β1

σ
θ

6/4/2022, 4:25 pm
Page 3 of 9

Input your answer here
starting.point <- list(beta0 = q1.lm.coefs[1], beta1 = q1.lm.coefs[2], s
igma = q1.lm.sigma)
mle.estimates <- stats4::mle(negLaplaceLikelihood, start = starting.poin
t)
mle.coef <- mle.estimates@coef
matrix(c(q1.lm.coefs, q3.lm.sigma, mle.coef), nrow = 2, byrow = TRUE,
 dimnames = list(c("Least Squares", "MLE"), c("beta0", "beta1", "s
igma")))

beta0 beta1 sigma
Least Squares 789.9687 49.99192 193.0717
MLE 917.1096 43.75590 108.7159

This is seen with a smaller slope but larger intercept for the MLE estimates compared to the
Least Squares estimates.

e. [4 marks] Create a scatterplot which has all the data and both the least squares line and MLE
Laplace line estimate (use a legend to label the lines). Comment on the the Laplace line vs
least squares line compared to the observed data and refer to the scatterplot in your answer.

Input your answer here
plot(Y ~ X, data = q1.dat)
abline(q1.lm.coefs)
abline(mle.coef[1:2], col = 2)
legend("topleft", legend = c("Least Squares line", "MLE Laplace line"),
col = 1:2, lty = rep(1, 2))

6/4/2022, 4:25 pm
Page 4 of 9

The MLE Laplace line is closer to the center cloud of points while the least squares line is
tilted closer to the outliers on the top right and bottom left. It is less affected by the outliers in
the Y values at the edge of the domain.

Question 2
In some datasets confidentiality is an issue and to prevent disclosure, datasets are modified and
anonymised to prevent sensitive information from being leaked. An anonymised output has been
provided and is available on canvas in the file encoded.data.rds . This data file has numeric
variables/features along the columns except the last column which is a class label variable denoting
the assigned type for that case. The command to load the data is given below.

encoded.data <- readRDS("encoded.data.rds")

Using this data, answer the following questions. In the questions that involve Principal Components
Analysis (PCA), use the prcomp command in R with the default options.

a. [2 marks] Create a data.frame or matrix with the type class labels removed.
Determine the dimension of the new data.frame or matrix Solution:

6/4/2022, 4:25 pm
Page 5 of 9

The following definitions are equivalent
encoded.data.without.labels <- encoded.data[-ncol(encoded.data)]
encoded.data.without.labels <- encoded.data[-11]
encoded.data.without.labels <- encoded.data[, -11]
encoded.data.without.labels <- encoded.data[, -which(names(encoded.data)
== "type")]
dim(encoded.data.without.labels)

[1] 34 10

b. [5 marks] Perform principal components analysis on the unlabelled dataset. Make a
scatterplot using the first two principal components and colour the scatterplot by the type
label. Comment on whether the dimension reduction successfully allows to discriminate
between the different text type .

pca <- prcomp(encoded.data.without.labels)
plot(pca$x[,1], pca$x[,2], col = encoded.data[[ncol(encoded.data)]],
 xlab = "First Component", ylab = "Second Component")
legend("topright", legend = levels(encoded.data[[ncol(encoded.data)]]),
 col = unclass(unique(encoded.data[[ncol(encoded.data)]])),
 pch = 1)

6/4/2022, 4:25 pm
Page 6 of 9

Based off the plot we can see that it seems to adequately discriminate between the different
data types. If the Second component is positive, it seems to be type A, if the second
component is negative it is either type B or C where it is type B if it also has a first
component positive or type C if the first component is negative.

c. [4 marks] Compute the amount of variance in the unlabelled encoded.data that is explained
by the PCA for each principal component. Using this, produce a plot of the cumulative
variance explained against the number of components. Determine the minimum number of
components required to explain at least 80% of the variance in the encoding.

variance.explained <- pca$sdev^2
cumulative.variance <- cumsum(prop.table(pca$sdev^2) * 100)
plot(1:10, cumulative.variance, xlab = "Number of components", ylab = "C
umulative variance explained (%)", type = 'l')
abline(h = 80, lty = 'dotted')
abline(v = 5, lty = 'dashed')

which.max(cumulative.variance >= 80)

[1] 5

From the plot and calculation we can see that 5 components are needed to explain more
than 80% of the variation in the data.

6/4/2022, 4:25 pm
Page 7 of 9

d. [2 marks] Construct B = 34 bootstrap samples of the data loaded in part a. by resampling
the rows with replacement.

B <- nrow(encoded.data.without.labels)
set.seed(21042021) # Both commands below equivalent
bootstrap.samples <- lapply(1:B, function(x) encoded.data.without.labels
[sample(1:B, size = B, replace = TRUE),])
alternative.bootstrap.indexing <- lapply(1:B, function(x) sample(1:B, si
ze = B, replace = TRUE))
alternative.bootstrap.samples <- lapply(alternative.bootstrap.indexing,
function(x) encoded.data.without.labels[x,])

e. [2 marks] Recalculate the PCA on each bootstrapped sample. For each bootstrapped PCA,
compute the cumulative variance explained by each principle component within the PCA.
Create a data.frame with all the the results, it should have either 306 or 340 rows (the last
cumulative variance calculation is always 100% for the last principal component and is
optional to compute) and two columns. The first column should be the cumulative variance
explained and the second should be the count of number of components used.

pcas <- lapply(bootstrap.samples, prcomp)
cumulative.variances <- vapply(pcas,
 function(x) cumsum(prop.table(x[["sdev"]]
^2) * 100),
 numeric(10L))
cumulative.variances <- as.vector(cumulative.variances)
all.variances <- data.frame(`Cumulative variance` = cumulative.variances
,
 `Number of PCs` = 1:10, check.names = FALSE)
str(all.variances)

'data.frame': 340 obs. of 2 variables:
$ Cumulative variance: num 32.9 54.3 69 79.5 86.3 ...
$ Number of PCs : int 1 2 3 4 5 6 7 8 9 10 ...

f. [4 marks] Visualize your results showing how the cumulative variance explained increases
with each additional component and indicate how the variability of the cumuative variance
changes as well.

boxplot(`Cumulative variance` ~ `Number of PCs`, data = all.variances)

6/4/2022, 4:25 pm
Page 8 of 9

The variance explained with 1 component is quite low at 40% and has high variability as seen
with the long first boxplot. The extra variance explained steadily increases at what appears to
be a linear rate with similar variance (box size) with each additional component until around
the 4th components. After which there are diminishing returns and only small increases (and
small variability on the additional variance explained). Mainly since it has a hard boundary at
100%.

6/4/2022, 4:25 pm
Page 9 of 9

