logo Use SA10RAM to get 10%* Discount.
Order Now logo

Ask This Question To Be Solved By Our ExpertsGet A+ Grade Solution Guaranteed

Julian RichardsonComputer science

574 Answers

Hire Me
Gabriel WalkerHistory

952 Answers

Hire Me
Juber KhanCriminology

668 Answers

Hire Me
Abhishek MisraEconomics

736 Answers

Hire Me

Visualizing the Multivariate Normal


Visualizing the Multivariate Normal


Spectral Decomposition

P is orthogonal if PT P = 1 and PPT = 1.

Theorem: Let A be symmetric n × n. Then we can write

A = PDPT ,

where D = diag (λ1, . . . , λn) and P is orthogonal. The λs are the eigenvalues of A and ith column of P is an eigenvector corresponding to λi .

Orthogonal matrices represent rotations of the coordinates. Diagonal matrices represent stretchings/shrinkings of coordinates.


  • The covariance matrix Σ is symmetric and positive definite, so we know from the spectral decomposition theorem that it can be written as

Σ = PΛPT .

  • Λ is the diagonal matrix of the eigenvalues of Σ.
  • P is the matrix whose columns are the orthonormal eigenvectors of Σ (hence V is an orthogonal matrix).

) Geometrically, orthogonal matrices represent rotations.

) Multiplying by P rotates the coordinate axes so that they are parallel to the eigenvectors of Σ.

) Probabilistically, this tells us that the axes of the probability-contour ellipse are parallel to those eigenvectors.

) The radii of those axes are proportional to the square roots of the eigenvalues.

Can we view the det(Σ) as a “variance“?



  • Variance of one-dimensional
  • From the SDT: det(Σ) = i λi .
  • Eigenvalues (λi ) tell us how stretched or compressed the distribution
  • View det(Σ) as stretching/compressing factor for the MVN
  • We will see this from the contour plots

Our focus is visualizing MVN distributions in R.

What is a Contour Plot?

  • Contour plot is a graphical technique for representing a 3-dimensional
  • We plot constant z slices (contours) on a 2-D
  • The contour plot is an alternative to a 3-D surface The contour plot is formed by:
  • Vertical axis: Independent variable
  • Horizontal axis: Independent variable
  • Lines: iso-response

Contour Plot

The lines of the contour plots denote places of equal probability mass for the MVN distribution

  • The lines represent points of both variables that lead to the same height on the z-axis (the height of the surface)
  • These contours can be constructed from the eigenvalues and eigenvectors of the covariance matrix
  • The direction of the ellipse axes are in the direction of the eigenvalues
  • The length of the ellipse axes are proportional to the constant times the eigenvector
  • More specifically

||Σ1/2(X µ)|| = c2

has ellipsoids centered at µ and axes at √(λi vi )

Visualizing the MVN Distribution Using Contour Plots

The next figure below shows a contour plot of the joint pdf of a bivariate normal distribution. Note: we are plotting the theoretical contour plot. This particular distribution has mean



µ = . 1 Σ


(Solid dot), and variance matrix

1 1


Σ =. 2 1 Σ

Code to construct plot







x.points <- seq(-3,3,length.out=100) y.points <-x.points

z <- matrix(0,nrow=100,ncol=100) mu <- c(1,1)

sigma <- matrix(c(2,1,1,1),nrow=2) for (i in1:100) {

for (j in1:100) {

z[i,j] <- dmvnorm(c(x.points[i],y.points[j]),





Our findings

  • Probability contours are
  • Density changes comparatively slowly along the major axis, and quickly along the minor
  • The two points marked + in the figure have equal geometric distance from µ.
  • But the one to its right lies on a higher probability contour than the one above it, because of the directions of their displacements from the means

Kernel density estimation (KDE)

  • KDE allows us to estimate the density from which each sample was
  • This method (which you will learn about in other classes) allows us to approximate the density using a
  • There are R packages that use kde’s such as density().

What did we learn?

  • The contour plot of X (bivariate density): Color is the probability density at each point (red is low density and white is high density).
  • Contour lines define regions of probability density (from high to low).
  • Single point where the density is highest (in the white region) and the contours are approximately ellipses (which is what you expect from a Gaussian).


What can we say in general about the MVN density?


  • The spectral decomposition theorem tells us that the contours of the multivariate normal distribution are
  • The axes of the ellipsoids correspond to eigenvectors of the covariance
  • The radii of the ellipsoids are proportional to square roots of the eigenvalues of the covariance

Related Questions

. The fundamental operations of create, read, update, and delete (CRUD) in either Python or Java

CS 340 Milestone One Guidelines and Rubric  Overview: For this assignment, you will implement the fundamental operations of create, read, update,

. Develop a program to emulate a purchase transaction at a retail store. This  program will have two classes, a LineItem class and a Transaction class

Retail Transaction Programming Project  Project Requirements:  Develop a program to emulate a purchase transaction at a retail store. This

. The following program contains five errors. Identify the errors and fix them

7COM1028   Secure Systems Programming   Referral Coursework: Secure

. Accepts the following from a user: Item Name Item Quantity Item Price Allows the user to create a file to store the sales receipt contents

Create a GUI program that:Accepts the following from a user:Item NameItem QuantityItem PriceAllows the user to create a file to store the sales receip

. The final project will encompass developing a web service using a software stack and implementing an industry-standard interface. Regardless of whether you choose to pursue application development goals as a pure developer or as a software engineer

CS 340 Final Project Guidelines and Rubric  Overview The final project will encompass developing a web service using a software stack and impleme

Get Free Quote!

342 Experts Online