logo Hurry, Grab up to 30% discount on the entire course
Order Now logo

Ask This Question To Be Solved By Our ExpertsGet A+ Grade Solution Guaranteed

expert
Brayden JamesComputer science
(5/5)

548 Answers

Hire Me
expert
StatAnalytica ExpertAccounting
(5/5)

869 Answers

Hire Me
expert
Jessica FullerComputer science
(5/5)

858 Answers

Hire Me
expert
Bill BattershilllAccounting
(5/5)

912 Answers

Hire Me
R Programming
(5/5)

Salt survival assay of the F2 and F3 progenies of control and salt-treated regenerated plants from leaf and root.

INSTRUCTIONS TO CANDIDATES
ANSWER ALL QUESTIONS

Salt survival assay of the F2 and F3 progenies of control and salt-treated regenerated plants from leaf and root. The survival rates were analyzed after 14 days on MS media with 150 mM NaCl by scoring plants with green cotyledons. Each line contains 50 seeds per plate with 6 technical replicates and five lines per plant type were used in this experiment. The survival rates (%) were normalized by dividing with the survival rates in MS media without salt to eliminate the deviation from germination rates. 75LOF2/F3, leaf-origin progenies regenerated from salt-treated plants in F2/F3 generation, 75ROF2/F3, root-origin progenies regenerated from salt-treated plants in F2/F3 generation, CLOF2/F3, leaf-origin progenies regenerate from control plants in F2/F3 generation, CROF2/F3, root-origin progenies from control plants in F2/F3 generation. 

Commend in R PROGRAMM 

library(ggplot2)

library(ggpubr)

library(tidyverse)

 

X15_10_18_result_salt_tolerance

raw_data_salt_survivor <- X15_10_18_result_salt_tolerance

raw_data_salt_survivor

raw_data_salt_survivor$Media

 

####### Manipulate data frame

raw_data_salt_survivor

raw_data_salt_survivor <- rename(raw_data_salt_survivor, replicate = '# Replicate')

raw_data_salt_survivor <- rename(raw_data_salt_survivor, percentage = '% Survivors')

raw_data_salt_survivor <- rename(raw_data_salt_survivor, line = Line, generation = Generation, media = Media)

raw_data_salt_survivor

raw_data_salt_survivor_selected <- select(raw_data_salt_survivor, line, replicate, generation, media, percentage)

raw_data_salt_survivor_selected

 

###### Seperating by media

normal_MS <- filter(raw_data_salt_survivor_selected, media == "N")

normal_MS

salt_MS <- filter(raw_data_salt_survivor_selected, media == "S")

salt_MS

normal_MS$line == salt_MS$line # check the accuracy of the line

# All TRUE

normalised_survivor <- mutate(salt_MS, normalised = (salt_MS$percentage*100)/normal_MS$percentage)

normalised_survivor

survivor_graph <- ggplot(data = normalised_survivor) +

  geom_boxplot(aes(x = line, y = normalised, fill = sub("_\\d", "", line))) +

  geom_hline(yintercept = 50, color = "red") +

  facet_grid(generation~.) +

  theme_classic()

survivor_graph

pdf("survival_figure_not_collapsed.pdf", height = 5,width = 7 )

survivor_graph

dev.off()

 

##### Making the survival_percentage in normal media

normal_MS

normal_MS_graph <- ggplot(data = normal_MS) +

  geom_boxplot(aes(x = line, y = percentage, fill = sub("_\\d", "", line))) +

  geom_hline(yintercept = 80, color = "red") +

  facet_grid(generation~.) +

  theme_classic()

normal_MS_graph

pdf("normal_MS_survivors.pdf", height = 5,width = 7 )

normal_MS_graph

dev.off()

 

# TRY geom_boxplot

ggplot(data = normal_MS) +

  geom_boxplot(aes(x = line, y = percentage)) + # without 'fill = ' it still combine 'each line' together

  geom_hline(yintercept = 80, color = "red") +

  facet_grid(generation~.) +

  theme_classic()

 

# aes(x=line) combines CROF2_1 from all replicates together

salt_MS_graph <- ggplot(data = salt_MS) +

  geom_boxplot(aes(x = line, y = percentage, fill = sub("_\\d", "", line))) + # without 'fill = ' it still combine 'each line' together

  geom_hline(yintercept = 50, color = "red") +

  facet_grid(generation~.) +

  theme_classic()

pdf("salt_MS_survivors.pdf", height = 5,width = 7 )

salt_MS_graph

dev.off()

 

DATA 

line    generation  replicate   survivors   total   percentage

Col_0   F2  1   48  49  97.96

Col_0   F2  2   50  51  98.04

Col_0   F2  3   49  50  98.00

Col_0_1 F2  1   47  50  94.00

Col_0_1 F2  2   47  50  94.00

Col_0_1 F2  3   49  50  98.00

CROF2_1 F2  1   44  50  88.00

CROF2_1 F2  2   44  50  88.00

CROF2_1 F2  3   39  50  78.00

CROF2_1 F2  4   NA  NA  NA

CROF2_2 F2  1   45  50  90.00

CROF2_2 F2  2   39  50  78.00

CROF2_2 F2  3   43  50  86.00

 

(5/5)
Attachments:

Related Questions

. The fundamental operations of create, read, update, and delete (CRUD) in either Python or Java

CS 340 Milestone One Guidelines and Rubric  Overview: For this assignment, you will implement the fundamental operations of create, read, update,

. Develop a program to emulate a purchase transaction at a retail store. This  program will have two classes, a LineItem class and a Transaction class

Retail Transaction Programming Project  Project Requirements:  Develop a program to emulate a purchase transaction at a retail store. This

. The following program contains five errors. Identify the errors and fix them

7COM1028   Secure Systems Programming   Referral Coursework: Secure

. Accepts the following from a user: Item Name Item Quantity Item Price Allows the user to create a file to store the sales receipt contents

Create a GUI program that:Accepts the following from a user:Item NameItem QuantityItem PriceAllows the user to create a file to store the sales receip

. The final project will encompass developing a web service using a software stack and implementing an industry-standard interface. Regardless of whether you choose to pursue application development goals as a pure developer or as a software engineer

CS 340 Final Project Guidelines and Rubric  Overview The final project will encompass developing a web service using a software stack and impleme