logo Hurry, Grab up to 30% discount on the entire course
Order Now logo

Ask This Question To Be Solved By Our ExpertsGet A+ Grade Solution Guaranteed

expert
Daniel HastingsSociology
(5/5)

639 Answers

Hire Me
expert
Deepak BansalAccounting
(5/5)

518 Answers

Hire Me
expert
Zaiden GarzaResume writing
(5/5)

706 Answers

Hire Me
expert
Vitor SCriminology
(5/5)

892 Answers

Hire Me
Applied Statistics
(5/5)

data consists of one independent variable X, which has 5 levels (i.e. X = 1, 2, 4, 5, 6) and a numeric dependent variable Y

INSTRUCTIONS TO CANDIDATES
ANSWER ALL QUESTIONS

1.    The data consists of one independent variable X, which has 5 levels (i.e. X = 1, 2, 4, 5, 6) and a numeric dependent variable Y . Variable X2 and X3 are the square (X2 = X2) and cube (X3 = X3) of X, respectively. Below are part of the SAS code and outputs of fitting a SLR, quadratic regression

and cubic regression models of Y on X.

 PROC  REG DATA=data;

MODEL Y=X; title ’Simple linear regression model’; RUN; PROC REG DATA=data;

MODEL Y=X X2; title ’Quadratic regression model’; RUN; PROC REG DATA=data;

MODEL Y=X X2 X3; title ’Cubic regression model’; RUN; PROC glm; class X;

model Y=X; title ’one-way ANOVA’; RUN;

Simple linear regression model Analysis of Variance

 

Source

 

DF

Sum of

Squares

Mean

Square

 

F Value

 

Pr > F

 

Model

 

1

 

114.11434

 

114.11434

 

11.26

 

0.0047

Error

14

141.90316

10.13594

 

 

Corrected Total

15

256.01750

 

 

 

Parameter Estimates

 

 

Parameter

Standard

 

 

 

Variable

DF

Estimate

Error

t Value

Pr >

|t|

Intercept

1

-7.50304

1.76625

-4.25

0.0008

X

1

1.43472

0.42759

3.36

0.0047

               

Quadratic regression model Analysis of Variance

Sum of                    Mean 

Source

DF

Squares

Square

F

Value

Pr > F

Model

2

209.01170

104.50585

 

28.90

<.0001

Error

13

47.00580

3.61583

 

 

 

Corrected Total

15

256.01750

 

 

 

 

Parameter Estimates Parameter                              Standard 

Variable

DF

Estimate                  Error

t Value

Pr > |t|

Intercept

1

1.04319               1.97378

0.53

0.6060

X

1

-5.32626                1.34422

-3.96

0.0016

X2

1

0.96029               0.18745

5.12

0.0002

 

 

Cubic regression model

 

 

 

 

Analysis of Variance

 

 

 

 

Sum of

Mean

 

Source

 

DF              Squares

Square

F  Value        Pr > F

Model

 

3           215.40920             71.80307

21.22

<.0001

Error

 

12             40.60830               3.38402

 

 

Corrected Total

 

15           256.01750

 

 

 

 

Parameter Estimates

 

 

 

 

Parameter           Standard

 

 

Variable

DF

Estimate                  Error       t Value

Pr >

|t|

Intercept

1

-4.35868

4.36821

-1.00

0.3381

X

1

1.45448

5.10018

0.29

0.7804

X2

1

-1.21839

1.59489

-0.76

0.4597

X3

1

0.20125

0.14637

1.37

0.1943

one-way ANOVA The GLM Procedure

Sum of

Source                      DF               Squares          Mean Square       F  Value        Pr > F 

Model

4

216.9241667

54.2310417

15.26

0.0002

Error

11

39.0933333

3.5539394

 

 

Corrected Total

15

256.0175000

 

 

 

a)    Use the SAS outputs above to find out a reasonable regression model of Y on X. Provide theappropriate test statistics, df and p-value to justify your choice and explain briefly.

 b)   Suppose we are ONLY interested three pairwise comparisons among X=1,5 and 6. That is 5-1 (which means µx=5 −µx=1), 6-1 and 6-5. Below are the Fisher’s LSD output for these three pairwise comparisons. Use the Bonferroni approach to test all three pairwise comparisons (i.e. 5-1, 6-1 and 6-5). Provide the Bonferroni confidence intervals numerically. Set the familywise error rate at 0.05. t-Tests (LSD) for Y

NOTE: This test controls the Type I comparisons error rate, not the familywise error rate.

Alpha                                                    0.05

Error  Degrees of Freedom                     11

Error  Mean Square (MSE)          3.553939

Critical  Value of t                    2.201

Comparisons significant at the 0.05 level are indicated by ***.

Difference 

X

Comparison

Between

Means

95% Confidence

Limits

6 - 5

7.125

3.532

10.718 ***

6 - 1

7.908

4.739

11.077 ***

5 - 1

0.783

-3.004

4.571

 c)   We  can  also  apply  Tukey’s  HSD  approach  as  well  as  Scheff´e  approach  to  test  all  three  pairwise comparisons in part b (i.e. 5-1, 6-1 and 6-5). Compare the three approaches (i.e. Bonferroni, Tukey  and  Scheff´e),  and  find  out  which  one  is  the  best?   Explain  briefly.   Set  the  familywise  error rate at 0.05.

1.    An automobile manufacturer want to compare the gasoline consumption rate (miles per gallon) on five particular brands of cars. Five cars were used, one for each brand. Four drivers were randomly selected in this study. Each driver drove each car twice over a 25-mile test course and the miles  per gallon (mpg) were recorded. Therefore, 5 × 4 × 2 = 40 mpg values were recorded. A crude SAS analysis output is the following. Set α = 0.05.

(5/5)
Attachments:

Related Questions

. The fundamental operations of create, read, update, and delete (CRUD) in either Python or Java

CS 340 Milestone One Guidelines and Rubric  Overview: For this assignment, you will implement the fundamental operations of create, read, update,

. Develop a program to emulate a purchase transaction at a retail store. This  program will have two classes, a LineItem class and a Transaction class

Retail Transaction Programming Project  Project Requirements:  Develop a program to emulate a purchase transaction at a retail store. This

. The following program contains five errors. Identify the errors and fix them

7COM1028   Secure Systems Programming   Referral Coursework: Secure

. Accepts the following from a user: Item Name Item Quantity Item Price Allows the user to create a file to store the sales receipt contents

Create a GUI program that:Accepts the following from a user:Item NameItem QuantityItem PriceAllows the user to create a file to store the sales receip

. The final project will encompass developing a web service using a software stack and implementing an industry-standard interface. Regardless of whether you choose to pursue application development goals as a pure developer or as a software engineer

CS 340 Final Project Guidelines and Rubric  Overview The final project will encompass developing a web service using a software stack and impleme